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Abstract—This paper presents the deep support vector ma- deep belief networks use neural networks, or more pregisely
chine (D-SVM) inspired by the increasing popularity of deep restricted Boltzmann machines, that are trained in a greedy

belief networks for image recognition. Our deep SVM trains a ; ; ; ; :
SVM in the standard way and then uses the kernel activationsfo fashion, that is, one layer is fully trained after which a

support vectors as inputs for training another SVM at the nex following Iay_er IS a@'ded- After the traln_lng pha_se has been
layer. In this way, instead of the normal linear combination ~completed, fine-tuning of the whole architecture is oftenelo
of kernel activations, we can create non-linear combinatios by algorithms such as conjugate gradients.

of kernel activations on prototype examples. Furthermore,we Instead of DBNs that are grounded on the use of neural

combine different descriptors in an ensemble of deep SVMs ;
where the product rule is used for combining probability networks, we propose to use deep support vector machines

estimates of the different classifiers. We have performed ex (D'SVMS_)' The deep SVM is constructed by f|rs_t trf_;unlng
periments on 20 classes from the Caltech object database and @n SVM in the standard way. Then the kernel activations of
10 classes from the Corel dataset. The results show that our the support vectors are used as inputs for another SVM in
ensemble of deep SVMs significantly outperforms the naive the following layer. This next layer SVM is then trained and
approach that combines all descriptors directly in a very lage g gple to construct non-linear combinations of the kernel

single input vector for an SVM. Furthermore, our ensemble of -
D-SVMs achieves an accuracy of 95.2% on the Corel dataset activations of the stored prototype examples (the support

with 10 classes, which is the best performance reported in Vectors). Since the training procedure of the deep SVM is

literature until now. done in a greedy fashion, it is computationally very effitien
Keywords-Image categorization, support vector machines, Next to deep architectures and support vectqr_machmes,
ensemble methods, product rule, deep architectures ensemble methods have often been used for efficiently com-
bining classifiers [8]. Based on these ideas, we propose to
|. INTRODUCTION use an ensemble of deep SVMs. We have chosen to use the

ACHINE VISION is a subfield of artificial intelli- product rule [18] to combine the outputs of different classi

gence that focuses on extracting useful informatiofiers (after computing probability estimates for the diéfiet
from images. During the last decade a large number alasses). This is an effective method with the advantage tha
novel algorithms have been described for image recognit-is fast and uses all the information available in the otgpu
tion and this has led to good recognition performance oof the different classifiers (unlike for example bagging [5]
many different benchmarks. These algorithms use descsiptdhat may fail for multi-class problems).
for representing an image with feature vectors and then aln this paper we use two different datasets, namely
machine learning algorithm to classify the images. Ther€orel and Caltech-101, to compare different combination
are several machine learning algorithms, however, here vegchitectures on four MPEG-7 image descriptors and many
concentrate on support vector machines, deep architesturdifferent edge and gradient based histograms using colbr an
and ensembles of classifiers that are considered to be amadntgnsity information. We present the results of three rad¢h
the best algorithms. that combine all descriptors: (1) The naive approach that

Deep architectures have been shown to be effective gombines all descriptors in a single input vector for a suppo

learning and have been used with impressive performance fegctor machine. (2-3) An ensemble of standard and deep
example in classification of digits in the MNIST dataset [3]SVMs that uses the product rule to combine the posterior
[11] and modeling human motion [19]. In the lowest layerprobabilities of classifiers for image classification.
feature detectors are used to detect simple patterns. AfterContributions. The originality of our work is: (1) We
that, these patterns are fed into deeper, following, latieas present the deep SVM that combines ideas from deep neural
form more complex representations of the input data. Thereetwork architectures with those of support vector machine
are several approaches to learning deep architecturetorHin (2) We construct and evaluate an ensemble of shallow and
et al. [12] proposed the deep belief network (DBN), wheregleep SVMs on two different image recognition datasets. (3)
a multilayer generative model is used to encode statisticsle demonstrate the effectiveness of our ensemble of deep
dependencies among the units in the layer below. The§/Ms by comparing it to the standard SVM that combines all



