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Abstract. Although tabular reinforcement learning (RL) methods have
been proved to converge to an optimal policy, the combination of particu-
lar conventional reinforcement learning techniques with function approx-
imators can lead to divergence. In this paper we show why off-policy RL
methods combined with linear function approximators can lead to diver-
gence. Furthermore, we analyze two different types of updates; standard
and averaging RL updates. Although averaging RL will not diverge, we
show that they can converge to wrong value functions. In our experiments
we compare standard to averaging value iteration (VI) with CMACs and
the results show that for small values of the discount factor averaging VI
works better, whereas for large values of the discount factor standard VI
performs better, although it does not always converge.

1 Introduction

Reinforcement learning algorithms [13, 7] are very suitable for learning to control
an agent by letting it interact with an environment. In case of tabular represen-
tations of the state-action space, convergence with probability 1 to an optimal
policy has been proved for different reinforcement learning (RL) algorithms [18,
6, 16, 11]. However, in case of very large or continuous spaces, a tabular rep-
resentation of the value function is not suitable. Therefore, instead of tabular
representations, function approximators (FA) for representing the value function
are necessary. In particular cases the combination of function approximators (e.g.
neural networks) with reinforcement learning has been very successful [15]. How-
ever, in some cases divergence of particular combinations of RL algorithms with
function approximators has been demonstrated [4, 5, 2].

Although some light has been shed on this problem of divergence, the cause
of this divergence has not yet been demonstrated in an illustrative way. In this
paper we use a very illustrative example to show why off-policy RL methods
(e.g., on-line value iteration and Q-learning [17]) combined with function ap-
proximators may lead to divergence if parameters are shared between different
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states and sufficient high exploration is used. The reason of this is that the agent
can stay in the same state for a while due to exploration, while continuously up-
dating the value function on the largest action value that also increases due to
the update.

There are in principle two types of RL methods when combined with function
approximators; (1) Standard RL updating, and (2) Averaging RL updating. In
standard RL, parameters of the function approximator are updated using the
difference between the reward plus the next state’s value and the Q-value of the
current state-action pair that is computed using all parameters. In averaging
RL, parameters are updated using the difference between the reward plus the
next state’s value and the parameter value. Although averaging RL has stronger
convergence properties [5, 9] than standard RL, we show that averaging RL and
standard RL are very much related, but that co-operative parameter learning
only is the case for standard RL and that averaging RL can converge to non-
optimal value functions.

In our experiments, we compare averaging to standard dynamic programming
(DP) 1, and show that the obtained value function can be much worse for using
averaging DP compared to standard DP for very large values of the discount
factor, whereas the obtained value function and policy is better for averaging
DP for smaller values of the discount factor. This leaves us with the question
which RL method would be most appropriate; one which always converges, but
to a possibly bad value function approximation if the discount factor is large, or
one that does not have to converge, but that sometimes converges to a better
approximation of the optimal value function.

Outline of this paper. In Section 2 we will describe reinforcement learning
algorithms and in Section 3 we present the combination of standard and averag-
ing reinforcement learning with linear function approximators. In Section 4 we
will show our example for which standard off-policy RL algorithms with linear
function approximators will diverge. In Section 5 we will compare averaging dy-
namic programming to standard dynamic programming with CMACs on some
maze problems. Finally, Section 6 concludes this paper.

2 Reinforcement Learning

Reinforcement learning algorithms are able to let an agent learn from its experi-
ences generated by its interaction with an environment. We assume an underlying
Markov decision process (MDP) which does not have to be known to the agent. A
finite MDP is defined as; (1) The state-space S = {s1, s2, . . . , sn}, where st ∈ S
denotes the state of the system at time t; (2) A set of actions available to the
agent in each state A(s), where at ∈ A(st) denotes the action executed by the
agent at time t; (3) A transition function P (s, a, s′) mapping state-action pairs
s, a to a probability distribution over successor states s′; (4) A reward function
1 As DP method we use value iteration which can be seen as an off-policy DP algorithm

in contrast to policy iteration which is on-policy. When we mention DP in this paper
we restrict our conclusions to value iteration.



