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Abstract—This paper presents the deep support vector ma-
chine (D-SVM) inspired by the increasing popularity of deep
belief networks for image recognition. Our deep SVM trains an
SVM in the standard way and then uses the kernel activations of
support vectors as inputs for training another SVM at the next
layer. In this way, instead of the normal linear combination
of kernel activations, we can create non-linear combinations
of kernel activations on prototype examples. Furthermore,we
combine different descriptors in an ensemble of deep SVMs
where the product rule is used for combining probability
estimates of the different classifiers. We have performed ex-
periments on 20 classes from the Caltech object database and
10 classes from the Corel dataset. The results show that our
ensemble of deep SVMs significantly outperforms the naive
approach that combines all descriptors directly in a very large
single input vector for an SVM. Furthermore, our ensemble of
D-SVMs achieves an accuracy of 95.2% on the Corel dataset
with 10 classes, which is the best performance reported in
literature until now.
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I. I NTRODUCTION

M ACHINE VISION is a subfield of artificial intelli-
gence that focuses on extracting useful information

from images. During the last decade a large number of
novel algorithms have been described for image recogni-
tion and this has led to good recognition performance on
many different benchmarks. These algorithms use descriptors
for representing an image with feature vectors and then a
machine learning algorithm to classify the images. There
are several machine learning algorithms, however, here we
concentrate on support vector machines, deep architectures,
and ensembles of classifiers that are considered to be among
the best algorithms.

Deep architectures have been shown to be effective in
learning and have been used with impressive performance for
example in classification of digits in the MNIST dataset [3],
[11] and modeling human motion [19]. In the lowest layer,
feature detectors are used to detect simple patterns. After
that, these patterns are fed into deeper, following, layersthat
form more complex representations of the input data. There
are several approaches to learning deep architectures. Hinton
et al. [12] proposed the deep belief network (DBN), where
a multilayer generative model is used to encode statistical
dependencies among the units in the layer below. These

deep belief networks use neural networks, or more precisely,
restricted Boltzmann machines, that are trained in a greedy
fashion, that is, one layer is fully trained after which a
following layer is added. After the training phase has been
completed, fine-tuning of the whole architecture is often done
by algorithms such as conjugate gradients.

Instead of DBNs that are grounded on the use of neural
networks, we propose to use deep support vector machines
(D-SVMs). The deep SVM is constructed by first training
an SVM in the standard way. Then the kernel activations of
the support vectors are used as inputs for another SVM in
the following layer. This next layer SVM is then trained and
is able to construct non-linear combinations of the kernel
activations of the stored prototype examples (the support
vectors). Since the training procedure of the deep SVM is
done in a greedy fashion, it is computationally very efficient.

Next to deep architectures and support vector machines,
ensemble methods have often been used for efficiently com-
bining classifiers [8]. Based on these ideas, we propose to
use an ensemble of deep SVMs. We have chosen to use the
product rule [18] to combine the outputs of different classi-
fiers (after computing probability estimates for the different
classes). This is an effective method with the advantage that
it is fast and uses all the information available in the outputs
of the different classifiers (unlike for example bagging [5]
that may fail for multi-class problems).

In this paper we use two different datasets, namely
Corel and Caltech-101, to compare different combination
architectures on four MPEG-7 image descriptors and many
different edge and gradient based histograms using color and
intensity information. We present the results of three methods
that combine all descriptors: (1) The naive approach that
combines all descriptors in a single input vector for a support
vector machine. (2-3) An ensemble of standard and deep
SVMs that uses the product rule to combine the posterior
probabilities of classifiers for image classification.

Contributions. The originality of our work is: (1) We
present the deep SVM that combines ideas from deep neural
network architectures with those of support vector machines.
(2) We construct and evaluate an ensemble of shallow and
deep SVMs on two different image recognition datasets. (3)
We demonstrate the effectiveness of our ensemble of deep
SVMs by comparing it to the standard SVM that combines all



image descriptors in a single large input vector. (4) We report
an accuracy of 95.2% on the Corel dataset with our ensemble
of deep SVMs, which is the best performance reported in
literature to the best of our knowledge.

