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Abstract— This paper presents a theoretical and empirical
analysis of Expected Sarsa, a variation on Sarsa, the classic on-
policy temporal-difference method for model-free reinforcement
learning. Expected Sarsa exploits knowledge about stochasticity
in the behavior policy to perform updates with lower variance.
Doing so allows for higher learning rates and thus faster learn-
ing. In deterministic environments, Expected Sarsa’s updates
have zero variance, enabling a learning rate of 1. We prove
that Expected Sarsa converges under the same conditions as
Sarsa and formulate specific hypotheses about when Expected
Sarsa will outperform Sarsa and Q-learning. Experiments in
multiple domains confirm these hypotheses and demonstrate
that Expected Sarsa has significant advantages over these more
commonly used methods.

I. INTRODUCTION

In reinforcement learning (RL) [1], [2], an agent seeks
an optimal control policy for a sequential decision problem.
Unlike in supervised learning, the agent never sees exam-
ples of correct or incorrect behavior. Instead, it receives
only positive and negative rewards for the actions it tries.
Since many practical, real world problems (such as robot
control, game playing, and system optimization) fall in this
category, developing effective RL algorithms is important to
the progress of artificial intelligence.

When the sequential decision problem is modeled as a
Markov decision process (MDP) [3], the agent’s policy can
be represented as a mapping from each state it may encounter
to a probability distribution over the available actions. In
some cases, the agent can use its experience interacting with
the environment to estimate a model of the MDP and then
compute an optimal policy via off-line planning techniques
such as dynamic programming [4].

When learning a model is not feasible, the agent can
still learn an optimal policy using temporal-difference (TD)
methods [5]. Each time the agent acts, the resulting feedback
is used to update estimates of its action-value function, which
predicts the long-term discounted reward it will receive if it
takes a given action in a given state. Under certain conditions,
TD methods are guaranteed to converge in the limit to the
optimal action-value function, from which an optimal policy
can easily be derived.
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In off-policy TD methods such as Q-learning [6], the
behavior policy, used to control the agent during learning,
is different from the estimation policy, whose value is being
learned. The advantage of this approach is that the agent can
employ an exploratory behavior policy to ensure it gathers
sufficiently diverse data while still learning how to behave
once exploration is no longer necessary. However, an on-
policy approach, in which the behavior and estimation poli-
cies are identical, also has important advantages. In particu-
lar, it has stronger convergence guarantees when combined
with function approximation, since off-policy approaches can
diverge in that case [7], [8], [9] and it has a potential advan-
tage over off-policy methods in its on-line performance, since
the estimation policy, that is iteratively improved, is also
the policy that is used to control its behavior. By annealing
exploration over time, on-policy methods can discover the
same policies in the limit as off-policy approaches.

The classic on-policy TD method is Sarsa [10], [11], which
is named for the five components employed in its update rule:
the current state and action st and at, the immediate reward
r, and the next state and action st+1 and at+1. The use of
at+1 introduces additional variance into the update when the
estimation policy is stochastic, as is typically the case for on-
policy methods like Sarsa. This additional variance can slow
convergence. For this reason, Sutton and Barto proposed,
in a little-noted exercise in their classic book [2, Exercise
6.10], a variation on Sarsa designed to reduce variance in
the updates. Instead of simply using at+1, this variation
computes an expectation over all actions available in st+1.
Though the resulting algorithm, which we call Expected
Sarsa, may offer substantial advantages over Sarsa, it has
never been systematically studied and is not widely used in
practice.

In this paper, we present a theoretical and empirical
analysis of Expected Sarsa. On the theoretical side, we show
that Expected Sarsa shares the same convergence guarantees
as Sarsa and thus finds the optimal policy in the limit under
certain conditions. We also show that Expected Sarsa has
lower variance in its updates than Sarsa and demonstrate
which factors contribute to this gap.

On the empirical side, we compare the performance of
Expected Sarsa with the performance of Sarsa and Q-
learning. We formulate two hypotheses about the perfor-
mance difference between Expected Sarsa and these two
methods and confirm them using two benchmark problems:
the cliff walking problem and the windy grid world problem.
We also present results in additional domains verifying the
advantages of Expected Sarsa in a broader setting.