R(s, a, s′) which denotes the average reward obtained when the agent makes a
transition from state s to state s′ using action a, where rt denotes the (possibly
stochastic) reward obtained at time t; (5) A discount factor 0 ≤ γ ≤ 1 which
discounts later rewards compared to immediate rewards.

2.1 Value Functions and Dynamic Programming

In optimal control or reinforcement learning, we are interested in computing or
learning the optimal policy for mapping states to actions. We denote the optimal
deterministic policy as π∗(s) → a∗|s. It is well known that for each MDP, one
or more optimal deterministic policies exist. The optimal policy is defined as
the policy which receives the highest possible cumulative discounted rewards in
its future from all states. In order to learn the optimal policy, value-function
based reinforcement learning [13] uses value functions to summarize the results
of experiences generated by the agent in the past. We denote the value of a state
V π(s) as the expected cumulative discounted future reward when the agent starts
in state s and follows a particular policy π:

V π(s) = E(
∞∑

i=0

γiri|s0 = s, π)

The optimal policy is the one which has the largest state-value in all states:
π∗ = arg maxπ V π.

In most cases reinforcement learning algorithms used for learning to control
an agent also make use of a Q-function for evaluating state-action pairs. Here
Qπ(s, a) is defined as the expected cumulative discounted future reward if the
agent is in state s, executes action a, and follows policy π afterwards:

Qπ(s, a) = E(
∞∑

i=0

γiri|s0 = s, a0 = a, π)

It is easy to see that if the optimal Q-function, Q∗ is known, that the agent can
select optimal actions by selecting the action with the largest value in a state:
π∗(s) = argmaxa Q∗(s, a). and furthermore the optimal value of a state should
correspond to the highest action value in that state according to the optimal
Q-function: V ∗(s) = maxa Q∗(s, a).

It is also well-known that there exists a recursive equation known as the
Bellman optimality equation [3] which relates a state-action value of the optimal
value function to other optimal state-values which can be reached from that state
using a single local transition:

Q∗(s, a) =
∑

s′
P (s, a, s′)(R(s, a, s′) + γV ∗(s′))

The Bellman equation has led to very efficient dynamic programming (DP)
techniques for solving known MDPs [3, 13]. One of the most used DP algorithms



is value iteration which uses the Bellman equation as an update:

Qk+1(s, a) :=
∑

s′
P (s, a, s′)(R(s, a, s′) + γV k(s′))

Where V k(s) = maxa Qk(s, a). In each step the Q-function looks ahead one step,
using this recursive update rule. It can be easily shown that limk→∞ Qk = Q∗,
when starting from an arbitrary Q0 containing only finite values.

2.2 Reinforcement Learning Algorithms

Although dynamic programming algorithms can be efficiently used for comput-
ing optimal solutions for particular MDPs they have some problems for more
practical applicability; (1) The MDP should be known a-priori; (2) For large
state-spaces the computational time would become very large; (3) They cannot
be directly used in continuous state-action spaces.

Reinforcement learning algorithms can cope with these problems; first of all
the MDP does not need to be known a-priori, all that is required is that the agent
is allowed to interact with an environment which can be modelled as an MDP.
Secondly, for large or continuous state-spaces, a RL algorithm can be combined
with a function approximator for learning the value function. When combined
with a function approximator, the agent does not have to compute state-action
values for all states, but can generalize from experiences and concentrate itself
on parts of the state-space where the best policies lead into.

One particular algorithm for learning a Q-function is Q-learning [17, 18]. Q-
learning makes an update after an experience (st, at, rt, st+1) as follows:

Q(st, at) := Q(st, at) + α(rt + γ max
a

Q(st+1, a) − Q(st, at))

Where 0 < α ≤ 1 is the learning rate. Q-learning is an off-policy reinforcement
learning algorithm [13], which means that the agent learns about the optimal
value function while following another behavioral policy which usually includes
exploration steps. This has as advantage that it does not matter how much
exploration is used, as long as the agent visits all state-action pairs an infinite
number of times, tabular Q-learning (with appropriate learning rate adaptation)
will converge to the optimal Q-function [18, 6, 16]. On the other hand, Q-learning
does not learn about its behavioral policy, so if the behavioral policy always
receives low cumulative discounted rewards, the agent does not try to improve
it.

