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Ensemble Algorithms in Reinforcement Learning
Marco A. Wiering and Hado van Hasselt

Abstract—This paper describes several ensemble methods
that combine multiple different reinforcement learning (RL)
algorithms in a single agent. The aim is to enhance learning
speed and final performance by combining the chosen actions
or action probabilities of different RL algorithms. We designed
and implemented four different ensemble methods combiningfive
different reinforcement learning algorithms: Q-learning, Sarsa,
Actor-Critic, QV-learning, and ACLA. The intuitively desi gned
ensemble methods: majority voting, rank voting, Boltzmann
multiplication, and Boltzmann addition, combine the policies
derived from the value functions of the different RL algorithms,
in contrast to previous work where ensemble methods have
been used in RL for representing and learning a single value
function. We show experiments on five maze problems of varying
complexity, the first problem is simple, but the other four maze
tasks are of a dynamic or partially observable nature. The results
indicate that the Boltzmann multiplication and majority vo ting
ensembles significantly outperform the single RL algorithms.

I. I NTRODUCTION

Reinforcement learning (RL) algorithms [1], [2] are very
suitable for learning to control an agent by letting it inter-
act with an environment. There are a number of different
online model-free value-function-based reinforcement learning
algorithms that use the discounted future reward criterion. Q-
learning [3], Sarsa [4], [5], and Actor-Critic methods [1] are
well known, and there are also two more recent algorithms:
QV-learning [6] and ACLA [6]. Furthermore, a number of
policy search and policy gradient algorithms have been pro-
posed [7], [8], and there exist model-based [9] and batch
reinforcement learning algorithms [10].

In this paper we describe several ensemble methods that
combine multiple reinforcement learning algorithms in a sin-
gle agent. The aim is to enhance learning speed and fi-
nal performance by combining the chosen actions or action
probabilities of different algorithms. In supervised learning,
ensemble methods such as bagging [11], boosting [12], and
mixtures of experts [13] have been used a lot. Such ensembles
are used for learning and combining multiple classifiers by
using for example a (weighted) majority voting scheme. In
reinforcement learning, ensemble methods have been used for
representing and learning the value function [14], [15], [16],
[17]. In contrast to this previous research, here we introduce
ensembles that combine different reinforcement learning al-
gorithms in a single agent. The system learns multiple value
functions and the ensembles combine the policies derived
from the value functions in a final policy for the agent. We
designed the following ensemble methods for combining RL
algorithms: (1) The majority voting (MV) method combines
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the best action of each algorithm and bases its final decisionon
the number of times an action is preferred by each algorithm,
(2) The rank voting (RV) method lets each algorithm rank
the different actions and combines these rankings to selecta
final action, (3) The Boltzmann multiplication (BM) method
is based on using Boltzmann exploration for each algorithm
and multiplies the Boltzmann probabilities of each action
computed by each algorithm, and (4) The Boltzmann addition
(BA) method is similar to the BM method, but adds the
Boltzmann probabilities of actions.

Outline. Section II describes a number of online reinforce-
ment learning algorithms that will be used in the experiments.
Section III describes different ensemble methods for combin-
ing multiple RL algorithms. Then, Section IV describes the re-
sults of a number of experiments on maze problems of varying
complexities with tabular and neural network representations.
Section V discusses the results and concludes this paper.

II. REINFORCEMENTLEARNING

Reinforcement learning algorithms are able to let an agent
learn from the experiences generated by its interaction with
an environment. We assume an underlying Markov decision
process (MDP) which does not have to be known by the
agent. A finite MDP is defined as; (1) The state-spaceS =
{s1, s2, . . . , sn}, andst ∈ S denotes the state of the system at
time t; (2) A set of actions available to the agent in each state
A(s), whereat ∈ A(st) denotes the action executed at time
t; (3) A transition functionT (s, a, s′) mapping state-action
pairss, a to a probability distribution over successor statess′;
(4) A reward functionR(s, a, s′) which denotes the average
reward obtained when the agent makes a transition from state
s to states′ using actiona, wherert denotes the (possibly
stochastic) reward obtained at timet.