II. BACKGROUND

The sequential decision problems addressed in RL are
often formalized as MDPs, which can be described as 4-
tuples 〈S, A, T, R〉 where
• S is the set of all states the agent can encounter,
• A is the set of all actions available,
• T (s, a, s′) = P (s′|s, a) is the transition function, and
• R(s, a, s′) = E(r|s, a, s′), is the reward function.

The goal of the agent is to find an optimal policy π∗ =
P (a|s), which maximizes the expected discounted return:

Rt = rt+1 + γ rt+2 + γ2 rt+3 + ... =
∞∑

k=0

γkrt+k+1 (1)

where γ is a discount factor with 0 ≤ γ ≤ 1.
All TD algorithms are based on estimating value functions.

The state-value function V π(s) gives the expected return
when the agent is in state s and follows policy π. The action-
value function Qπ(s, a) gives the expected return when the
agent takes action a in state s and follows policy π thereafter.
These two functions are related through

V π(s) =
∑

a

π(s, a)Qπ(s, a) (2)

TD methods seek the optimal action-value function
Q∗(s, a), from which an optimal policy π∗ can easily be
deduced. Q∗(s, a) can be found by iteratively updating the
estimate Q(s, a).

The off-policy method Q-learning updates its Q values
using the update rule

Q(st, at) ← Q(st, at) + α [rt+1 +
γ maxa Q(st+1, a)−Q(st, at)] (3)

The max operator causes the estimation policy to be greedy,
which guarantees the Q values converge to Q∗(s, a). The
behavior policy of Q-learning is usually exploratory and
based on Q(s, a).

For Sarsa the behavior policy and the estimation policy
are equal. The update rule of Sarsa is

Q(st, at) ← Q(st, at) + α [rt+1 +
γ Q(st+1, at+1)−Q(st, at)] (4)

Because Sarsa is on-policy, it will not converge to optimal Q
values as long as exploration occurs. However, by annealing
exploration over time, Sarsa can converge to optimal Q
values, just like Q-learning.

III. EXPECTED SARSA

Since Sarsa’s convergence guarantee requires that every
state be visited infinitely often, the behavior and therefore
also the estimation policy is typically stochastic so as to
ensure sufficient exploration. As a result, there can be sub-
stantial variance in Sarsa updates, since at+1 is not selected
deterministically.

Of course, variance can occur in updates for any TD
method because the environment can introduce stochasticity

through T and R. Since TD methods are typically used when
a model of the environment is not available, there is little the
agent can do about this stochasticity except employ a suitably
low α. However, the additional variance introduced by Sarsa
stems from the policy stochasticity, which is known to the
agent.

Expected Sarsa is a variation of Sarsa which exploits this
knowledge to prevent stochasticity in the policy from further
increasing variance. It does so by basing the update, not on
Q(st+1, at+1), but on its expected value E{Q(st+1, at+1)}.
The resulting update rule is:

Q(st, at) ← Q(st, at) + α [rt+1 + (5)

γ
∑

a

π(st+1, a)Q(st+1, a)−Q(st, at)]

Using this expectation reduces the variance in the update,
as we show formally in Section V. Lower variance means
that in practice α can often be increased in order to speed
learning, as we demonstrate empirically in Section VII. In
fact, when the environment is deterministic, Expected Sarsa
can employ α = 1, while Sarsa still requires α < 1 to cope
with policy stochasticity.

Algorithm 1 shows the complete Expected Sarsa algo-
rithm. Because the update rule of Expected Sarsa, unlike
Sarsa, does not make use of the action taken in st+1,
action selection can occur after the update. Doing so can be
advantageous in problems containing states with returning
actions, i.e. P (st+1 = st) > 0. When st+1 = st, performing
an update of Q(st, at), will also update Q(st+1, at), yielding
a better estimate before action selection occurs.