image descriptors in a single large input vector. (4) We repo  Training deep SVMs is done by first training the lowest
an accuracy of 95.2% on the Corel dataset with our ensembfyer SVM in the standard way. Then the kernel activations
of deep SVMs, which is the best performance reported iare computed on the training set and stored together with
literature to the best of our knowledge. the desired labels. This creates a new training dataset for
The rest of the paper is organized as follows: Section Il dghe following layer where another SVM is trained using the
scribes some fundamental principles of SVMs and introducé®rnel activations from one layer below. This can in priteip
the deep SVM. Section Il reviews several ensemble methodsntinue for as many layers as are needed, and it is possible
for combining multiple classifiers and describes our endembto use different kernels in different layers as well.
of deep SVMs. In Section IV, we describe image descriptors Note that the effect of the deep SVM cannot be achieved
that we used to extract features from images. Experimentaith particular choices of (complex) kernel functions. Wit
results on the Corel and Caltech-101 datasets are showntive D-SVM it is possible to classify an instance as positive

Section V. Section VI concludes this paper. if the kernel activation of one support vector is large or the
kernel activation of another support vector is large, while
Il. DEEPSUPPORTVECTORMACHINES the classification can then be negative when both kernel

The support vector machine is a state-of-the-art technig@gtivations are large. This is an example of the famous X-or
for data classification proposed by Vapnik and his group dtroblem that can be solved with two RBF kernels in the
AT&T Bell Laboratories [20], [6]. It was originally devel- second layer SVM. Although DBNs usually use sigmoid
oped for binary or two-class classification and has been efunctions, in this paper we have mostly concentrated on the
tended to the multi-class case and to regression. In thisrpapRBF kernel, since it uses less parameters to optimize and
the classification method is used in all experiments. Givepreliminary experiments indicated that it performed sligh
an input patterrX, the support vector machine classifies thdetter than the sigmoid or Tanh kernel.

input pattern into clasg € {—1,+1} according to 1. ENSEMBLE METHODS

. Ensemble methods have received considerable attention in
y = sign(f(X)) (1) the machine learning community to increase the effectigene
where the decision functiorf(X) is a linear combination Of classifiers. In order to construct a good ensemble classifi
of kernelsK (X;, X) measuring the similarities between thethe ensemble needs to construct accurate and diverse-classi
presented vectaX and each of the training vectoks;: fiers and to combine outputs from the classifiers effectively
[8]. There exist several methods to obtain and combine the
- diverse classifiers.
F(X) = Zo‘iyiK(xi’x) +b @) In bagging [5], a training dataset is divided into sev-
=1 eral different subsets that may be overlapping. After that,
Equation (2) is called the support vector expansion, ar@l machine learning algorithm is trained on each subset.
contains examples that store all necessary knowledge ofTaen, the majority voting scheme is used to combine the
training set [17]. Then;’s are called support vector coeffi- class-votes of the different classifiers. If the outputs haf t
cients and these values are non-zero only for training dathfferent classifiers are strongly uncorrelated, the erdem
that are support vectors. The values are the class labelsmay correct for independent mistakes by single classifiers
belonging to the training data. Finally,is a bias term. and this improves the classification accuracy.
. Constructing and combining a set of classifiers is more
A. Deep SVM Classifier complicated in boosting [10]. Boosting methods construct a
The main idea of the D-SVM is to combine kernel activaset of classifiers in a sequential way. First one classifier is
tions in non-linear ways. The standard SVM only optimizegrained on all data, and then examples that are misclassified
the weights between the kernel activations of stored pyptot by the first classifier get higher weights in the training
examples and the output. Training is done by solving process of the next classifier. This is repeated until thelevho
quadratic optimization problem to optimize the weightsfus set of classifiers has been trained. The final ensemble uses
ally called support vector coefficients). The support vectaa weighted majority voting scheme where the weight of a
set contains all information for constructing the decisiorlassifier is dependent on the accuracy of the classifier.
function of a classifier [17], [20], however, their kernel Another ensemble method is the hierarchical mixtures of
activations are in the standard SVM combined in a lineagxperts (HME) architecture [14]. In the HME there is a
way, since otherwise the optimization problem becomes tagating network that learns to partition the input space in
complex. The deep SVM allows for a hierarchical level repdifferent regions where different classifiers are used &ore
resentation of patterns via non-linear mixtures of propety and predict the examples falling in their different regions
examples. It is inspired by deep belief networks [12] that arThe HME exploits the divide and conquer principle, but it is
becoming more and more popular in the machine learningore complicated to use together with SVMs.
community. Unlike DBNs that are based on neural networks, Stacking [23] is another ensemble method that learns to
the deep SVM is based on SVMs that have usually betteombine the outputs of different classifiers. First diffare
generalization performance than standard neural networksclassifiers are trained, and then another classifier resgige