In optimal control or reinforcement learning (RL), we are
interested in computing or learning an optimal policy for
mapping states to actions. An optimal policy can be defined
as the policy that receives the highest possible cumulative
discounted rewards in its future from all states. In order to
learn an optimal policy, value-function-based RL [1] estimates
value-functions using past experiences of the agent.Qπ(s, a)
is defined as the expected cumulative discounted future reward
if the agent is in states, executes actiona, and follows policy
π afterwards:

Qπ(s, a) = E(

∞∑

i=0

γiri|s0 = s, a0 = a, π)

where 0 ≤ γ ≤ 1 is the discount factor that values later
rewards less compared to immediate rewards. Another possible
objective is to maximize the average reward intake. If the
optimal Q-functionQ∗ is known, the agent can select optimal
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actions by selecting the action with the largest value in a state:
π∗(s) = argmaxa Q∗(s, a).

In the experiments we will use five different online model-
free RL algorithms that optimize the discounted cumulative
future reward intake of an agent while it is interacting with
an (unknown) environment. Q-learning [3], [18] and Sarsa [4],
[5] will not be described here, since they are very well known
methods.

Actor-Critic. The Actor-Critic (AC) method is an on-policy
algorithm like Sarsa. In contrast to Q-learning and Sarsa, AC
methods keep track of two functions; a Critic that evaluates
states and an Actor that maps states to a preference value
for each action [1]. After an experience (st, at, rt, st+1) AC
makes a temporal difference (TD) update to the Critic’s value-
function V :

V (st) := V (st) + β(rt + γV (st+1) − V (st)) (1)

whereβ is the learning rate. AC updates the Actor’s values
P (st, at) as follows:

P (st, at) := P (st, at) + α(rt + γV (st+1) − V (st))

whereα is the learning rate for the Actor. The P-values should
be seen as preference values and not as exact Q-values.

QV-learning. QV-learning [6] works by keeping track of
both the Q- and V-functions. In QV-learning the state value-
function V is learned with TD-methods [19]. This is similar
to Actor-Critic methods. The new idea is that the Q-values
simply learn from the V-values using the one-step Q-learning
algorithm. In contrast to AC these learned values can be seen
as actual Q-values and not as preference values. The updates
after an experience (st, at, rt, st+1) of QV-learning are the use
of Equation 1 and:

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

Note that the V-value used in this second update rule is learned
by QV-learning and not defined in terms of Q-values. There is
a strong resemblance with the Actor-Critic method; the only
difference is the second learning rule whereV (st) is replaced
by Q(st, at) in QV-learning.

ACLA. The Actor Critic Learning Automaton (ACLA) [6]
learns a state value-function in the same way as AC and QV-
learning, but ACLA uses a learning automaton-like update rule
[20] for changing the policy mapping states to probabilities
(or preferences) for actions. The updates after an experience
(st, at, rt, st+1) of ACLA are the use of Equation 1, and
now we use an update rule that examines whether the last
performed action was good (in which case the state-value was
increased) or not. We do this with the following update rule:

If δt ≥ 0 ∆P (st, at) = α(1 − P (st, at)) and

∀a 6= at ∆P (st, a) = α(0 − P (st, a))

Else ∆P (st, at) = α(0 − P (st, at)) and

∀a 6= at ∆P (st, a) = α( P (st,a)∑
b6=at

P (st,b)
− P (st, a))

whereδt = γV (st+1)+ rt −V (st), and∆P (s, a) is added to
P (s, a). ACLA uses some additional rules to ensure the targets
are always between 0 and 1, independent of the initialization

(e.g. of neural network weights). This is done by using 1 if
the target is larger than 1, and 0 if the target is smaller than
0. If the denominator is less than or equal to 0, all targets
in the last part of the update rule get the value1|A|−1 where
|A| is the number of actions. ACLA was shown to outperform
Q-learning and Sarsa on a number of problems whenǫ-greedy
exploration was used [6].

Comparison between the algorithms.It is known that
better convergence guarantees exist for on-policy methods
when combined with function approximators [1], since it has
been shown that Q-learning can diverge in this case [21],
[22]. Therefore theoretically there are advantages for using
one of the on-policy algorithms. A possible advantage of QV-
learning, ACLA, and AC compared to Q-learning and Sarsa, is
that they learn a separate state-value function. This state-value
function does not depend on the action and therefore is trained
using more experiences than a state-action value function
that is only updated if a specific action is selected. When
the state-value function is trained faster, this may also cause
faster bootstrapping of the Q-values or preference values.A
disadvantage of QV-learning, ACLA, and AC is that they need
an additional learning parameter that has to be tuned.

