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Abstract—This paper describes several ensemble methodsthe best action of each algorithm and bases its final decision
that combine multiple different reinforcement learning (RL) the number of times an action is preferred by each algorithm,
algorithms in a single agent. The aim is to enhance learning (2) The rank voting (RV) method lets each algorithm rank

speed and final performance by combining the chosen actions . . . .
or action probabilities of different RL algorithms. We designed the different actions and combines these rankings to select

and implemented four different ensemble methods combiningve ~final action, (3) The Boltzmann multiplication (BM) method
different reinforcement learning algorithms: Q-learing, Sarsa, is based on using Boltzmann exploration for each algorithm

Actor-Critic, QV-learning, and ACLA. The intuitively desi gned and multiplies the Boltzmann probabilities of each action
ensemble methods: majority voting, rank voting, Boltzmann computed by each algorithm, and (4) The Boltzmann addition

multiplication, and Boltzmann addition, combine the polides L
derived from the value functions of the different RL algorithms, (BA) method is similar to the BM method, but adds the

in contrast to previous work where ensemble methods have Boltzmann probabilities of actions.

been used in RL for representing and learning a single value  Outline. Section Il describes a number of online reinforce-
function. We show experiments on five maze problems of varym  ment learning algorithms that will be used in the experiraent
complexity, the first problem is simple, but the other four maze g vign |11 describes different ensemble methods for combi

tasks are of a dynamic or partially observable nature. The reults . . . . .
indicate that the Boltzmann multiplication and majority vo ting ing multiple RL algorithms. Then, Section IV describes the r

ensembles significantly outperform the single RL algorithns. sults of a number of experiments on maze problems of varying
complexities with tabular and neural network represeoteti

Section V discusses the results and concludes this paper.
. INTRODUCTION
Reinforcement learning (RL) algorithms [1], [2] are very 1. REINFORCEMENTLEARNING

suitable for learning to control an agent by letting it inter Reinf 0l _ laorith ble to let i
act with an environment. There are a number of different < niorcementiearning aigorithms are avie to [€t an agen

online model-free value-function-based reinforcemeatriéng learn fr.om the texvp\)/erlences generatzd |bY |tsN||nt(la(ractéon.vylt
algorithms that use the discounted future reward criteri@n an environment. Yvé assume an underlying Markov gecision

learning [3], Sarsa [4], [5], and Actor-Critic methods [1fea process (MPP) whm_h doe_s not have to be known by the
well known, and there are also two more recent algorithm glentQ. A f|n|7tle MDP is defined as; (1) The state-space
QV-learning [6] and ACLA [6]. Furthermore, a number oft® *% >3 }: ands; € 5 denotes the state of the system at
policy search and policy gradient algorithms have been pr%me t; (2) A set of actions available to the agent in each §tate
posed [7], [8], and there exist model-based [9] and baté?‘u(s)’ Whereat_ e Alse) (_jenotes th? action .executed at .t'me
reinforcement learning algorithms [10]. t; (3) A transition functionT (s, a,s’) mapping state-action

In this paper we describe several ensemble methods R irss, a to a probability distribution over successor stat&s
(

. , :
combine multiple reinforcement learning algorithms in a-si AdreV\t/iqu fl:jnct%onRt%s,a, s') ¥Vh'CE den?tes .tthe a:cverag(: ¢
gle agent. The aim is to enhance learning speed and fvard obtained when the agent makes a transition from state

et , .
nal performance by combining the chosen actions or actigpi® Sites’ using actiona, wherer, denotes the (possibly

probabilities of different algorithms. In supervised leiag, stochastt_m) rlewartd crbtamt_adf at time 0l . RL
ensemble methods such as bagging [11], boosting [12], andn optimal control or reinforcement learning (RL), we are

mixtures of experts [13] have been used a lot. Such ensemﬂiggre.smd tmt cotmputltng orAIearnltng ;’m (l?ptlmal 'E)OI'gy fford
are used for learning and combining multiple classifiers apping states 1o actions. An optimal policy can be detine

using for example a (weighted) majority voting scheme. | s the policy that receives the highest possible cumulative