Algorithm 1 Expected Sarsa
1: Initialize Q(s, a) arbitrarily for all s,a
2: loop {over episodes}
3: Initialize s
4: repeat {for each step in the episode}
5: choose a from s using policy π derived from Q
6: take action a, observe r and s′

7: Vs′ =
∑

a π(s′, a) ·Q(s′, a)
8: Q(s, a) ← Q(s, a) + α [r + γ Vs′ −Q(s, a)]
9: s ← s′

10: until s is terminal
11: end loop

Expected Sarsa can also be viewed, not as a lower-
variance version of Sarsa, but as an on-policy version of Q-
learning. Note the similarity between the expectation value
E{Q(st+1, at+1)} used by Expected Sarsa and (2) relating
V π(s) to Qπ(s, a). Since Q(s, a) is an estimate of Qπ(s, a),
its expectation value can be seen as the estimate V (s) for
V π(s) using the relation:

V (s) =
∑

a

π(s, a)Q(s, a) (6)

If the policy π is greedy, π(s, a) = 0 for all a except for the
action for which Q has its maximal value. Therefore, in the



case of a greedy policy, (6) simplifies to

V (s) = max
a

Q(s, a) (7)

Thus, Q-learning’s update rule (3) is just a special case
of Expected Sarsa’s update rule (5) for the case when
the estimation policy is greedy. Nonetheless, the complete
Expected Sarsa algorithm is different from that of Q-learning
because the former is on-policy and the latter is off-policy.

IV. CONVERGENCE

In this section, we prove that Expected Sarsa converges
to the optimal policy under some straightforward conditions
given below. We make use of the following Lemma, which
was also used to prove convergence of Sarsa [12]:

Lemma 1: Consider a stochastic process (ζt,∆t, Ft),
where ζt,∆t, Ft : X → IR satisfy the equations

∆t+1(xt) = (1− ζt(xt))∆t(xt) + ζt(xt)Ft(xt) ,

where xt ∈ X and t = 0, 1, 2, . . .. Let Pt be a sequence of
increasing σ-fields such that ζ0 and ∆0 are P0-measurable
and ζt, ∆t and Ft−1 are Pt-measurable, t ≥ 1. Assume that
the following hold:

1) the set X is finite,
2) ζt(xt) ∈ [0, 1] ,

∑
t ζt(xt) = ∞ ,

∑
t(ζt(xt))2 < ∞

w.p.1 and ∀x 6= xt : ζt(x) = 0,
3) ||E{Ft|Pt}|| ≤ κ||∆t|| + ct, where κ ∈ [0, 1) and ct

converges to zero w.p.1,
4) Var{Ft(xt)|Pt} ≤ K(1 + κ||∆t||)2, where K is some

constant,
where || · || denotes a maximum norm. Then ∆t converges
to zero with probability one.
The idea is to apply Lemma 1 with X = S ×A, Pt = {Q0,
s0, a0, r0, α0, s1, a1, . . ., st, at}, xt = (st, at), ζt(xt) =
αt(st, at) and ∆t(xt) = Qt(st, at) − Q∗(st, at). If we can
then prove that ∆t converges to zero with probability one,
we have convergence of the Q values to the optimal values.
The maximum norm specified in the lemma can then be
understood as satisfying the following equation:

||∆t|| = max
s

max
a
|Qt(s, a)−Q∗(s, a)| (8)

Theorem 1: Expected Sarsa as defined by update (5) con-
verges to the optimal value function whenever the following
assumptions hold:

1) S and A are finite,
2) αt(st, at) ∈ [0, 1] ,

∑
t αt(st, at) = ∞ ,∑

t(αt(st, at))2 < ∞ w.p.1 and ∀(s, a) 6= (st, at) :
αt(s, a) = 0,

3) The policy is greedy in the limit with infinite explo-
ration,

4) The reward function is bounded.
Proof: To prove this theorem, we simply check that all

the conditions of Lemma 1 are fulfilled. The first, second
and fourth conditions of this lemma correspond to the first,
second and fourth assumptions of the theorem. Below, we
will show the third condition of the lemma holds.

We can derive the value of Ft as follows:

Ft =
1
αt

(
∆t+1 − (1− αt)∆t

)
,

= rt + γ
∑

a

πt(st+1, a)Qt(st+1, a)−Q∗(st, at) ,

where all the values are taken over the state action pair
(st, at), except when specified differently.