Instead of Q-learning, the on-policy algorithm SARSA(0) for learning Q-
values has been proposed in [10, 12]. SARSA(0) makes the following update
after an experience (st, at, rt, st+1, at+1):

Q(st, at) := Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))

Tabular SARSA(0) converges to the optimal policy under some conditions on
the learning rate after an infinite number of steps if the exploration policy is
GLIE (greedy in the limit of infinite exploration), which means that the agent
should always explore, but stop exploring after an infinite number of steps [11].



3 Reinforcement Learning with Function Approximation

To learn value functions for problems with many state variables, there is the
curse of dimensionality; the number of states increases exponentially with the
number of state variables, so that a tabular representation would quickly be-
come infeasible in terms of storage space and computational time. Also for a
problem having continuous states, a tabular representation requires a good dis-
cretization which has to be done a-priori using knowledge of the system, and
a fine-grained discretization will also quickly lead to a large number of states.
Therefore, instead of using tabular representations it is more appropriate to use
function approximators to deal with large or continuous state spaces.

In this paper we will concentrate ourselves on linear function approximators
where the state-vector st which is received by the agent at time t is mapped
upon a feature-vector φ(st). Then we use a parametrized function approximator
where the set of parameters is a vector θ. The value of a state-action pair is:

Q(s, a) =
∑

i

θi,aφi(s)

Well-known function approximators (FA) of this type are CMACs, locally weighted
learning, radial basis networks, and linear neural networks, but not multi-layer
perceptrons since these change the mapping from input-space to feature-space.

Using reinforcement learning techniques, we can learn the parameter vector θ
which makes up the value function. There are two different types of RL updates;
(1) Standard RL updating; (2) Averaging RL updating.

3.1 Standard RL with Linear Function Approximators

In case we use standard RL updating, we get the following algorithms:
Standard Q-learning. For Q-learning with linear function approximators, we
use the following update after an experience (st, at, rt, st+1) for all i:

θi,at := θi,at + α(rt + γ max
a

Q(st+1, a) − Q(st, at))φi(st)

Q-learning using this update-rule may diverge to infinite values as we show in
the following section, therefore no general convergence proofs can be obtained
using standard Q-learning with linear function approximators.
Standard SARSA(0). For SARSA(0) with linear function approximators, we
use the following update after an experience (st, at, rt, st+1, at+1) for all i:

θi,at := θi,at + α(rt + γQ(st+1, at+1) − Q(st, at))φi(st)

SARSA(0) is an on-policy RL method, and Gordon (2002) proved that using this
update for a fixed policy the parameters will converge, and for a changing policy
the parameters will stay fixed in a bounded region. Furthermore Perkins and
Precup (2002) proved that the parameters using SARSA(0) will converge if the
policy improvement operator produces ε-soft policies and is Lipschitz continuous
in the action values with a constant that is not too large.



3.2 Averaging RL with Linear Function Approximators

In averaging RL updates do not use the difference between two successor state-
values, but between the successor state-value and the parameter’s value itself.
As Reynolds (2002) has shown, averaging RL will not diverge if the feature-
vector for each state is normalized, but the value functions will remain in some
region. Reynolds did not prove convergence with averaging RL, but Szepesvari
and Smart (2004) have proved convergence of averaging Q-learning with inter-
polative function approximators, although the proof requires that the sampling
distribution is fixed and follows the stationary distribution. In the following we
assume normalized feature vectors, so we will use φ′

i(s) as the normalized feature-
vector computed as: φ′

i(s) = φi(s)∑
j

φj(s)
, where we assume all φi(s) are positive.