inputs all the predictions of the different classifiers asd i

trained to optimally combine the different classifier outu

In our previous work we used stacking SVM classifiers v v v

to combine different SVMs trained with different image ‘ o ‘ e ‘ e

descriptors [1], and this led to better results than using a \ \ |

single SVM with all features from the different descriptors ey
The product rule is one of the simplest and most efficient

ways for combining outputs of classifiers [18] and is used in

our ensemble architecture of this paper. When the classifier

have small errors and operate in independent feature spaces

it is very efficient to combine their (probabilistic) outguty  Figure 1. Combining multiple image features using the naive approach

multiplying them. Thus, we use this product rule to detenin

the final decision of the ensemble. First the posterior prob-

ability outputsP’“( k) for class; of n different classifiers the ensemble of SVMs where the product rule is used to

are combined by the product rule: compute the final classification.

:
Pi(a,.2) = T Pfab) ®)
k=1 v v v
‘ Fealure_ 1 ‘ Feature_ 2 ‘ Feature_ n
wherez” is the pattern representation of th& descriptor. Ca'“‘i'a“"” Ca'“l'am” - Ca'“‘i“"“"”
Then the clas_s with the largest prob_ability prO(_juct is consi ‘ Foatire ‘ Foature 2 ‘ Feature T
ered as the final class label belonging to the input pattern. Clas‘siﬂer Clas‘siﬂer Clas‘siﬁer
A. Ensemble of deep SVMs
.. . g . . Combinati
Combining multiple classifiers that receive different fea- e
tures as inputs is an important topic in pattern and image Figure 2. Ensemble of support vector machines.

recognition. The main idea is that each descriptor produces
different information for representing the input pattesjich 3) Ensemble of deep SVM classifiers¥e adopt the
makes the classifiers diverse enough for efficient use in groduct rule [18] for combining multiple probability out-
ensemble. This is in contrast with the naive approach, whepgits of the deep SVM classifiers. Based on this idea, we
the feature vectors from all sources are concatenatedito tr&onstruct a two-layer SVM classifier for each one-vs-all
a single classifier. In this case, care has to be exercisefhssification task. The system first trains a set of SVM
regarding the increase of the feature dimensionality thalassifiers separately and this process is performed at the
may cause overfitting and worse generalization. One styatefjrst layer of the architecture. After that, the support wect

to overcome the problem is to learn different classifieractivations are extracted from each classifier of the firgtia
with different features separately. After that, the ou$putto learn another SVM classifier for the second layer of the
are combined by an ensemble method to generate the firathitecture belonging to the same one-vs-all classifiee T
output. In this paper, we report the results of two differenputputs from the second layer can give better distinctions
multiple image descriptor combination methods and compathan the first layer since inputs to the second layer classifie
these to our proposed ensemble of deep SVMs. We will firsire based on activations of prototype examples, rather than
describe these three combination methods. simple features.