The rest of the paper is organized as follows: Section II de-
scribes some fundamental principles of SVMs and introduces
the deep SVM. Section III reviews several ensemble methods
for combining multiple classifiers and describes our ensemble
of deep SVMs. In Section IV, we describe image descriptors
that we used to extract features from images. Experimental
results on the Corel and Caltech-101 datasets are shown in
Section V. Section VI concludes this paper.

II. DEEPSUPPORTVECTORMACHINES

The support vector machine is a state-of-the-art technique
for data classification proposed by Vapnik and his group at
AT&T Bell Laboratories [20], [6]. It was originally devel-
oped for binary or two-class classification and has been ex-
tended to the multi-class case and to regression. In this paper,
the classification method is used in all experiments. Given
an input patternX, the support vector machine classifies the
input pattern into classy ∈ {−1, +1} according to

y = sign(f(X)) (1)

where the decision functionf(X) is a linear combination
of kernelsK(Xi, X) measuring the similarities between the
presented vectorX and each of the training vectorsXi:

f(X) =
n∑

i=1

αiyiK(Xi, X) + b (2)

Equation (2) is called the support vector expansion, and
contains examples that store all necessary knowledge of a
training set [17]. Theαi’s are called support vector coeffi-
cients and these values are non-zero only for training data
that are support vectors. Theyi values are the class labels
belonging to the training data. Finally,b is a bias term.

A. Deep SVM Classifier

The main idea of the D-SVM is to combine kernel activa-
tions in non-linear ways. The standard SVM only optimizes
the weights between the kernel activations of stored prototype
examples and the output. Training is done by solving a
quadratic optimization problem to optimize the weights (usu-
ally called support vector coefficients). The support vector
set contains all information for constructing the decision
function of a classifier [17], [20], however, their kernel
activations are in the standard SVM combined in a linear
way, since otherwise the optimization problem becomes too
complex. The deep SVM allows for a hierarchical level rep-
resentation of patterns via non-linear mixtures of prototype
examples. It is inspired by deep belief networks [12] that are
becoming more and more popular in the machine learning
community. Unlike DBNs that are based on neural networks,
the deep SVM is based on SVMs that have usually better
generalization performance than standard neural networks.

Training deep SVMs is done by first training the lowest
layer SVM in the standard way. Then the kernel activations
are computed on the training set and stored together with
the desired labels. This creates a new training dataset for
the following layer where another SVM is trained using the
kernel activations from one layer below. This can in principle
continue for as many layers as are needed, and it is possible
to use different kernels in different layers as well.

Note that the effect of the deep SVM cannot be achieved
with particular choices of (complex) kernel functions. With
the D-SVM it is possible to classify an instance as positive
if the kernel activation of one support vector is large or the
kernel activation of another support vector is large, while
the classification can then be negative when both kernel
activations are large. This is an example of the famous X-or
problem that can be solved with two RBF kernels in the
second layer SVM. Although DBNs usually use sigmoid
functions, in this paper we have mostly concentrated on the
RBF kernel, since it uses less parameters to optimize and
preliminary experiments indicated that it performed slightly
better than the sigmoid or Tanh kernel.

III. ENSEMBLE METHODS

Ensemble methods have received considerable attention in
the machine learning community to increase the effectiveness
of classifiers. In order to construct a good ensemble classifier,
the ensemble needs to construct accurate and diverse classi-
fiers and to combine outputs from the classifiers effectively
[8]. There exist several methods to obtain and combine the
diverse classifiers.