Furthermore we define Q(s, a) in terms of φ′(s).
Q-learning. The averaging Q-learning update looks as follows for all i:

θi,at := θi,at + α(rt + γ max
a

Q(st+1, a) − θi,at)φ
′
i(st)

The θ parameters learn towards the desired value and are not cooperating in the
learning updates. The use of this averaging Q-learning rule will not lead to diver-
gence [9]. Furthermore, under a fixed stationary distribution with interpolative
function approximators, averaging Q-learning has been proved to converge [14].
The requirement that the function approximator is interpolative is quite strict,
however, since locally weighted learning and CMACs do not fall in this class of
function approximators.
SARSA(0). For SARSA(0), an averaging RL update looks as follows for all i:

θi,at := θi,at + α(rt + γQ(st+1, at+1) − θi,at)φ
′
i(st)

So, what can we expect when we use averaging RL instead of standard RL?
Their convergence properties seem stronger as averaging RL does at least not
lead to divergence for all different RL algorithms, but averaging RL can learn
wrong value functions, as we will show in the next subsection.

3.3 Sample-based Dynamic Programming

In case we have a model of the environment, we can also use sample-based
Dynamic Programming as was proposed by Boyan and Moore (1995) and Gordon
(1995). Sample-based value iteration goes as follows. First we select a subset of
states S0 ⊂ S. Often S0 is chosen arbitrarily, but in general S0 should be large
enough and be spread over the state space. Then we are going to use the states
s ∈ S0 for updating the value function using a model of the environment. Again
this can be done by averaging methods or by standard methods.
Averaging Q-value iteration with linear FA. Averaging sample-based DP
uses the following update, where T (.) is the backup operator:

T (θi,a) =
1∑

s∈S0
φ′

i(s)

∑

s∈S0

φ′
i(s)

∑

s′
P (s, a, s′)(R(s, a, s′) + γ max

b

∑

j

φ′
j(s

′)θj,b)



This DP-update rule is obtained from the averaging Q-learning rule with linear
function approximators (where we set the learning rate α to 1). Remember that
we had: θi,at := θi,at + (rt + γ maxa Q(st+1, a)− θi,at)φ

′
i(st). We rewrite this as:

θi,at := θi,at + (rt + γ max
a

Q(st+1, a))φ′
i(st) − θi,atφ

′
i(st)

θi,at :=
(rt + γ maxa Q(st+1, a))φ′

i(st)
φ′

i(st)

The Q-value iteration backup operator is obtained by averaging over all states in
the sweep. Why is this averaging DP? Well, because we take the weighted average
of all targets irrespective of other parameter values for the current state, so
parameter estimation is done in a non co-operative way. Note that for a tabular
representation, this would simply be conventional Q-value iteration. We note
that averaging RL has a problem. Consider two examples 0.5 → 1 (which means
that one feature value is 0.5 and the discounted cumulative reward is 1) and
1 → 2. Thus, the best value of the parameter would be 2, but averaging Q-value
iteration will compute the value 5

3 . Note that this would also be the fixed point
if averaging Q-learning is used: (1 - 5/3)*0.5 + (2 - 5/3)*1 = 0. So although it
can be shown that averaging DP converges [5], averaging DP or RL does not
have to converge to the best possible value function.
Standard Q-value iteration with linear FA. For standard value-iteration
with linear function approximators, the resulting algorithm will look a bit non-
conventional. First of all we introduce the value of a state if a particular param-
eter i is not used as:

Q−i(s, a) =
∑

j 6=i

θj,aφ′
j(s)

Now we have Q(s, a) = Q−i(s, a) + θi,aφi(s). Furthermore Q−i(s, a) = 0 in
case of tabular representations with only feature i active. The standard Q-value
iteration algorithm that is co-operative, but may diverge, is:

T (θi,a) =
1∑

s∈S0
φ′

i(s)
2

∑

s∈S0

φ′
i(s)

∑

s′
P (s, a, s′)(R(s, a, s′) + γ max

b

∑

j

φ′
j(s

′)θj,b − Q−i(s, a))

This rule is obtained by closely examining the Standard Q-learning rule with
linear function approximators (with α = 1). Remember that we had:

θi,a := θi,a + (rt + γ max
b

Q(st+1, b) − Q(st, a))φ′
i(st)

We can rewrite this as:

θi,a := θi,a + (rt + γ max
b

Q(st+1, b) − Q−i(st, a))φ′
i(st) − θi,aφ′

i(st)2

θi,a :=
(rt + γ maxb Q(st+1, b) − Q−i(st, a))φ′

i(st)
φ′

i(st)2

The standard Q-value iteration is the result from using the backup operator
where all sample states are used together with a model. If we examine the same



examples: 0.5 → 1 and 1 → 2, we can see that standard DP would compute the
value 2, which is correct.