1) Naive approach:This approach concatenates the fea-
ture vectors from different sources and creates a single fea
ture vector for modeling the content of an image. Fig 1 shows
how the naive approach combines multiple image features. ‘ ‘ ‘

In this figure, the feature calculation function contains an

algorithm to describe images by histograms. ‘ Featre ‘ ‘ e ‘ ‘ oo ‘
| | |
| | |

Feature 1
Calculallon

Feature 2
Calculallon

Feature n
Calculatlon

Classlﬂer Classlfler Classlfler
2) Ensemble of SVM4Me train different SVMs and com-

pute the class probabilities with the probability estiroati

function of SVMs. Then we use the product rule [18] to

combine all probability outputs of the SVM classifiers. The

main reason we use this approach is that it is a simple

SVS 1
Calculatlon

SVS 2
Calculatlon

SVS n
Calculatlon

SVS 1

SVS 2
ClaSSIfEI’

SVS n
Classmer

Classmer ‘

and effective method to combine classifiers trained with
different image descriptors. This approach can be used to
produce diverse classifiers, since the image descriptars pr Figure 3. Ensemble of deep support vector machines.

vide complimentary representations of images. Fig 2 shows



IV. I MAGE REPRESENTATION ANDDESCRIPTORS and is seen from different viewpoints, which makes the

A good image feature for visual content description idecognition task more challenging.

crucial and helps to discover meaningful patterns in thg\ .

) . SVM classifiers

image. There is no agreement what type of features should _

be used to produce an optimal result for all images. However, AS mentioned before, we employ SVMs [20] to learn to
using more than one image descriptor has been shown to @assify images. The one-vs-all approach is used to trash an

effective in increasing the recognition performance. classify the images in the Corel and Caltech-101 datasets.
For the SVMs, we have tried several kernels in the naive
A. MPEG-7 cluster correlogram descriptors and ensemble classifiers, however, in this paper, only the

A set of MPEG-7 descriptors with the fixed partitioningreSU|t5 of the best kernel (the RBF kernel) are reported. All
cluster correlogram [2] is used to evaluate the proposégtributes in the training and testing datasets were nozel
methods on the Corel image dataset. It contains two malf the interval [-1,+1] by using the following equation:
low-level descriptors, i.e., color and texture descriptdiVe g — 2e—min)
used the MPEG-7 features, because our preliminary results (maz—min) '
showed that these descriptors are informative to descridéie normalization is used to avoid numerical difficulties
scenes and objects in this dataset. The fixed partitionirgyiring the calculation and to make sure the largest values do
cluster correlogram consists of three main steps. The firgpt dominate the smaller ones. Theén andmax values are
step is extracting the visual features for each MPEG-7 lowgetermined from the training dataset. We have used the same
level descriptor in each block of the image. The MPEG-normalization scheme when passing the kernel activations
descriptors that we used are Scalable Color, Color Layodtom one layer to the next in the deep SVM.

Color Structure and the Edge Histogram. After that we We also did experiments to find the values for the SVM
use the K-means algorithm to construct a set of visuglarameters C ang that perform best for the descriptors.
keywords (we used 24 or 32 keywords for the differen¥e found that it can be difficult to find the best parameters
descriptors). Finally, the cluster correlogram is constied due to unbalanced datasets caused by the one-vs-all grainin
for each descriptor to index images in the dataset. Thearlustscheme. The unbalanced datasets may cause a biased clas-
correlogram is basically a matrix representing how often aification performance — a high accuracy on the majority
keyword dominating a block is adjacent to another keywordlass (-1), but a very low accuracy on the minority class (+1)
in a neighboring block (we use 8 neighbors). Therefore we employed two parameter optimization methods
in our experiments: (1) With accuracy the learning parame-
B. Spatial pyramid with edge and orientation descriptors ters were determined by using the libsvm grid-search algo-