In bagging [5], a training dataset is divided into sev-
eral different subsets that may be overlapping. After that,
a machine learning algorithm is trained on each subset.
Then, the majority voting scheme is used to combine the
class-votes of the different classifiers. If the outputs of the
different classifiers are strongly uncorrelated, the ensemble
may correct for independent mistakes by single classifiers
and this improves the classification accuracy.

Constructing and combining a set of classifiers is more
complicated in boosting [10]. Boosting methods construct a
set of classifiers in a sequential way. First one classifier is
trained on all data, and then examples that are misclassified
by the first classifier get higher weights in the training
process of the next classifier. This is repeated until the whole
set of classifiers has been trained. The final ensemble uses
a weighted majority voting scheme where the weight of a
classifier is dependent on the accuracy of the classifier.

Another ensemble method is the hierarchical mixtures of
experts (HME) architecture [14]. In the HME there is a
gating network that learns to partition the input space in
different regions where different classifiers are used to learn
and predict the examples falling in their different regions.
The HME exploits the divide and conquer principle, but it is
more complicated to use together with SVMs.

Stacking [23] is another ensemble method that learns to
combine the outputs of different classifiers. First different
classifiers are trained, and then another classifier receives as



inputs all the predictions of the different classifiers and is
trained to optimally combine the different classifier outputs.
In our previous work we used stacking SVM classifiers
to combine different SVMs trained with different image
descriptors [1], and this led to better results than using a
single SVM with all features from the different descriptors.

The product rule is one of the simplest and most efficient
ways for combining outputs of classifiers [18] and is used in
our ensemble architecture of this paper. When the classifiers
have small errors and operate in independent feature spaces,
it is very efficient to combine their (probabilistic) outputs by
multiplying them. Thus, we use this product rule to determine
the final decision of the ensemble. First the posterior prob-
ability outputsP k

j (xk) for classj of n different classifiers
are combined by the product rule:

Pj(x
1, ..., xn) =

n∏

k=1

P k
j (xk) (3)

wherexk is the pattern representation of thekth descriptor.
Then the class with the largest probability product is consid-
ered as the final class label belonging to the input pattern.

A. Ensemble of deep SVMs

Combining multiple classifiers that receive different fea-
tures as inputs is an important topic in pattern and image
recognition. The main idea is that each descriptor produces
different information for representing the input pattern,which
makes the classifiers diverse enough for efficient use in an
ensemble. This is in contrast with the naive approach, where
the feature vectors from all sources are concatenated to train
a single classifier. In this case, care has to be exercised
regarding the increase of the feature dimensionality that
may cause overfitting and worse generalization. One strategy
to overcome the problem is to learn different classifiers
with different features separately. After that, the outputs
are combined by an ensemble method to generate the final
output. In this paper, we report the results of two different
multiple image descriptor combination methods and compare
these to our proposed ensemble of deep SVMs. We will first
describe these three combination methods.

1) Naive approach:This approach concatenates the fea-
ture vectors from different sources and creates a single fea-
ture vector for modeling the content of an image. Fig 1 shows
how the naive approach combines multiple image features.
In this figure, the feature calculation function contains an
algorithm to describe images by histograms.

2) Ensemble of SVMs:We train different SVMs and com-
pute the class probabilities with the probability estimation
function of SVMs. Then we use the product rule [18] to
combine all probability outputs of the SVM classifiers. The
main reason we use this approach is that it is a simple
and effective method to combine classifiers trained with
different image descriptors. This approach can be used to
produce diverse classifiers, since the image descriptors pro-
vide complimentary representations of images. Fig 2 shows

Figure 1. Combining multiple image features using the naive approach.

the ensemble of SVMs where the product rule is used to
compute the final classification.

Figure 2. Ensemble of support vector machines.