If we can show that ||E{Ft}|| ≤ κ||∆t|| + ct, where
κ ∈ [0, 1) and ct converges to zero, all the conditions of
the lemma can be fulfilled and we have convergence of ∆t

to zero and therefore convergence of Qt to Q∗. We derive
this as follows:

||E{Ft}||
= ||E{rt + γ

∑
a

πt(st+1, a)Qt(st+1, a)−Q∗(st, at)}||

≤ ||E{rt + γ max
a

Qt(st+1, a)−Q∗(st, at)}||+
γ||E{

∑
a

πt(st+1, a)Qt(st+1, a)−max
a

Qt(st+1, a)}||

≤ γ max
s

∣∣∣ max
a

Qt(s, a)−max
a

Q∗(s, a)
∣∣∣ +

γ max
s

∣∣∣
∑

a

πt(s, a)Qt(s, a)−max
a

Qt(s, a)
∣∣∣

≤ γ||∆t||+
γ max

s

∣∣∣
∑

a

πt(s, a)Qt(s, a)−max
a

Qt(s, a)
∣∣∣ ,

where the second inequality results from the definition of
Q∗ and the fact that the maximal difference in value over
all states is always at least as large as a difference between
values corresponding to a state st+1. The third inequality
follows directly from (8). The other (in)equalities are based
on algebraic rewriting or definitions.

We identify ct = γ maxs |
∑

a πt(s, a)Qt(s, a) −
maxa Qt(s, a)| and κ = γ. Clearly, ct converges to zero for
policies that are greedy in the limit. Therefore, if γ < 1, all
of the conditions of Lemma 1 follow from the assumptions
in the present theorem and we can apply the lemma to prove
convergence of Qt to Q∗.

V. VARIANCE ANALYSIS

Section IV shows that Expected-Sarsa converges to the
optimal policy under the same conditions as Sarsa. In this
section, we further analyze the behavior of the two methods
to show theoretically under what conditions Expected-Sarsa
will in some sense perform better. Specifically, we show that
both algorithms have the same bias and that the variance of
Expected-Sarsa is lower. Finally, we describe which factors
affect this difference in variance. In this section, we use
vt = rt + γ

∑
a πt(st+1, a)Qt(st+1, a) and v̂t = rt +

γQt(st+1, at+1) to denote the target of Expected-Sarsa and
Sarsa, respectively.

The bias of the updates of both algorithms under a certain
policy π is given by the following equation:

Bias(s, a) = Qπ(s, a)− E{Xt} (9)



where Xt is either vt or v̂t. Both algorithms have the same
bias, since E{vt} = E{v̂t}. The variance is then given by:

V ar(s, a) = E{(Xt)2} − (E{Xt})2 (10)

We first calculate this variance for Sarsa:

V ar(s, a) =
∑

s′
T s′

sa

(
γ2

∑

a′
πs′a′(Qt(s′, a′))2 + (Rs′

sa)2

+ 2γRs′
sa

∑

a′
πs′a′Qt(s′, a′)

)
− (E{v̂t})2 .

Similarly, for Expected-Sarsa we get:

V ar(s, a) =
∑

s′
T s′

sa

(
γ2(

∑

a′
πs′a′Qt(s′, a′))2 + (Rs′

sa)2

+ 2γRs′
sa

∑

a′
πs′a′Qt(s′, a′)

)
− (E{v̂t})2 .

Since E{vt} = E{v̂t}, the difference between the two
variances simplifies to the following:

γ2
∑

s′
T s′

sa

(∑

a′
πs′a′(Qt(s′, a′))2−(

∑

a′
πs′a′Qt(s′, a′))2

)
.

The inner term is of the form:
∑

i

wix
2
i − (

∑

i

wixi)2 , (11)

where the w and x correspond to the π and Q values.
When wi ≥ 0 for all i and

∑
i wi = 1, we can give an

unbiased estimate of the variance of the weighed values wixi

as follows: ∑
i wi(xi − x̄)2

1−∑
i w2

i

, (12)

where x̄ is the weighted mean
∑

i wixi. Taking the numer-
ator of this fraction and rewriting this gives us:
∑

i

wi(xi − x̄)2 =
∑

i

wix
2
i − 2

∑

i

wixix̄ +
∑

i

wix̄
2

=
∑

i

wix
2
i − 2x̄2 + x̄2

=
∑

i

wix
2
i − x̄2 ,

which is exactly the same quantity as given in (11). This
shows that this quantity is closely related to the weighted
variance of the wixi. Therefore, the more the xi deviate from
the weighted mean

∑
i wixi, the larger this quantity will be.