We used the spatial pyramid as described in [15] an@dthm [13]. In this approach, 5-fold cross-validation issdsto
shape-based descriptors to evaluate the classifiers omoBalt find the best parameters by measuring the performance of the
101. The spatial pyramid consists of one global and severelgssifiers in the one-vs-all classification tasks. (2) W al
local feature histograms to describe images using multipRmployed the Weka [22] machine learning software package
resolutions. We used three different levels of resolutiofPr optimizing the learning parameters using the F1-measur
and our descriptors in [1] to index images on the Caltech this approach, 5-fold cross-validation is used to find the
dataset. The descriptors are the MPEG-7 Edge HistograRgst parameters by measuring the performance of different
Histograms of Threshold-oriented Gradients (HTOG) [7] an@arameters in the one-vs-all classification tasks.
gradient based histograms of the Scale Invariant FeatureWith both parameter optimization methods, we tried the
Transform (SIFT) [16]. We used color and intensity infor-following values: {27°,273,...,2"°} and {271%,2713,.. .2}
mation for all descriptors and two angular ranges namelipr C and~, respectively. We report only the results obtained
180> and 360 for HTOG and SIFT. The total number of with the best found learning parameters below.

descriptors we used for Caltech is 10.
B. Results on the Corel dataset

V. EXPERIMENTAL RESULTS The Corel dataset is one of the most popular and widely

For our comparison between the independent descriptorssed datasets to demonstrate the performance of CBIR sys-
the naive SVM classifier, the ensemble of SVMs, and th&ems [21]. It contains images that were categorized into 10
ensemble of deep SVMs, the Corel and Caltech-101 datasdifferent groups as shown in Fig. 4. For evaluating the SVM
were chosen. For Corel we used the first 10 categories anthssifiers, we used 90% of the images for training and 10%
a total of 10x100=1000 images. The images in the Corébr testing for each class. To compute the performances of
dataset seem quite simple with little or no occlusion anthe different methods, we chose 15 times different training
clutter, and the pictures in each class tend to be similand test images. We used the accuracy measure (as explained
in viewpoints and orientations. In contrast, the Calte6ii-1 above) to optimize the learning parameters of all methods.
dataset contains 101 different classes. In our experimenfhe values which gave the best performance on the first
we used only the first 20 classes due to computationtthining dataset are used on all training sets. Only tuning
restrictions. Each object in the dataset has a differer sizising the first dataset saved us a lot of computational time.



We report the mean accuracy and the standard deviation @f Results on the Caltech-101 dataset
the classifiers.

Figure 4. Image examples of Corel with ground truth for different greu
namely Africans, beaches, buildings, buses, dinosauephahts, flowers,

Buildings

Flowers

Mountains

ST Hrh

<

horses, mountains and foods.

Table | shows the first comparison between the standard
SVM and the deep SVM with two layers consisting of RBF

Foods

The Caltech-101 dataset is one of the most popular and
widely used datasets to demonstrate the performance of
object recognition systems [9]. The images with different
sizes were categorized into 101 classes, however we used
only the first 20 classes as shown in Fig. 5 for computational
reasons. Furthermore, we used the regions of interest JROIs
of the images as obtained by the research described in [4].
For evaluating the SVM classifiers, we used 15 training and
15 testing images for each image class. We chose 5 times
different training and test images randomly taken from the
dataset to evaluate the performances of the different ndstho
We used the accuracy measure to optimize the learning
parameters of the standard SVMs and the first layer of the
D-SVM, but used the Fl-measure to optimize the second
layer of the D-SVM, which gave slightly better results than
accuracy. We used the RBF kernels for all SVMs and report
the mean accuracies and standard deviations.

kernels. Here, the fixed partitioning cluster correlograithw
different MPEG-7 descriptors is used. The table shows that
the deep SVM gives some improvement on all independent
descriptors, although the differences are not quite sicanifi
(according to the student t-test). Table Il shows the aciesa
using the three different evaluated architectures: theenai
SVM, the ensemble of SVMs (E-SVM), and the ensemble
of deep SVMs (E-D-SVM). Combining multiple descriptors
using the ensemble of deep SVMs significantly outperforms
the standard SVMy( < 0.05) and also performs slightly
better than the ensemble of standard SVMs. The performance

with a 4.8% error-rate on Corel is the best result reporteHgure 5. Image examples of Caltech with ground truth for 20 different
in literature to the best of our knowledge. Also note tha@roups, namely accordion, airplane, anchor, ant, backgayubarrel, bass,

aver, binocular, bonsai, brain, brontosaurus, Buddhattdsfly, camera,

although the differences between the naive approach WiBSnnon, car side, ceiling fan, cell phone and chair.