3) Ensemble of deep SVM classifiers:We adopt the
product rule [18] for combining multiple probability out-
puts of the deep SVM classifiers. Based on this idea, we
construct a two-layer SVM classifier for each one-vs-all
classification task. The system first trains a set of SVM
classifiers separately and this process is performed at the
first layer of the architecture. After that, the support vector
activations are extracted from each classifier of the first layer
to learn another SVM classifier for the second layer of the
architecture belonging to the same one-vs-all classifier. The
outputs from the second layer can give better distinctions
than the first layer since inputs to the second layer classifiers
are based on activations of prototype examples, rather than
simple features.

Figure 3. Ensemble of deep support vector machines.



IV. I MAGE REPRESENTATION ANDDESCRIPTORS

A good image feature for visual content description is
crucial and helps to discover meaningful patterns in the
image. There is no agreement what type of features should
be used to produce an optimal result for all images. However,
using more than one image descriptor has been shown to be
effective in increasing the recognition performance.

A. MPEG-7 cluster correlogram descriptors

A set of MPEG-7 descriptors with the fixed partitioning
cluster correlogram [2] is used to evaluate the proposed
methods on the Corel image dataset. It contains two main
low-level descriptors, i.e., color and texture descriptors. We
used the MPEG-7 features, because our preliminary results
showed that these descriptors are informative to describe
scenes and objects in this dataset. The fixed partitioning
cluster correlogram consists of three main steps. The first
step is extracting the visual features for each MPEG-7 low-
level descriptor in each block of the image. The MPEG-7
descriptors that we used are Scalable Color, Color Layout,
Color Structure and the Edge Histogram. After that we
use the K-means algorithm to construct a set of visual
keywords (we used 24 or 32 keywords for the different
descriptors). Finally, the cluster correlogram is constructed
for each descriptor to index images in the dataset. The cluster
correlogram is basically a matrix representing how often a
keyword dominating a block is adjacent to another keyword
in a neighboring block (we use 8 neighbors).

B. Spatial pyramid with edge and orientation descriptors

We used the spatial pyramid as described in [15] and
shape-based descriptors to evaluate the classifiers on Caltech-
101. The spatial pyramid consists of one global and several
local feature histograms to describe images using multiple
resolutions. We used three different levels of resolution
and our descriptors in [1] to index images on the Caltech
dataset. The descriptors are the MPEG-7 Edge Histogram,
Histograms of Threshold-oriented Gradients (HTOG) [7] and
gradient based histograms of the Scale Invariant Feature
Transform (SIFT) [16]. We used color and intensity infor-
mation for all descriptors and two angular ranges namely
180◦ and 360◦ for HTOG and SIFT. The total number of
descriptors we used for Caltech is 10.

V. EXPERIMENTAL RESULTS

For our comparison between the independent descriptors,
the naive SVM classifier, the ensemble of SVMs, and the
ensemble of deep SVMs, the Corel and Caltech-101 datasets
were chosen. For Corel we used the first 10 categories and
a total of 10x100=1000 images. The images in the Corel
dataset seem quite simple with little or no occlusion and
clutter, and the pictures in each class tend to be similar
in viewpoints and orientations. In contrast, the Caltech-101
dataset contains 101 different classes. In our experiments,
we used only the first 20 classes due to computational
restrictions. Each object in the dataset has a different size

and is seen from different viewpoints, which makes the
recognition task more challenging.

A. SVM classifiers

As mentioned before, we employ SVMs [20] to learn to
classify images. The one-vs-all approach is used to train and
classify the images in the Corel and Caltech-101 datasets.
For the SVMs, we have tried several kernels in the naive
and ensemble classifiers, however, in this paper, only the
results of the best kernel (the RBF kernel) are reported. All
attributes in the training and testing datasets were normalized
to the interval [-1,+1] by using the following equation:

x′ = 2(x−min)
(max−min) − 1.

The normalization is used to avoid numerical difficulties
during the calculation and to make sure the largest values do
not dominate the smaller ones. Themin andmax values are
determined from the training dataset. We have used the same
normalization scheme when passing the kernel activations
from one layer to the next in the deep SVM.