In our context this occurs in settings where there is a large
difference between the Q values of different actions and there
is much exploration. In case of a greedy policy or when all
Q values have the same value, this quantity is 0.

VI. HYPOTHESES

In this section, we formulate specific hypotheses about
when Expected Sarsa will outperform Q-learning and Sarsa.
These hypotheses are based on the central differences be-
tween Expected Sarsa and these two alternatives: 1) unlike Q-
learning, Expected Sarsa is on-policy and 2) Expected Sarsa
has lower variance than Sarsa.

For simplicity, we restrict our attention to the case where
exploration is performed using ε-soft behavior policies, i.e.,
the agent takes a random action with probability ε and uses
the estimation policy otherwise. Using such exploration, off-
policy methods can sometimes perform quite differently than
on-policy methods. For example, in the cliff-walking task
(detailed in Section VII), some actions can have disastrous
consequences in certain states, e.g., when near a cliff. Off-
policy methods try to estimate the optimal way to behave
without exploration and then merely employ an ε-soft version
of the resulting policy. Consequently, they may never learn
to avoid such catastrophic actions. By contrast, on-policy
methods try to estimate the optimal way to behave given
the exploration that is occurring. Therefore, they can learn
policies that are qualitatively different from the optimal
policy without exploration but that avoid catastrophic actions
in the presence of exploration, e.g., by staying further away
from the cliff. Based on this difference we can define two
different types of problems:

1) Problems where the optimal ε-soft policy is better than
the ε-soft policy based on Q∗(s, a).

2) Problems where the optimal ε-soft policy is equal to
the ε-soft policy based on Q∗(s, a).

Because Expected Sarsa is on-policy and Q-learning is off-
policy, we we state the following hypothesis:

Hypothesis 1: Expected Sarsa will outperform Q-learning
for problems of Type 1.

Section V demonstrated that the variance in the update
target for Sarsa is larger than for Expected Sarsa, especially
when the policy stochasticity is large and when there is a
large spread in Q values of the actions of a state. Based
on these facts, we can formulate a second hypothesis, one
about the performance difference between Expected Sarsa
and Sarsa.

Hypothesis 2: Expected Sarsa will outperform Sarsa on
problems of both Type 1 and Type 2. The size of the
performance difference depends primarily on two factors:

1) When environment stochasticity is high, performance
difference will be small.

2) When policy stochasticity is high, performance differ-
ence will be large.

VII. RESULTS AND DISCUSSION

In this section we present a series of experiments to
compare the online performance of Expected Sarsa to that
of Sarsa and Q-learning in order to test the hypotheses
described in the previous section. We start with the cliff
walking problem. This is an example of a problem where
an exploration policy based on the optimal action values
Q∗(s, a) is not equal to the optimal policy with exploration
added. Sutton and Barto showed that Sarsa outperforms
Q-learning on this problem [2]. We show that Expected
Sarsa outperforms Q-learning as well as Sarsa, confirming
Hypothesis 1 and providing some evidence for Hypothesis
2.



We then present results on two versions of the windy
grid world problem, one with a deterministic environment
and one with a stochastic environment. We do so in order
to evaluate the influence of environment stochasticity on
the performance difference between Expected Sarsa and
Sarsa and confirm the first part of Hypothesis 2. We then
present results for different amounts of policy stochasticity
to confirm the second part of Hypothesis 2. For completeness,
we also show the performance of Q-learning on this problem.
Finally, we present results in other domains verifying the
advantages of Expected Sarsa in a broader setting. All results
presented below are averaged over numerous independent
trials such that the standard error becomes negligible.

A. Cliff Walking

We begin by testing Hypothesis 1 using the cliff walking
task, an undiscounted, episodic navigation task in which the
agent has to find its way from start to goal in a deterministic
grid world. Along the edge of the grid world is a cliff (see
Figure 1). The agent can take any of four movement actions:
up, down, left and right, each of which moves the agent one
square in the corresponding direction. Each step results in a
reward of -1, except when the agent steps into the cliff area,
which results in a reward of -100 and an immediate return
to the start state. The episode ends upon reaching the goal
state.