III. ENSEMBLE ALGORITHMS IN RL

Ensemble methods have been shown to be effective in
combining single classifiers in a system, leading to a higher
accuracy than obtainable with a single classifier. Bagging [11]
is a simple method that trains multiple classifiers using a
different partitioning of the training set and combines them
by majority voting. If the errors of the single classifiers are
not strongly correlated, this can significantly improve the
classification accuracy. In reinforcement learning, ensemble
methods have been used for combining function approximators
to store the value function [14], [15], [16], [17], and this can
be an efficient way for improving an RL algorithm. In contrast
to previous research, we combine different RL algorithms that
learn separate value functions and policies. Since the value
functions of for example Actor-Critic that learns preference
values and Q-learning that learns state-action values are of
a different nature, it is impossible to combine their value
functions directly. Therefore in our ensemble approaches we
combine the different policies derived from the value functions
learned by the RL algorithms. We designed four different
ensemble methods which are related to ensembles used in
supervised learning, although a big difference is that we have
to take into account that RL agents need exploration.

Below we present the different ensemble methods we use
for combining the RL algorithms described before. The best
action according to algorithmj at time t will be denoted
by a

j
t . The action selection policy of this algorithm isπj

t .
We also enumerate the set of possible actions for each state,
for ease of use:A(st) = {a[1], . . . , a[m]}. The first two
ensemble methods, majority voting and rank voting, use a
Boltzmann distribution over the preference valuespt of the
ensemble for each action, which ensures exploration. The
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resulting ensemble policy in those cases is:

πt(st, a[i]) =
ept(st,a[i])/τ

∑
k ept(st,a[k])/τ

whereτ is a temperature parameter andpt is defined for the
different cases below. The other two ensemble methods, Boltz-
mann multiplication and Boltzmann addition, work already
with probabilities generated by the Boltzmann distribution
over actions according to independent RL algorithms, and do
not use another Boltzmann distribution. Instead they use:

πt(st, a[i]) =
pt(st, a[i])

1

τ

∑
k pt(st, a[k])

1

τ

After calculating the action probabilities, the ensemble selects
an action and all algorithms learn from this selected action.
Note that this is the only sensible thing to do, since the effects
of not executed actions are unknown.

Majority Voting. The preference values calculated by the
majority voting ensemble usingn different RL algorithms are:

pt(st, a[i]) =

n∑

j=1

I(a[i], aj
t )

where I(x, y) is the indicator function that outputs1 when
x = y and 0 otherwise. The most probable action is simply
the action that is most often the best action according to
the algorithms. This method resembles a bagging ensemble
method for combining classifiers with majority voting, with
the big difference that because of exploration we do not always
select the action which is preferred by most algorithms.

Rank Voting. Let rj
t (a[1]), . . . , rj

t (a[m]) denote the weights
according to the ranks of the action selection probabilities,
such that ifπj

t (a[i]) ≥ π
j
t (a[k]) thenr

j
t (a[i]) ≥ r

j
t (a[k]). For

example, the most probable action could be weightedm times,
the second most probablem− 1 times and so on. This is the
weighting we used in our experiments. The preference values
of the ensemble are:

pt(st, a[i]) =
∑

j

r
j
t (a[i])

Boltzmann Multiplication. Another possibility is multiply-
ing all the action selection probabilities for each action based
on the policies of the algorithms. The preference values of the
ensemble are:

pt(st, a[i]) =
∏

j

π
j
t (st, a[i])

A potential problem with this method is that one algorithm
can set the preference values of any number of actions to zero
when it has a zero probability of choosing those actions. Since
all our algorithms use Boltzmann exploration, this was not an
issue in our experiments.

Boltzmann Addition. As a last method, we can also sum
the action selection probabilities of the different algorithms.
Essentially, this is a variant of rank voting, usingrj

t = π
j
t .

The preference values of the ensemble are:

pt(st, a[i]) =
∑

j

π
j
t (st, a[i])

IV. EXPERIMENTS

We performed experiments with five different maze tasks
(one simple and four more complex problems) to compare the
different ensemble methods to the individual algorithms. In
the first experiment, the RL algorithms are combined with
tabular representations and are compared on a small maze
task. In the second experiment a partially observable maze
is used and neural networks as function approximators. In the
third experiment a dynamic maze is used where the obstacles
are not placed at fixed positions and neural network function
approximators are used. In the fourth experiment a dynamic
maze is used where the goal is not placed at a fixed position
and neural networks are used as function approximators. In
the fifth and final experiment a generalized maze [23] task
is used where the goal and the obstacles are not placed at
fixed positions and again neural networks are used as function
approximators.