reinforcement learning, ensemble methods have been used 3counted rewards in its future from all states. In order to

representing and learning the value function [14], [15B][1 Ieallrn afm 0|?_t|mal pqllcy, va:ue-funf:non-basfet(rj] RL [1]ﬁes{tm;
[17]. In contrast to this previous research, here we intuexjuyadui_' ur:jc 'OTﬁ using ptasd expelnet_nceg_o etaﬁ t('s’agb
ensembles that combine different reinforcement learnig o defined as the expected cumulative discounted futurercewa

gorithms in a single agent. The system learns multiple vall ethe agent is in state, executes action, and follows policy

functions and the ensembles combine the policies deriv@oafterward&
from the value functions in a final policy for the agent. We . _E Ny B B
designed the following ensemble methods for combining RL Q"(s,a) = (27 rilso = 8,00 = a,m)
algorithms: (1) The majority voting (MV) method combines =0
where0 < ~ < 1 is the discount factor that values later
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actions by selecting the action with the largest value iratest (e.g. of neural network weights). This is done by using 1 if

7*(s) = arg max, Q*(s, a). the target is larger than 1, and O if the target is smaller than
In the experiments we will use five different online model®. If the denominator is less than or equal to O, all targets

free RL algorithms that optimize the discounted cumulativie the last part of the update rule get the val‘g;@jl where

future reward intake of an agent while it is interacting withA| is the number of actions. ACLA was shown to outperform

an (unknown) environment. Q-learning [3], [18] and Sarda [4Q-learning and Sarsa on a number of problems whgreedy

[5] will not be described here, since they are very well knowexploration was used [6].

methods. Comparison between the algorithms.It is known that
Actor-Critic. The Actor-Critic (AC) method is an on-policy petter convergence guarantees exist for on-policy methods
algorithm like Sarsa. In contrast to Q-learning and Sar€a, Ayhen combined with function approximators [1], since it has
methods keep track of two functions; a Critic that evaluat@gen shown that Q-learning can diverge in this case [21],
states and an Actor that maps states to a preference vait®. Therefore theoretically there are advantages fongisi
for each action [1]. After an experience;(a¢, 7, s¢+1) AC  one of the on-policy algorithms. A possible advantage of QV-
makes a temporal difference (TD) update to the Critic's &alujearning, ACLA, and AC compared to Q-learning and Sarsa, is
function V: that they learn a separate state-value function. This-gtdte
o _ function does not depend on the action and therefore isddain
Vise) = Vise) 4 Blre +9V(se41) = Vist)) @) using more experiences than a state-action value function
where g is the learning rate. AC updates the Actor’s valuethat is only updated if a specific action is selected. When
P(s¢,at) as follows: the state-value function is trained faster, this may alsgsea
faster bootstrapping of the Q-values or preference valdes.
P(st,at) == P(st,at) + a(re + 4V (st11) — V(st)) disadvantage of QV-learning, ACLA, and AC is that they need
wherea is the learning rate for the Actor. The P-values shoul@n additional learning parameter that has to be tuned.
be seen as preference values and not as exact Q-values.
QV-learning. QV-learning [6] works by keeping track of
both the Q- and V-functions. In QV-learning the state value- I1l. ENSEMBLE ALGORITHMS IN RL
function V' is learned with TD-methods [19]. This is similar
;?mATtolggrr:l?ro%ein(e)d\iv;zisnﬁgnld?r? 1S th(:;\ttthe (_Ql-valu_es Ensemble methods have been shown to be effective in
Py g the one-step Q eaJmncombining single classifiers in a system, leading to a higher
algorithm. In contrast to AC these learned values can be Seaecr?:uracy than obtainable with a single classifier. Baggirig [
as actual Q-values and not as preference values. The updates .