S G

Fig. 1. The cliff walking task. The agent has to move from the start [S]
to the goal [G], while avoiding stepping into the cliff (grey area).

We evaluated the performance over the first n episodes as
a function of the learning rate α using an ε-greedy policy
with ε = 0.1. Figure 2 shows the result for n = 100 and
n = 100, 000. We averaged the results over 50,000 runs and
10 runs, respectively.

Discussion. Expected Sarsa outperforms Q-learning and
Sarsa for all learning rate values, confirming Hypothesis 1
and providing some evidence for Hypothesis 2. The optimal
α value of Expected Sarsa for n = 100 is 1, while for
Sarsa it is lower, as expected for a deterministic problem.
That the optimal value of Q-learning is also lower than 1 is
surprising, since Q-learning also has no stochasticity in its
updates in a deterministic environment. Our explanation is
that Q-learning first learns policies that are sub-optimal in
the greedy sense, i.e. walking towards the goal with a detour
further from the cliff. Q-learning iteratively optimizes these
early policies, resulting in a path more closely along the cliff.
However, although this path is better in the off-line sense, in
terms of on-line performance it is worse. A large value of
α ensures the goal is reached quickly, but a value somewhat
lower than 1 ensures that the agent does not try to walk right

on the edge of the cliff immediately, resulting in a slightly
better on-line performance.

For n = 100, 000, the average return is equal for all
α values in case of Expected Sarsa and Q-learning. This
indicates that the algorithms have converged long before the
end of the run for all α values, since we do not see any
effect of the initial learning phase. For Sarsa the performance
comes close to the performance of Expected Sarsa only for
α = 0.1, while for large α, the performance for n = 100, 000
even drops below the performance for n = 100. The reason
is that for large values of α the Q values of Sarsa diverge.
Although the policy is still improved over the initial random
policy during the early stages of learning, divergence causes
the policy to get worse in the long run.
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Fig. 2. Average return on the cliff walking task over the first n episodes
for n = 100 and n = 100, 000 using an ε-greedy policy with ε = 0.1. The
big dots indicate the maximal values.

B. Windy Grid World

We turn to the windy grid world task to further test Hy-
pothesis 2. The windy grid world task is another navigation
task, where the agent has to find its way from start to goal.
The grid has a height of 7 and a width of 10 squares. There
is a wind blowing in the ’up’ direction in the middle part of
the grid, with a strength of 1 or 2 depending on the column.
Figure 3 shows the grid world with a number below each
column indicating the wind strength. Again, the agent can
choose between four movement actions: up, down, left and
right, each resulting in a reward of -1. The result of an action
is a movement of 1 square in the corresponding direction plus
an additional movement in the ’up’ direction, corresponding
with the wind strength. For example, when the agent is in
the square right of the goal and takes a ’left’ action, it ends
up in the square just above the goal.

1) Deterministic Environment: We first consider a de-
terministic environment. As in the cliff walking task, we
use an ε-greedy policy with ε = 0.1. Figure 4 shows the
performance as a function of the learning rate α over the
first n episodes for n = 100 and n = 100, 000. For n = 100
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Fig. 3. The windy grid world task. The agent has to move from start [S]
to goal [G]. The numbers under the grid indicate the wind strength in the
column above.

the results are averaged over 10, 000 independent runs, for
n = 100, 000 over 10 independent runs.

Discussion. For the deterministic windy grid world task
the performance of Q-learning and Expected Sarsa is essen-
tially equal. The fact that for n = 100, 000 the average return
is equal indicates that the behavior policies of Expected Sarsa
and Q-learning are equal in the limit for this task, i.e., the
optimal policy among the ε-greedy policies (Expected Sarsa)
is equal to the policy that is ε-greedy with respect to Q∗(s, a)
(Q-learning). The optimal α is 1 for Expected Sarsa as well
as Q-learning. Sarsa again has a lower optimal α. As in
the cliff walking task we observed divergence of Q values
for high α values in the case of Sarsa. The performance
difference for n = 100 between Expected Sarsa and Sarsa at
their optimal values is (−45.0) − (−58.3) = 13.3 in favor
of Expected Sarsa.
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Fig. 4. Average return on the windy grid world task over the first n episodes
for n = 100 and n = 100, 000 and an ε-greedy policy with ε = 0.1 in a
deterministic environment. The big dots indicate maximal values.