A. Small Maze Experiment

The different ensemble methods: majority voting, rank
voting, Boltzmann addition, and Boltzmann multiplication, are
compared to the 5 individual algorithms: Q-learning, Sarsa,
AC, QV-learning, and ACLA. We performed experiments with
Sutton’s Dyna maze shown in Figure 1(A). This simple maze
consists of9 × 6 states and there are 4 actions; north, east,
south, and west. The goal is to arrive at the goal stateG as
soon as possible starting from the starting stateS under the
influence of stochastic (noisy) actions. We kept the maze small,
since we want to compare the results with the experiments on
the more complex maze tasks, which would otherwise cost too
much computational time.

S

G

P

G

S

Fig. 1. (A) Sutton’s Dyna maze. The starting position is indicated byS and
the goal position is indicated byG. In the partially observable maze of the
second experiment the goal position isP and the starting position is arbitrary.
(B) The9×6 maze with dynamic obstacles used in the third experiment. The
starting position is denoted byS and the goal position is indicated byG. The
obstacles indicated in black are dynamically generated at the start of each
new trial.

Experimental set-up. The reward for arriving at the goal
is 100. When the agent bumps against a wall or border of
the environment it stays still and receives a reward of -2.
For other steps the agent receives a reward of -0.1. A trial
is finished after the agent hits the goal or 1000 actions have
been performed. The random replacement (noise) in action
execution is 20%. This reward function and noise is used in
all experiments of this paper.

We used a tabular representation and first performed simu-
lations to find the best learning rates, discount factors, and
greediness (inverse of the temperature) used in Boltzmann
exploration. All parameters were optimized for the single RL
algorithms, where they were evaluated using the average re-
ward intake and the final performance is optimized. Although
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in general it can cause problems to learn to optimize the
discounted reward intake while evaluating with the average
reward intake, for the studied problems the dominating ob-
jective is to move each step closer to the goal, which is
optimized using both criteria if the discount factor is large
enough. We also optimize the discount factors, since we found
that they had a large influence on the results. If we would
have always used the same discount factor for all algorithms,
the results of some algorithms would have been much worse,
and therefore it would be impossible to select a fair discount
factor. Since we evaluate all methods using the average reward
criterion, the different discount factors do not influence the
comparison between algorithms. The ensemble methods used
the parameters of the individually optimized algorithms, so
that only the ensemble’s temperature had to be set.

TABLE I
TABULAR LEARNING RATES α/β, DISCOUNT FACTOR AND GREEDINESS
(INVERSE OF THE TEMPERATURE FORBOLTZMANN EXPLORATION) FOR

THE ALGORITHMS. THE LAST FOUR COLUMNS SHOW FINAL AND

CUMULATIVE RESULTS FOR THE TABULAR REPRESENTATION AND THE

RANKS OF THE DIFFERENT ALGORITHMS(SIGNIFICANCE OF T-TEST
p = 0.05). RESULTS ARE AVERAGES OF500SIMULATIONS.

Method α β γ G Final Rank Cumulative Rank
Q 0.2 – 0.9 1 5.14± 0.49 8 84.9± 11.5 9
Sarsa 0.2 – 0.9 1 5.26± 0.31 3-5 90.3± 8.3 5-8
AC 0.1 0.2 0.95 1 5.21± 0.17 6-7 91.1± 3.3 5-7
QV 0.2 0.2 0.9 1 5.25± 0.25 4-5 91.4± 7.8 4-7
ACLA+ 0.005 0.1 0.99 9 5.20± 0.23 6-7 90.2± 5.2 7-8
Majority voting – – – 1.6 5.33± 0.12 1-2 96.7± 2.2 1
Rank voting – – – 0.6 5.01± 0.36 9 92.2± 7.9 4-5
Boltzmann mult – – – 0.2 5.34± 0.15 1-2 95.3± 3.9 2
Boltzmann add – – – 1 5.28± 0.12 3-4 93.5± 1.9 3