after an experiences{ ) of QV-leaming are the use IS7a simple method that trains multiple classifiers using a
=XP 2 Gt Tty St41 9 different partitioning of the training set and combinesrthe
of Equation 1 and:

by majority voting. If the errors of the single classifierssar
Q(st,at) == Q(s¢,a¢) + ars + YV (sp41) — Q(s¢,a1)) not strongly correlated, this can significantly improve the
o ] classification accuracy. In reinforcement learning, eridem
Note that the V-value used in this second update rule is &My ethods have been used for combining function approxireator

by QV-learning and not d_efined in terms .o_f Q-values. There {§ siore the value function [14], [15], [16], [17], and thiarc
a strong resemblance with the Actor-Critic method; the onlyg 4 efficient way for improving an RL algorithm. In contrast
difference is the second learning rule whéfes,) is replaced 4 previous research, we combine different RL algorithna th

by Q(s:, a;) in QV-learning. _ learn separate value functions and policies. Since theevalu
ACLA. The Actor Critic Learning Automaton (ACLA) [6] fynctions of for example Actor-Critic that learns prefecen

learns a state value-function in the same way as AC and Q)4jues and Q-learning that learns state-action values fire o
learning, but ACLA uses a learning automaton-like updae ru, gifferent nature, it is impossible to combine their value
[20] for changing the policy mapping states to probabtitief,nctions directly. Therefore in our ensemble approaches w
(or preferences) for actions. The updates after an expeieRompine the different policies derived from the value fioes

(s, ae, 74, 5041) Of ACLA are the use of Equation 1, andjeamed by the RL algorithms. We designed four different
now we use an update rule that examines whether the 1agkemple methods which are related to ensembles used in

performed action was good (in which case the state-value W@ ervised learning, although a big difference is that weeha
increased) or not. We do this with the following update ruley, take into account that RL agents need exploration.

If 6, >0 AP(st,a;) = (1 — P(s4,a;)) and Below we present the different ensemble methods we use
for combining the RL algorithms described before. The best
v AP =a(0—-P . . . . .
a7 a (50,0) = o (50,0) action according to algorithmy at time ¢ will be denoted

Else AP(st,a4) = (0 = P(sy,a;))  and by a/. The action selection policy of this algorithm is/.
Va #a; AP(s¢,a) = a(% — P(s¢,a)) We also enumerate the set of possible actions for each state,
betay ts

for ease of use:A(s;) = {a[l],...,a[m]}. The first two
whered, = vV (si41) + 7 — V(se), andAP(s,a) is added to ensemble methods, majority voting and rank voting, use a
P(s,a). ACLA uses some additional rules to ensure the targeBoltzmann distribution over the preference valygsof the
are always between 0 and 1, independent of the initialimatiensemble for each action, which ensures exploration. The



resulting ensemble policy in those cases is: IV. EXPERIMENTS

) ePt(stalil) /7 We performed experiments with five different maze tasks
(e, ali]) = S en oAl (one simple and four more complex problems) to compare the
) ] . different ensemble methods to the individual algorithms. |
wherer is a temperature parameter apdis defined for the he first experiment, the RL algorithms are combined with
different cases below. The other two ensemble methodszBolfyyjar representations and are compared on a small maze
mann multiplication and Boltzmann addition, work already;sk | the second experiment a partially observable maze
with probabilities generated by the Boltzmann distribotiojs ysed and neural networks as function approximators.en th
over actions according to independent RL algorithms, and gQrq experiment a dynamic maze is used where the obstacles
not use another Boltzmann distribution. Instead they use: e not placed at fixed positions and neural network function
_ pt(St,a[i])% approximators are used. In the fourth experiment a dynamic
m(se,ali]) = =——— = maze is used where the goal is not placed at a fixed position
2 Pe(se alk])” and neural networks are used as function approximators. In
After calculating the action probabilities, the ensemigiests the fifth and final experiment a generalized maze [23] task
an action and all algorithms learn from this selected actio used where the goal and the obstacles are not placed at

Note that this is the only sensible thing to do, since thectdfe fixed positions and again neural networks are used as functio
of not executed actions are unknown. approximators.