In the case of a tabular representation with only one state active, the resulting
algorithm is again the same algorithm as conventional Q-value iteration. The
problem of this standard value-iteration algorithm with function approximators,
which is also similar (although it looks quite different) to the one used by Boyan
and Moore (1995), is that it may diverge, just as Q-learning may diverge.

4 Divergence of Q-learning with Function Approximators

Off-policy RL methods such as online value iteration or standard Q-learning can
diverge for a large number of function approximators such as linear neural net-
works, locally weighted learning, and radial basis networks. We show an example
which shows why divergence to infinite parameter values can be obtained by us-
ing online value iteration together with exploration. The online value iteration
algorithm uses a model of the environment, but only updates on states visited by
the agent. This divergence to infinite values will also happen for Q-learning by
taking action values into account, but divergence will not happen for on-policy
methods such as SARSA or TD-learning with standard updating, neither for
averaging RL methods.

Our example is very simple; suppose there is one state s with value 0.5 or
1. The agent can select actions at from {0.1, 0.2, 0.3, . . . , 0.9, 1.0}. An absorbing
state has been reached if s = 1, else the next state st+1 is influenced by the
action at by setting st+1 = 0.5 if at < 1 and st+1 = 1 if at = 1. The reward on
all transitions is 0, and we use a discount factor γ. The initial state s0 = 0.5.
We use one feature φ(s) which has the same value as the state s. It is clear that
the optimal parameter θ∗ = 0. Suppose that we initialize θ to a positive value.
Now the learning algorithm computes the following update if s = 0.5:

θ = θ + α(γθ − 0.5θ)0.5

And the following update if s = 1: θ = θ + α(0 − θ)
If the agent often selects random actions, in many cases the agent will be in

state s = 0.5. Suppose it stays on average h times in state s = 0.5 before making
a step to s = 1. Then it will make the following average update:

θ = θ + α((γθ − 0.5θ)0.5h− θ)

This will lead to increasing values of θ if: h > 1
0.5γ−0.25 . Thus, for large enough

γ and exploration, the parameter will always increase.
If the next state and the current state share parameters, it is easy to see

that if the estimated value of the current state grows, that the estimated value
of the best next state grows at the same time. This may lead to divergence. If
instead we use a Monte-Carlo return, and do not use bootstrapping at all, we
will not have the problem. Also if we use the averaging RL update divergence
is prevented. Finally, if we use on-policy algorithms such as SARSA or TD-
learning divergence will not happen, because an increasing update is only made
if the agent actually makes a transition to the higher valued state.



5 Experiments with Standard and Averaging DP

We executed a number of experiments to compare standard and averaging DP
with CMACs [1] as a linear function approximator. For this, we always normalize
the activity of all tile-cells which are active given a state so that the combined
activity adds up to 1.0. We use Q-value iteration (as described in Subsection
3.3) using all states of the environment as sampling states.

The environment is a maze of size 51×51 with one goal state. Each state can
be a starting state except for the goal state. There are deterministic single-step
actions North, East, South, and West. The reward for every action is -1. The
process stops if the agent is in the goal-location. The tilings we use divide the
maze in horizontal slices and vertical slices. So there is one tile with 51 cells which
denotes the X-position, and one tile with 51 cells which denotes the Y-position.

We executed 3 experiments; 1 with an empty maze, where we examine the
obtained value functions of the different DP methods using CMACs. Further-
more, we examine convergence of the algorithms if we initialize the parameters
to a range of larger randomly generated numbers. We also run experiments on a
maze containing walls, which makes it impossible for the representation to come
up with an optimal policy. Therefore we will examine the number of steps which
results after the DP algorithm terminates (or after a large number of iterations
in case of standard DP which does not always terminate).