We also did experiments to find the values for the SVM
parameters C andγ that perform best for the descriptors.
We found that it can be difficult to find the best parameters
due to unbalanced datasets caused by the one-vs-all training
scheme. The unbalanced datasets may cause a biased clas-
sification performance — a high accuracy on the majority
class (-1), but a very low accuracy on the minority class (+1).
Therefore we employed two parameter optimization methods
in our experiments: (1) With accuracy the learning parame-
ters were determined by using the libsvm grid-search algo-
rithm [13]. In this approach, 5-fold cross-validation is used to
find the best parameters by measuring the performance of the
classifiers in the one-vs-all classification tasks. (2) We also
employed the Weka [22] machine learning software package
for optimizing the learning parameters using the F1-measure.
In this approach, 5-fold cross-validation is used to find the
best parameters by measuring the performance of different
parameters in the one-vs-all classification tasks.

With both parameter optimization methods, we tried the
following values: {2−5,2−3,...,215} and {2−15,2−13,...,23}
for C andγ, respectively. We report only the results obtained
with the best found learning parameters below.

B. Results on the Corel dataset

The Corel dataset is one of the most popular and widely
used datasets to demonstrate the performance of CBIR sys-
tems [21]. It contains images that were categorized into 10
different groups as shown in Fig. 4. For evaluating the SVM
classifiers, we used 90% of the images for training and 10%
for testing for each class. To compute the performances of
the different methods, we chose 15 times different training
and test images. We used the accuracy measure (as explained
above) to optimize the learning parameters of all methods.
The values which gave the best performance on the first
training dataset are used on all training sets. Only tuning
using the first dataset saved us a lot of computational time.



We report the mean accuracy and the standard deviation of
the classifiers.

Figure 4. Image examples of Corel with ground truth for different groups,
namely Africans, beaches, buildings, buses, dinosaurs, elephants, flowers,
horses, mountains and foods.

Table I shows the first comparison between the standard
SVM and the deep SVM with two layers consisting of RBF
kernels. Here, the fixed partitioning cluster correlogram with
different MPEG-7 descriptors is used. The table shows that
the deep SVM gives some improvement on all independent
descriptors, although the differences are not quite significant
(according to the student t-test). Table II shows the accuracies
using the three different evaluated architectures: the naive
SVM, the ensemble of SVMs (E-SVM), and the ensemble
of deep SVMs (E-D-SVM). Combining multiple descriptors
using the ensemble of deep SVMs significantly outperforms
the standard SVM (p < 0.05) and also performs slightly
better than the ensemble of standard SVMs. The performance
with a 4.8% error-rate on Corel is the best result reported
in literature to the best of our knowledge. Also note that
although the differences between the naive approach with
an error-rate of 6.1% and the ensemble of D-SVMs with an
error-rate of 4.8% does not seem large, it is significant and
the reduction of the error is more than 20%. The ensemble
of SVMs does not perform significantly better than the naive
approach. Finally, note that combining all descriptors works
much better than using a single descriptor alone.

Table I
THE AVERAGE CLASSIFICATION ACCURACY(MEAN AND SD) OF THE

FIXED PARTITIONING CLUSTER CORRELOGRAM USING DIFFERENT

MPEG-7DESCRIPTORS. FP1 = COLOR LAYOUT, FP2 = COLOR

STRUCTURE, FP3 = SCALABLE COLOR, AND FP4 = EDGE HISTOGRAM.

Method FP1 FP2 FP3 FP4

SVM 80.9 ± 2.8 83.4 ± 4.4 76.9 ± 4.1 65.9 ± 3.7

D-SVM 82.7 ± 2.8 83.7 ± 4.1 77.4 ± 4.1 67.1 ± 3.6

Table II
THE AVERAGE CLASSIFICATION ACCURACY(MEAN AND SD) OF THE

DIFFERENT COMBINATION ARCHITECTURES.