Majority Voting. The preference values calculated by the
majority voting ensemble using different RL algorithms are: A. Small Maze Experiment

voting, Boltzmann addition, and Boltzmann multiplicati@me

compared to the 5 individual algorithms: Q-learning, Sarsa
where I(z, y) is the indicator function that outputs when AC, Qv-learning, and ACLA. We performed experiments with
z =y and0 otherwise. The most probable action is simplgutton’s Dyna maze shown in Figure 1(A). This simple maze
the action that is most often the best action according ¢@nsists of9 x 6 states and there are 4 actions; north, east,
the algorithms. This method resembles a bagging ensembifith, and west. The goal is to arrive at the goal sitas
method for combining classifiers with majority voting, withspon as possible starting from the starting stsitender the
the big difference that because of exploration we do notyswainfluence of stochastic (noisy) actions. We kept the mazdlsma
select the action which is preferred by most algorithms.  since we want to compare the results with the experiments on

Rank Voting. Letr; (a[1]), . .., r{(a[m]) denote the weights the more complex maze tasks, which would otherwise cost too
according to the ranks of the action selection probabsljtiemych computational time.

such that ifr? (a[i]) > 77 (a[k]) thenv! (a[i]) > 7! (a[k]). For
example, the most probable action could be weightetimes, E E

pi(se, ali]) :anl(a[i],a{) The different ensemble methods: majority voting, rank
Jj=1

the second most probabte — 1 times and so on. This is the
weighting we used in our experiments. The preference values
of the ensemble are: H

pi(sealil) = 3 rd (ali) L

- Fig. 1. (A) Sutton’s Dyna maze. The starting position is @adéd byS and
J the goal position is indicated bg. In the partially observable maze of the

Boltzmann Multiplication. Another possibility is multiply- second experiment the goal positionisand the starting position is arbitrary.

. . . e . (B) The9 x 6 maze with dynamic obstacles used in the third experimerg. Th
Ing all the action selection prObab”'tles for each acti@séd starting position is denoted by and the goal position is indicated Il6y. The

on the policies of the algorithms. The preference value$ief tobstacles indicated in black are dynamically generatechatstart of each

ensemble are: new trial.
pi(st,ali]) = Hw{(st,a[z‘]) Experimental set-up. The reward for arriving at the goal
J is 100. When the agent bumps against a wall or border of

A potential problem with this method is that one algorithnfh€ environment it stays still and receives a reward of -2.

can set the preference values of any number of actions to zERJ Other steps the agent receives a reward of -0.1. A trial

when it has a zero probability of choosing those actionscesinis finished after the agent hits the goal or 1000 actions have

all our algorithms use Boltzmann exploration, this was not €en performed. The random replacement (noise) in action

issue in our experiments. execution is 20%. This reward function and noise is used in
Boltzmann Addition. As a last method, we can also sunfll experiments of this paper.

the action selection probabilities of the different algoms.  We used a tabular representation and first performed simu-
Essentially, this is a variant of rank voting, usingj = /. lations to find the best learning rates, discount factors| an

The preference values of the ensemble are: greediness (inverse of the temperature) used in Boltzmann
_ exploration. All parameters were optimized for the single R
pi(se, ali]) = Zﬁi (st, ali]) algorithms, where they were evaluated using the average re-
J ward intake and the final performance is optimized. Although



in general it can cause problems to learn to optimize th@own. We use Markov localization to track the belief state (
discounted reward intake while evaluating with the averageobability distribution over the states) of the agent gian
reward intake, for the studied problems the dominating obction and observation after each time-step. This belgéss
jective is to move each step closer to the goal, which then the input for the neural network. We used 20 sigmoidal
optimized using both criteria if the discount factor is larghidden neurons in our experiments, and the maze shown in
enough. We also optimize the discount factors, since wedouRigure 1(A) with the goal indicated bl and each state can be
that they had a large influence on the results. If we wouldstarting state. The initial belief state is a uniform dlisttion
have always used the same discount factor for all algorithnvghere only states that are not obstacles get assigned aemon-z
the results of some algorithms would have been much worgelief. After each actionu; the belief state);(s) is updated
and therefore it would be impossible to select a fair distouwith the observatiom;, ;:

factor. Since we evaluate all methods using the averagerdewa , ,

criterion, the different discount factors do not influente t biva(s) = 77P(0t+1|5)ZT(5 at, 8)be(s")

comparison between algorithms. The ensemble methods used s

the parameters of the individually optimized algorithms, swheren is some normalization factor. The observations are

that only the ensemble’s temperature had to be set. whether there is a wall to the north, east, south, and west.
Thus, there are 16 possible observations. We 208¢ noise
. /;ABLEl in the action execution and 10% noise for observing each
ABULAR LEARNING RATES a/5, DISCOUNT FACTOR AND GREEDINESS . .
(INVERSE OF THE TEMPERATURE FOBBOLTZMANN EXPLORATION) FOR mdependent. wa!l (or empty F:e”) at the. _Slde;s' That mearts tha
THE ALGORITHMS. THE LAST FOUR COLUMNS SHOW FINAL AND an observation is correct with probability9* = 66%. Note