2) Environment Stochasticity: We also consider a stochas-
tic variation of the windy grid world problem and compare
results to the performance difference in the deterministic case
in order to evaluate the first part of Hypothesis 2. We added
stochasticity to the environment by moving the agent with
a probability of 20% in a random direction instead of the
direction corresponding to the action. The performance as
function of the learning rate is presented in Figure 5 for

n = 100 and n = 100, 000. Again, we averaged the results
over 10,000 runs and 10 runs respectively.

Discussion. As expected, the optimal α for Expected Sarsa
and Q-learning in case of n = 100 drops considerably in
comparison to the deterministic case, to a value of 0.6. The
optimal α value of Sarsa also decreases, to 0.55. From the
n = 100, 000 case, we can see that the policy no longer
converges for Expected Sarsa and Q-learning for all α values.
Although not stable for high α values, the average policy
is better for Expected Sarsa than for Q-learning, which is
likely due to the on-policy nature of Expected Sarsa. On the
other hand, For n = 100, Q-learning slightly outperforms
Expected Sarsa because it benefits more from optimistic
initialization, i.e., initially overestimating the Q values to
increase exploration during early learning. Since Q-learning
uses the maximal Q value of the next state in its update, it
takes longer for the Q values to decrease.

The performance difference for n = 100 between Ex-
pected Sarsa and Sarsa at their optimal values is (−93.7)−
(−98.3) = 4.6 in favor of Expected Sarsa. The performance
difference is less than half that of the deterministic case,
confirming the first part of Hypothesis 2.
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Fig. 5. Average return on the windy grid world task over the first n episodes
for n = 100 and n = 100, 000 using a ε-greedy policy with ε = 0.1 in a
stochastic environment. The big dots indicate maximal values.

3) Policy Stochasticity: To confirm the second part of
Hypothesis 2, we repeat the stochastic windy grid world
experiment but with higher policy stochasticity, using an ε
of 0.3 instead of 0.1. Figure 6 shows the results.

Discussion For n = 100 the optimal α for Sarsa drops
from 0.55 to 0.45 and the optimal α for Q-learning de-
creases slightly, though for Expected Sarsa it stays the same.
Furthermore, the performance difference between Q-learning
and Expected Sarsa increases. The performance difference
between Sarsa and Expected Sarsa also increases for n = 100
and is now (−121.0) − (−136.4) = 15.4, confirming the
second part of Hypothesis 2. Other experiments, not shown
in this paper, confirmed that also the opposite is true: when
policy stochasticity is low, i.e. using an ε-greedy policy with



ε = 0.01 there is practically no performance difference
between Sarsa and Expected Sarsa.
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Fig. 6. Average return on the windy grid world task over the first n episodes
for n = 100 and n = 100, 000 using a ε-greedy policy with ε = 0.3 in a
stochastic environment. The big dots indicate maximal values.

C. Other Domains

To demonstrate that the advantage of Expected Sarsa holds
more generally, we also tested in other domains.

1) Maze: We compared Expected Sarsa to Sarsa and Q-
learning on the maze problem shown in Figure 7. The goal
of the agent is to find a path from start to goal, while
avoiding hitting the walls. The reward for arriving at the
goal is 100. When the agent bumps into a wall or border of
the environment it stays at the same position, but receives a
reward of -2. For all other steps a reward of -0.1 is received.
The environment is stochastic and moves the agent with
a probability of 10% in a random direction instead of the
direction corresponding to the action. The discount factor γ
is set to 0.997. A trial is finished after the agent reaches the
goal or 10,000 actions have been performed. An ε-greedy
behavior policy is used with ε = 0.05 and we initialized the
Q values to 0.

We optimized α for each method such that the average
reward over the first 2 ∗ 106 timesteps is maximized. The
optimal values were 0.24, 0.28 and 0.27 for Sarsa, Q-learning
and Expected Sarsa respectively. We then plotted the reward
as function of the number of timesteps for these optimal α
values to get a more detailed look at performance. Figure 8
shows the results, which are averaged over 100 trials.