In Table I we show average results and standard deviations
of 500 simulations of the final reward intake during the last
2500 learning-steps and the total summed reward (adding all
20 average reward intakes after each 2,500 steps) during the
entire trial lasting 50,000 learning-steps. This latter evaluation
measure shows the overall performance and the learning rate
with which good solutions are obtained. The ranks are com-
puted using the student t-test withp = 0.05. Note that since
500 simulations were performed, small differences may still
turn out to be significant. The results show that the majority
voting and Boltzmann multiplication ensembles outperform
all other methods. To show that the chosen discount factors
matter, we also experimented with Sarsa with a discount factor
of 0.95 and with ACLA using a discount factor of 0.9. Using
the best found other learning parameters, Sarsa’s performance
was4.89± 1.14 for the final performance and84.7± 20.0 for
the total learning performance. Using the best other learning
parameters, ACLA’s performance was4.86±0.86 for the final
performance and82.7±18.6 for the total learning performance.
This clearly shows that care should be taken to optimize
the discount factor if one wishes to compare different RL
algorithms. All algorithms converge to a stable performance
within 15,000 learning steps, but the best ensembles reach
better performance levels and initially learn faster.

B. Partially Observable Maze

In this experiment we use Markov localization and neural
networks to solve a partially observable Markov decision
process in the case where the model of the environment is

known. We use Markov localization to track the belief state (or
probability distribution over the states) of the agent given an
action and observation after each time-step. This belief state is
then the input for the neural network. We used 20 sigmoidal
hidden neurons in our experiments, and the maze shown in
Figure 1(A) with the goal indicated byP and each state can be
a starting state. The initial belief state is a uniform distribution
where only states that are not obstacles get assigned a non-zero
belief. After each actionat the belief statebt(s) is updated
with the observationot+1:

bt+1(s) = ηP (ot+1|s)
∑

s′

T (s′, at, s)bt(s
′)

where η is some normalization factor. The observations are
whether there is a wall to the north, east, south, and west.
Thus, there are 16 possible observations. We use20% noise
in the action execution and 10% noise for observing each
independent wall (or empty cell) at the sides. That means that
an observation is correct with probability0.94 = 66%. Note
that we use a model of the environment to be able to compute
the belief state, and the model is based on the uncertaintiesin
the transition and observation functions.

TABLE II
FINAL RESULTS (AVERAGE REWARD FOR LAST5,000STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON
THE PARTIALLY OBSERVABLE MAZE. RESULTS ARE AVERAGES OF100

SIMULATIONS.

Method α β γ G Final Rank Cumulative Rank
Q 0.02 – 0.95 1 9.65± 0.33 1-4 154.1± 7.3 4
Sarsa 0.02 – 0.95 1 9.41± 1.26 1-8 137.6± 21.1 5-9
AC 0.02 0.03 0.95 1 9.33± 0.31 4-7 159.4± 3.5 3
QV 0.02 0.01 0.9 1 9.59± 0.31 1-4 135.3± 12.3 6-9
ACLA+ 0.035 0.005 0.99 10 8.44± 0.27 9 135.1± 3.7 6-9
Majority voting – – – 1.4 9.37± 0.31 4-7 139.8± 8.2 5-6
Rank voting – – – 0.8 9.30± 0.28 4-7 133.1± 13.3 6-9
Boltzmann mult – – – 0.2 9.56± 0.32 1-4 174.6± 2.9 1
Boltzmann add – – – 1 9.11± 0.31 7-8 162.2± 2.6 2

We performed experiments consisting of 100,000 learning
steps with a neural network representation and the Boltzmann
exploration rule. For evaluation after each 5,000 steps we
measured the average reward intake during that period. Table
II shows that the Boltzmann multiplication ensemble method
learns fastest in this problem. We also experimented with a
Boltzmann multiplication ensemble consisting of five differ-
ently initialized Q-learning algorithms. The performanceof
this ensemble was9.61 ± 0.31 for the final performance and
153.1 ± 8.0 for the total learning performance. This shows
that combining different RL algorithms speeds up learning
performance compared to an ensemble of the best single RL
algorithm. All algorithms converge to a stable performance
within 60,000 learning steps, but the best ensembles reach a
good performance much earlier.

C. Solving a Maze with Dynamic Obstacles

We also compared the algorithms on a dynamic maze, where
in each trial there are several obstacles at random locations (see
Fig. 1(b)). In order to deal with this task the agent uses a neural
network that receives as inputs whether a particular state-cell
contains an obstacle (1) or not (0). The neural network uses
2 × 54 = 108 inputs including the position of the agent and
60 sigmoidal hidden units. At the start of each new trial there
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are between 4 and 8 obstacles generated at random positions
and it is made sure that a path to the goal exists from the
fixed starting locationS. Since there are many instances of
this maze, the neural network has to learn the knowledge of a
path planner. A simulation lasts for 3,000,000 learning steps
and we measure performance after each 150,000 steps.