CUMULATIVE RESULTS FOR THE TABULAR REPRESENTATION AND THE that we use a mode| of the environment to be ab]e to Compute
RANKS OF THE DIFFERENTALGORITHMS(SIGNIFICANCE OF FTEST . . P
p — 0.05). RESULTS ARE AVERAGES OF500SIMULATIONS. the bellef_ state, and the mo_del is bqsed on the uncertainties
the transition and observation functions.

Method o ¥ Final Rank Cumulative Rank

B G
Q 0.2 - 0.9 1 | 514F 049 8 | 849F 115 9 TABLE 11
arsa P2 oz | o | b AEos | TR 0383 %% FINAL RESULTS (AVERAGE REWARD FOR LAST5,000STEPS AND
v ooz | 021 00| 1| 5254025 | 45| 914L78 | 4T CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON
+ . .. R B .. - . . -
Majority voting ol M " | 16| s3mto012 | 12 | o7t 22 1 THE PARTIALLY OBSERVABLE MAZE. RESULTS ARE AVERAGES OFL00
Rank voting - - - 0.6 5.01+ 0.36 9 922+ 79 4-5 SIMULATIONS.
Boltzmann mult - - - 0.2 5.34+ 0.15 1-2 953+ 3.9 2
Boltzmann add — — — 1 5.28+ 0.12 3-4 935+ 1.9 3
Method @ B ~ G Final Rank Cumulative Rank
Q 0.02 - 0.95 1 9.65+ 0.33 1-4 1541+ 73 4
. . Sarsa 0.02 - 0.95 1 941+ 1.26 1-8 137.6+ 21.1 5-9
In Table | we show average results and standard deviations 002 | 003 | 095 | 1 | 933+031 | a7 | 1504% 35 3
. . . . . | Qv 0.02 0.01 0.9 1 959+ 0.31 1-4 1353+ 12.3 6-9
of 500 simulations of the final reward intake during the lagtacia 0035 | 0005 | 099 | 10 | 844t 027 9 | 1351437 | 69
. . jority voting - - - | 14 | 9374031 47 139.84 8.2 5-6
2500 learning-steps and the total summed reward (adding alfi veing - | - | o8| o30%ozs | a7 | 13it133 | 69
: . Boltzmann mult - - - 0.2 9.56 + 0.32 1-4 1746+ 29 1
20 average reward intakes after each 2,500 steps) during |th&zmann ai - - - i | euxos | 78 | 1622726 2

entire trial lasting 50,000 learning-steps. This lattealaation
measure shows the overall performance and the learning rat§ve performed experiments consisting of 100,000 learning
with which good solutions are obtained. The ranks are corsteps with a neural network representation and the Boltaman
puted using the student t-test with= 0.05. Note that since exploration rule. For evaluation after each 5,000 steps we
500 simulations were performed, small differences may sttheasured the average reward intake during that periodeTabl
turn out to be significant. The results show that the majority shows that the Boltzmann multiplication ensemble method
voting and Boltzmann multiplication ensembles outperforfigarns fastest in this problem. We also experimented with a
all other methods. To show that the chosen discount fact@gitzmann multiplication ensemble consisting of five diffe
matter, we also experimented with Sarsa with a discountfacently initialized Q-learning algorithms. The performance

of 0.95 and with ACLA using a discount factor of 0.9. Usinghis ensemble wa$.61 = 0.31 for the final performance and

the best found other learning parameters, Sarsa’s perfurenaj53.1 + 8.0 for the total learning performance. This shows
was4.89 4 1.14 for the final performance angit.7+20.0 for  that combining different RL algorithms speeds up learning
the total learning performance. Using the best other le@miperformance compared to an ensemble of the best single RL
parameters, ACLA's performance wass6 +0.86 for the final algorithm. All algorithms converge to a stable performance
performance an#2.7+18.6 for the total learning performance.within 60,000 learning steps, but the best ensembles reach a
This clearly shows that care should be taken to optimizfod performance much earlier.