Naive SVM E-SVM E-D-SVM
93.1 ± 2.9 94.4 ± 2.3 95.2 ± 1.9

C. Results on the Caltech-101 dataset

The Caltech-101 dataset is one of the most popular and
widely used datasets to demonstrate the performance of
object recognition systems [9]. The images with different
sizes were categorized into 101 classes, however we used
only the first 20 classes as shown in Fig. 5 for computational
reasons. Furthermore, we used the regions of interest (ROIs)
of the images as obtained by the research described in [4].
For evaluating the SVM classifiers, we used 15 training and
15 testing images for each image class. We chose 5 times
different training and test images randomly taken from the
dataset to evaluate the performances of the different methods.
We used the accuracy measure to optimize the learning
parameters of the standard SVMs and the first layer of the
D-SVM, but used the F1-measure to optimize the second
layer of the D-SVM, which gave slightly better results than
accuracy. We used the RBF kernels for all SVMs and report
the mean accuracies and standard deviations.

Figure 5. Image examples of Caltech with ground truth for 20 different
groups, namely accordion, airplane, anchor, ant, background, barrel, bass,
beaver, binocular, bonsai, brain, brontosaurus, Buddha, butterfly, camera,
cannon, car side, ceiling fan, cell phone and chair.

We first tested the spatial pyramid with edge and gradient
based histogram descriptors separately. Table III shows that
for most descriptors there is a slight improvement when the
deep SVM is used instead of the standard SVM, although the
differences are not quite significant (for some descriptorsp is
around 0.1, though). Finally, we tested the three combination
methods using 5 times different training and test image
datasets. Table IV shows the performances using the three
different combination approaches. Similar to the results with
Corel, the ensemble of deep SVMs significantly outperforms
the naive approach and performs better (although not sig-
nificantly) than the ensemble of SVMs. Here, the ensemble
of standard SVMs also significantly outperforms the naive
approach. Finally, note that all combination methods perform
again much better than using a single descriptor.

VI. CONCLUSION

We have introduced the deep support vector machine that
can build multi-layer support vector machines where kernel



Table III
THE AVERAGE CLASSIFICATION ACCURACY(MEAN AND SD) OF

INDEPENDENT DESCRIPTORS.

Descriptor SVM (%) D-SVM (%)
EHG 62.0 ± 1.4 62.1 ± 0.5

EHC 64.1 ± 2.1 64.6 ± 1.4

S 180G 72.7 ± 1.4 72.9 ± 1.7

S 180C 71.1 ± 1.0 70.9 ± 0.5

S 360G 65.4 ± 2.6 67.7 ± 1.2

S 360C 66.4 ± 2.3 68.3 ± 0.6

HG 180G 70.1 ± 2.5 69.1 ± 0.7

HG 180C 69.1 ± 2.0 70.8 ± 0.5

HG 360G 63.5 ± 2.3 64.3 ± 5.0

HG 360C 65.5 ± 2.8 67.3 ± 0.9

Table IV
THE AVERAGE CLASSIFICATION ACCURACY(MEAN AND SD) OF THE

DIFFERENT COMBINATION ARCHITECTURES.

Naive SVM E-SVM E-D-SVM
77.4 ± 0.9 82.1 ± 3.0 83.1 ± 2.2

activations of prototype examples can be mixed in non-
linear ways. We combined the deep SVM with a product
rule ensemble for combining multiple image descriptors
and have evaluated our approach on the Corel and Caltech
datasets. The results show that the deep SVM architecture
with the product rule handles multiple features efficiently
and performs significantly better than a standard SVM.

There are several ways to extend this research. Instead of
using the RBF-RBF kernel combination, other combinations
can be researched. Furthermore, it may be worthwhile to
also use the support vector coefficients to scale the kernel
activations. Finally, now we used the same training data for
the different layers in the D-SVM. We want to study the
effect of using different datasets for training different layers.
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