an error-rate of 6.1% and the ensemble of D-SVMs with an

error-rate of 4.8% does not seem large, it is significant and

the reduction of the error is more than 20%. The ensemble We first tested the spatial pyramid with edge and gradient
of SVMs does not perform significantly better than the naiveased histogram descriptors separately. Table Il shoas th
approach. Finally, note that combining all descriptorskgor for most descriptors there is a slight improvement when the
much better than using a single descriptor alone.

THE AVERAGE CLASSIFICATION ACCURACY(MEAN AND SD)OF THE
FIXED PARTITIONING CLUSTER CORRELOGRAM USING DIFFERENT

Table |

MPEG-7DESCRIPTORSFP1 = @WLORLAYOUT, FP2 = @WLOR

STRUCTURE, FP3 = SALABLE COLOR, AND FP4 = EDGE HISTOGRAM.

THE AVERAGE CLASSIFICATION ACCURACY(MEAN AND SD)OF THE

Method FP1 FP2 FP3 FP4

SVM | 80.9+2.8 | 83.4+4.4 | 76.9+4.1 | 65.9+3.7

D-SVM | 82.74+2.8 | 83.7+4.1 | 77.4+4.1 | 67.1 3.6
Table Il

DIFFERENT COMBINATION ARCHITECTURES

Naive SVM

E-SVM

EDSVM |

93.1£2.9

94.4+ 2.3

952+£19 |

deep SVM is used instead of the standard SVM, although the
differences are not quite significant (for some descrippass
around 0.1, though). Finally, we tested the three comlonati
methods using 5 times different training and test image
datasets. Table IV shows the performances using the three
different combination approaches. Similar to the resulth w
Corel, the ensemble of deep SVMs significantly outperforms
the naive approach and performs better (although not sig-
nificantly) than the ensemble of SVMs. Here, the ensemble
of standard SVMs also significantly outperforms the naive
approach. Finally, note that all combination methods perfo
again much better than using a single descriptor.

V1. CONCLUSION

We have introduced the deep support vector machine that
can build multi-layer support vector machines where kernel



THE AVERAGE CLASSIFICATION ACCURACY(MEAN AND SD)OF

Table Il [7]

INDEPENDENT DESCRIPTORS

Descriptor SVM (%) | D-SVM (%)
EAc | 620E14 | 621+05
EHo | 64.1+2.1 | 64.6+1.4 8
S 180 | 727+£14 | 729417 (8]
S180c | 7T1.1+1.0 | 709405
S360c | 654226 | 67.7+1.2
S 3600 | 66.4+23 | 68.3+0.6
HG_180g | 70.1+£2.5 | 69.140.7 [
HG_180c | 69.1£2.0 | 70.8+0.5
HG_360; | 63.5+2.3 | 64.3+5.0
HG_360- | 65.5+2.8 | 67.3+0.9
Table IV [10]

THE AVERAGE CLASSIFICATION ACCURACY(MEAN AND SD)OF THE

DIFFERENT COMBINATION ARCHITECTURES

Naive SVM E-SVM E-D-SVM
77.4+09 | 82.1+3.0 | 83.1£2.2

[11]

activations of prototype examples can be mixed in nor42]
linear ways. We combined the deep SVM with a product
rule ensemble for combining multiple image descriptors
and have evaluated our approach on the Corel and CalteldR]
datasets. The results show that the deep SVM architecture
with the product rule handles multiple features efficiently
and performs significantly better than a standard SVM.
There are several ways to extend this research. Instead[&4]
using the RBF-RBF kernel combination, other combinations
can be researched. Furthermore, it may be worthwhile {gs;
also use the support vector coefficients to scale the kernel
activations. Finally, now we used the same training data for
the different layers in the D-SVM. We want to study the[ls]
effect of using different datasets for training differeayérs.
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