the discount factor if one wishes to compare different RL
algorithms. All algorithms converge to a stable perforrmsmcC

within 15,000 learning steps, but the best ensembles reach i )
better performance levels and initially learn faster. We also compared the algorithms on a dynamic maze, where

in each trial there are several obstacles at random loca(sae
i Fig. 1(b)). In order to deal with this task the agent uses aaleu
B. Partially Observable Maze network that receives as inputs whether a particular stalie-
In this experiment we use Markov localization and neurabntains an obstacle (1) or not (0). The neural network uses
networks to solve a partially observable Markov decisioB x 54 = 108 inputs including the position of the agent and
process in the case where the model of the environment68 sigmoidal hidden units. At the start of each new trial ¢her

Solving a Maze with Dynamic Obstacles



are between 4 and 8 obstacles generated at random positioest final performance and also has the best overall learning
and it is made sure that a path to the goal exists from tperformance. We also experimented with a majority voting
fixed starting locationS. Since there are many instances oénsemble consisting of five differently initialized Sardgoa
this maze, the neural network has to learn the knowledge ofithms. The performance of this ensemble wads02 + 0.22
path planner. A simulation lasts for 3,000,000 learningstefor the final performance antli76.744.9 for the total learning
and we measure performance after each 150,000 steps. performance. This shows again that a combination of differe
RL algorithms in an ensemble learns faster than an ensemble
FINAL RESULTS (AVERAGE R-EI;C\/BALRIIED IF”OR LAST150,000STEPS AND consisting of the best single .RL algorithm, .althoth an e.n-
CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATIONON ~ S€MDbIe of the same RL algorithm can also increase the final
THE MAZE WITH DYNAMIC OBSTACLES. RESULTS ARE AVERAGES OF50 performance of that algorithm. The best ensembles reach a

SIMULATIONS. better performance at the end than the single RL algorithms
Wiethod = AT S © mrar T Rk | cmaewe T Rk ] @nd initially have a faster learning speed.
Q 0.01 - 0.95 1 6.79+ 0.21 3 11624+ 2.7 3
Sarsa 0.01 - 0.95 1 6.66 + 0.37 4-5 11264+ 5.9 4
AC 0.015 0.003 0.95 1 5.98 4+ 0.31 8 97.7+ 9.4 8
Qv 0.01 0.01 0.9 0.4 6.27 4+ 0.20 6 108.3+ 2.7 5-7
ACLA+ 0.06 0.002 0.98 6 5.39+ 0.15 9 89.2+4+ 1.3 9 1 1
Majority voting - - - 2.6 6.934 0.14 2 12214 1.4 2 E SOIVIng the Generallzed Maze
Rank voting - - - 0.8 6.59 4 0.21 4-5 108.0+ 2.6 5-7
Boll I - - - 0.2 7.044 0.13 1 12504 1.6 1 i 1
Bommammut |l | T | D | 0% | IGadods ) 1| msokie ) 1 In this last maze experiment, we use the same small

maze as before, but now the goal and walls are placed at
Table 1l shows the final and total performance of th@ different location in each trial. This is what Werbos calls

different algorithms. The Boltzmann multiplication endsien the “Generalized Maze” [23] experiment. To deal with this, a

outperforms the other algorithms on this problem: it reach@eural network function approximator receives the posit

the best final performance and also has the best oveffff @gent, goal and the dynamic walls as input. Thereforethe

learning performance. We also experimented with a Boltama@r€ 54 3 inputs. A simulation lasts for 15,000,000 learning
multiplication ensemble consisting of five differently tial- Steps and we measure performance after each 750,000 steps.
ized Q-learning algorithms. The performance of this endembl e feedforward neural networks have 100 sigmoidal hidden

was 6.87 + 0.22 for the final performance and17.0 + 2.7 Units.