Discussion. Although Expected Sarsa and Q-learning per-
form equally, Sarsa’s performance is lower and not mono-
tonically increasing. It shows a drop in performance after
0.2 ∗ 106 timesteps, before it slowly increases again. This
drop occurs in all one hundred runs.

Although this is a clear demonstration of the possibility
that Sarsa can be unstable in certain cases, we have not
observed this phenomenon in previous research, and it is
remarkable because the value function is represented in a

S
G

Fig. 7. The maze problem. The starting position is indicated by [S] and
the goal position is indicated by [G].
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Fig. 8. The on-line performance of the different methods on the maze
problem. The results are averaged over 100 runs.

table, without the complications of function approximation.
We explain this temporary performance drop of Sarsa as
follows: since in our implementation we initialized all Q
values to 0, while their real value is higher, all values
start to increase in the beginning. However, the values of
the best actions increase faster because they have a shorter
propagation path to the final reward of 100. Therefore,
initially Sarsa learns well. However, because of the high
discount factor of 0.997, all action-values in a state start
to get very close to each other. This makes it possible that
after a bad exploration step, some values are updated in a
way that makes the policy worse. After a while Sarsa finds
a policy that is not optimal, but that is robust against such
value updates. The same drop in performance also happens
when using a learning rate of 0.04 for Sarsa, although initial
learning performance was slower and the drop occurred later.
The update targets of Expected Sarsa and Q-learning are
not effected by the action selected in the next state and are
therefore more robust towards performance drops.

2) Cart Pole: As a final comparison, we test the on-
line performance of Expected Sarsa, Sarsa and Q-learning
on a cart-pole task. The goal was to balance a 1 m long



pole, weighing 0.1 kg, on a cart that weighs 1.0 kg. The
possible actions were all integer amounts between −10 and
10 Newton, where positive and negative forces correspond to
pushing the cart right and left, respectively. An action was
performed every 0.02 s. If the cart was pushed further than
2.4 m from the center of the track or if the pole drops further
than 12 degrees to either side, the algorithm would receive
a −1 reward and the cart would be reset to the center with
the pole at a random angle between −3 and 3 degrees. A
neural network with 15 sigmoidal hidden units was used to
approximate the Q values. The input vector consisted of the
position and velocity of the cart and the angle and angular
velocity of the pole, all normalized to [-1,1]. The value of ε
was 0.05 and γ was 0.95. Figure 9 shows the average reward
during learning at optimized α values of 0.12, 0.16 and 0.16
for Sarsa, Q-learning and Expected Sarsa respectively.

Discussion. We see again that Expected Sarsa and Q-
learning perform similar, while Sarsa is less stable and shows
lower performance. This demonstrates that the results extend
to the case of function approximation.
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Fig. 9. The learning performance of the different methods on the cart pole.
The results are averaged over 200 simulations.

VIII. CONCLUSION

In this paper we examined Expected Sarsa, a variation on
the Sarsa algorithm intended to decrease the variance in the
update rule, and compared it to the Sarsa and the Q-learning
algorithm.

We proved that Expected Sarsa converges under the same
conditions as Sarsa. We also proved that the variance in the
update rule of Expected Sarsa is smaller than the variance
for Sarsa and that the difference in variance is largest when
there is a high amount of exploration and a large spread
in Q values of the actions of a specific state. Based on
this theoretical analysis, we hypothesized that the on-line
performance of Expected Sarsa will be higher than for Sarsa
and that the difference in performance will be relatively large
when there is a lot of policy exploration and small when the
environment is very stochastic. We also formulated a second
hypothesis based on the on-policy nature of Expected Sarsa
that states that Expected Sarsa will outperform Q-learning for
problems where an ε-soft behavior policy based on Q∗(s, a)
is not equal to the optimal ε-soft policy. We confirmed these
hypotheses using experiments on the cliff walking task and
the windy grid world task. Finally, we presented results on
two additional problems to verify the advantages of Expected
Sarsa in a broader setting.
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results for single-step on-policy reinforcement-learning algorithms,”
Machine Learning, vol. 38, no. 3, pp. 287–308, 2000.