TABLE III
FINAL RESULTS (AVERAGE REWARD FOR LAST150,000STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON
THE MAZE WITH DYNAMIC OBSTACLES. RESULTS ARE AVERAGES OF50

SIMULATIONS.

Method α β γ G Final Rank Cumulative Rank
Q 0.01 – 0.95 1 6.79± 0.21 3 116.2± 2.7 3
Sarsa 0.01 – 0.95 1 6.66± 0.37 4-5 112.6± 5.9 4
AC 0.015 0.003 0.95 1 5.98± 0.31 8 97.7± 9.4 8
QV 0.01 0.01 0.9 0.4 6.27± 0.20 6 108.3± 2.7 5-7
ACLA+ 0.06 0.002 0.98 6 5.39± 0.15 9 89.2± 1.3 9
Majority voting – – – 2.6 6.93± 0.14 2 122.1± 1.4 2
Rank voting – – – 0.8 6.59± 0.21 4-5 108.0± 2.6 5-7
Boltzmann mult – – – 0.2 7.04± 0.13 1 125.0± 1.6 1
Boltzmann add – – – 1 6.08± 0.12 7 107.7± 1.3 5-7

Table III shows the final and total performance of the
different algorithms. The Boltzmann multiplication ensemble
outperforms the other algorithms on this problem: it reaches
the best final performance and also has the best overall
learning performance. We also experimented with a Boltzmann
multiplication ensemble consisting of five differently initial-
ized Q-learning algorithms. The performance of this ensemble
was 6.87 ± 0.22 for the final performance and117.0 ± 2.7
for the total learning performance. This shows again that
combining different RL algorithms in an ensemble performs
better than an ensemble consisting of the best single RL
algorithm. The best ensembles reach a better performance at
the end than the single RL algorithms.

D. Solving a Maze with Dynamic Goal Positions

In this fourth maze experiment, we use the same small
maze as before (see Figure 1(A)) where the starting position
is indicated by S, but now the goal is placed at a different
location in each trial. To deal with this, we use a neural
network function approximator that receives the position of
the goal as input. Therefore there are 54× 2 inputs, that
indicate the position of the agent and the position of the goal.
A simulation lasts for 3,000,000 learning steps and we measure
performance after each 150,000 steps. We used feedforward
neural networks with 20 sigmoidal hidden units.

TABLE IV
FINAL RESULTS (AVERAGE REWARD FOR LAST150,000STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE MAZE WITH DYNAMIC GOAL POSITIONS. RESULTS ARE AVERAGES OF
50 SIMULATIONS.

Method α β γ G Final Rank Cumulative Rank
Q 0.005 – 0.95 0.5 10.05± 0.37 7-9 152.7± 8.3 7
Sarsa 0.008 – 0.95 0.6 10.69± 0.47 2-7 176.9± 8.7 4
AC 0.006 0.008 0.95 0.6 10.65± 0.11 3-7 180.5± 3.3 3
QV 0.012 0.004 0.95 0.6 10.66± 1.16 2-7 169.4± 20.2 5-6
ACLA+ 0.06 0.006 0.98 10 10.11± 1.80 3-9 121.5± 25.6 8
Majority voting – – – 2.4 11.06± 0.06 1 188.6± 2.1 1
Rank voting – – – 1.2 10.58± 2.08 2-7 82.4± 30.8 9
Boltzmann mult – – – 0.2 10.74± 0.06 2-5 187.8± 1.9 2
Boltzmann add – – – 1 10.12± 0.09 7-9 170.7± 2.5 5-6

Table IV shows the final and total performance of the
different algorithms. The majority voting ensemble outper-
forms the other algorithms on this problem: it reaches the

best final performance and also has the best overall learning
performance. We also experimented with a majority voting
ensemble consisting of five differently initialized Sarsa algo-
rithms. The performance of this ensemble was11.02 ± 0.22
for the final performance and176.7±4.9 for the total learning
performance. This shows again that a combination of different
RL algorithms in an ensemble learns faster than an ensemble
consisting of the best single RL algorithm, although an en-
semble of the same RL algorithm can also increase the final
performance of that algorithm. The best ensembles reach a
better performance at the end than the single RL algorithms
and initially have a faster learning speed.