for the total learning performance. This shows again that TABLE V

combining different RL algorithms in an ensemble performs finaL RESULTS (AVERAGE REWARD FOR LAST750,000STEPS AND
better than an ensemble consisting of the best single REUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

: T GENERALIZED MAZE. RESULTS ARE AVERAGES OF50 SIMULATIONS
algorithm. The best ensembles reach a better performance’df FOR THE SINGLE ALGORITHMS ANDLO SIMULATIONS FOR THE

the end than the single RL algorithms. ENSEMBLES
Method a 8 Y G Final Rank Cumulative Rank
D. Solving a Maze with Dynamic Goal Positions Qe oo | Cloe| os | teeiom | o mHetes| s
In this fourth maze experiment, we use the same smaﬁzvLA+ 3%%‘ °g°§§§ §§§ 31_§ §§§§§ Z ZE%EE %
maze as before (see Figure 1(A)) where the starting positiopicrt voins - S| T | e | oAz 23 aaedos ) 1
is indicated by S, but now the goal is placed at a differeptotzman m - T | 02| esross ) 23 w0sbio ) 2

location in each trial. To deal with this, we use a neural
network function approximator that receives the positidn o
the goal as input. Therefore there are 542 inputs, that X X ; )
indicate the position of the agent and the position of thd.go&"t @lgorithms. Here Q-learning obtains the best final tesul
A simulation lasts for 3,000,000 learning steps and we nreas@Ut the majority voting ensemble has the best overall legmi

performance after each 150,000 steps. We used feedforwBﬁfformance' It is surprising that Sarsa obtains much worse
neural networks with 20 sigmoidal hidden units. results than the other algorithms, even though we optimadied

its learning parameters. We also experimented with a nigjori

Table V shows the final and total performance of the differ-

TABLE IV voting ensemble consisting of five Q-learning algorithmise T
FINAL RESULTS (AVERAGE REWARD FOR LAST150,000STEP9 AND performance of this ensemble wa20 £ 0.16 for the final
CUMULATIVE RESULTS FORA NEURAL NETWORK REPRESENTATIONON  performance and03.4-:0.9 for the total learning performance,
50 SIMULATIONS. so this ensemble reaches the best final performance, and its
— _ s e — Iea_rning speed is alr_'nost _significantly bette_r than the_ ni_tajor
o o0cs - [ o [0 [ DsFoar | 7o | Terdes 7 voting ens_emble using different RL algont_hms. This is the
& s | o | a3 | 82| BEENL| 37| apier | . | Ol exberiment where an ensemble consisting of the same
Acure || oos | ooe | ose | o | soaikim | 3o | azskass 8 best single RL algorithm leads to a significantly bettt_ar .f|nal
Rank voing - - | - |iz| setame | 27| s2edons ] pgrforman.ce compared_to the bgst ensemble consisting of
Boltzmann add - - | -] 1| wieroee | 79 | 1orxe2s | se | different single RL algorithms. This results can be expaain

by the fact that in this problem Q-learning performs much
Table IV shows the final and total performance of thbetter than the other algorithms. At the end of the learning
different algorithms. The majority voting ensemble outpetrial Q-learning outperforms the best ensembles, althahgh
forms the other algorithms on this problem: it reaches thensembles initially have a faster learning speed.



V. DISCUSSION [8] J. Baxter and P. Bartlett, “Infinite-horizon policy-gliant estimation,”
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most if the algorithms’ predictions are less correlated. W, « “s ™ Narendra and M. A. L. Thathatchar, “Learning austan - a
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In future work we want to focus on batch [10] and modelp3] P. werbos and X. Pang, “Generalized maze navigation:cBtics solve

based RL algorithms [9], which can be very useful for redgcin what feedforward nets cannotfEEE Transactions on Systems, Man,

the number or experiences. We are also currently studying and Cybemeticsvol. 3, pp. 1764-1769, 1996.

methods for learning to weigh each independent RL algorithm

which could increase the performance of the ensembles even

further. Finally, we want to compare all algorithms on the

partially observable generalized maze problem.
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