E. Solving the Generalized Maze

In this last maze experiment, we use the same small
maze as before, but now the goal and walls are placed at
a different location in each trial. This is what Werbos calls
the “Generalized Maze” [23] experiment. To deal with this, a
neural network function approximator receives the position of
the agent, goal and the dynamic walls as input. Therefore there
are 54× 3 inputs. A simulation lasts for 15,000,000 learning
steps and we measure performance after each 750,000 steps.
The feedforward neural networks have 100 sigmoidal hidden
units.

TABLE V
FINAL RESULTS (AVERAGE REWARD FOR LAST750,000STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE GENERALIZED MAZE. RESULTS ARE AVERAGES OF50 SIMULATIONS
FOR THE SINGLE ALGORITHMS AND10 SIMULATIONS FOR THE

ENSEMBLES.

Method α β γ G Final Rank Cumulative Rank
Q 0.003 – 0.95 0.3 6.92± 0.16 1 96.6± 1.1 3
Sarsa 0.003 – 0.92 0.3 1.06± 0.20 9 13.3± 0.9 9
AC 0.014 0.0015 0.95 0.5 5.84± 0.15 5 89.0± 1.0 4
QV 0.002 0.001 0.95 0.2 5.17± 0.16 7 76.6± 1.1 6
ACLA+ 0.1 0.001 0.98 5 4.81± 0.12 8 56.7± 1.5 7
Majority voting – – – 2.4 6.68± 0.23 2-3 102.6± 0.8 1
Rank voting – – – 1.0 6.02± 0.16 4 48.6± 2.2 8
Boltzmann mult – – – 0.2 6.54± 0.13 2-3 100.8± 1.0 2
Boltzmann add – – – 1 5.65± 0.14 6 86.0± 0.8 5

Table V shows the final and total performance of the differ-
ent algorithms. Here Q-learning obtains the best final results,
but the majority voting ensemble has the best overall learning
performance. It is surprising that Sarsa obtains much worse
results than the other algorithms, even though we optimizedall
its learning parameters. We also experimented with a majority
voting ensemble consisting of five Q-learning algorithms. The
performance of this ensemble was7.20 ± 0.16 for the final
performance and103.4±0.9 for the total learning performance,
so this ensemble reaches the best final performance, and its
learning speed is almost significantly better than the majority
voting ensemble using different RL algorithms. This is the
only experiment where an ensemble consisting of the same
best single RL algorithm leads to a significantly better final
performance compared to the best ensemble consisting of
different single RL algorithms. This results can be explained
by the fact that in this problem Q-learning performs much
better than the other algorithms. At the end of the learning
trial Q-learning outperforms the best ensembles, althoughthe
ensembles initially have a faster learning speed.



6

V. D ISCUSSION

From the results it is clear that the Boltzmann multiplica-
tion (BM) and majority voting (MV) ensembles significantly
outperform the other methods in terms of final performance.
The Boltzmann multiplication (BM) ensemble significantly
outperforms the other methods in terms of total learning
performance and the majority voting method comes as second
best. The rank voting and Boltzmann addition ensembles do
not outperform single RL algorithms.

The results showed that the best ensemble always learns
fastest, but one may have noticed that the ensembles cost
more computational time. Although this is true, many real
world scenarios such as robotics require the least number
of experiences, since the actions taken in real time require
much more time than the actual calculation done by the
learning algorithms. Furthermore, in all experiments, thebest
ensemble has a better or equal final performance compared to
the best single RL algorithm. Even in the generalized maze, the
ensemble consisting of five Q-learning algorithms outperforms
the single Q-learning algorithm. Experiments also showed that
an ensemble with different RL algorithms often outperforms
an ensemble consisting of the best RL algorithm, even though
some RL algorithms perform considerably worse. This is due
to the fact that ensembles improve independent algorithms
most if the algorithms’ predictions are less correlated. We
think that good ensemble algorithms outperform single RL
algorithms because the ensemble can make a better trade-off
between exploration and exploitation by determining action
choices based on the uncertainties of all algorithms. If theal-
gorithms want to choose the same action, it is more likely that
this action will be exploited than when algorithms disagree.

In future work we want to focus on batch [10] and model-
based RL algorithms [9], which can be very useful for reducing
the number or experiences. We are also currently studying
methods for learning to weigh each independent RL algorithm,
which could increase the performance of the ensembles even
further. Finally, we want to compare all algorithms on the
partially observable generalized maze problem.
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