5.1 Experiments on an Empty Maze

Although it is easy to come up with an optimal policy for an empty maze, it is
interesting to study the resulting value function for standard and averaging RL
with CMACs compared to the optimal value function. It should be clear that our
representation does not always allow to represent the optimal value function for
all different values of the discount factor. Therefore, we examined the cumulative
absolute difference between the optimal value function and the obtained value
functions of standard DP with CMACs and averaging DP with CMACs for a
large range of values of the discount parameter γ ∈ {0, 0.05, . . . , 0.95, 1.0}. The
experimental results are shown in Figure 1(A), where we initialized all value-
function parameters to random values between 0 and 100. Figure 1(A) shows:
(1) For γ = 0, both algorithms compute the optimal value function. (2) For
γ = 1, standard DP is able to compute the perfect value function, but averaging
RL makes a large error. (3) For γ values in between 0.05 and 0.9 the value
function obtained by averaging RL is slightly better than the one obtained with
standard DP. Both algorithms always converged to a unique value function given
the discount factor.

In Figure 1(B) the convergence on the empty maze with discount factor γ = 1
is shown to the unique final value function (which does not need to have 0-error
compared to the optimal value function) of both algorithms. We can see that
although standard DP converges faster, it sometimes increases the error, whereas
averaging DP never increases the error. Although it is not shown in the figures,
we note that for γ = 0.8 averaging DP converges faster. The fact that standard
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Fig. 1. (A) The error (cumulative absolute difference between V-values computed over
all states) of the value functions computed by standard and averaging DP. (B) The con-
vergence of both algorithms when γ = 1.0. Note that standard DP sometimes increases
the error, although it is hard to see.

DP computes the optimal value function for the empty maze with γ = 1 is
remarkable. It does this by computing 0, -2, -4, etc. for one tiling with distances
to the goal of 0, 1, 2, etc. In this way the value of state (2,1) will be the average
of -4 and -2 which is -3, which is optimal for γ = 1. For many other values of γ,
standard DP cannot compute an optimal value function, and actually performs
slightly worse than averaging DP. We also performed experiments with different
initializations of the parameters of the value function where γ = 1. As expected
averaging DP always converged to the same value function. For standard DP,
initializations of 0 to 100 and 0 to 1000 led to convergence, but if we initialized
the parameters to values between 0 and 10000, the parameters always diverged.

5.2 Experiments on a Maze Containing a Wall

The next experiment uses the maze shown in Figure 2(A). It is impossible for
the value function obtained with CMACs and our chosen features to compute
an optimal policy given all states as starting state. Instead we will examine how
well the policy obtained by both algorithms after it converged (or a sufficient
number of sweeps in case of standard DP) performs. The results are shown in
Figure 2(B). It depicts the total number of steps the greedy policy needs to find
the goal where not finding the goal is counted as 1000 steps (so that the maximum
number would be (51× 51− 1)× 1000). We can see that averaging RL performs
much better over a wide range of values for γ. Only when γ is 1.0, standard
DP works better and in this case also obtains the best results. We can see that
low values of γ do not harm averaging RL, but standard DP works better for
γ = 1, since otherwise the subtraction of the other parameters in the standard
DP update rule plays an important role. It should be said that averaging RL
always converges, whereas standard DP with γ = 1 was constantly changing its
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Fig. 2. (A) The second maze containing two walls: one wall is between x = 5 and x = 6
where y > 30 and the other wall is between y = 5 and y = 6 where x > 30. (B) The
number of steps in this maze with the policy computed by standard or averaging DP.

policy, and did not converge, although the parameters did not diverge to infinite
values (we used an initialization of parameter values between 0 and 100).

6 Conclusion

In this paper we have described two types of reinforcement learning algorithms
when linear function approximators are used; standard RL is used in most ap-
plications of RL with function approximators [13], and averaging RL is another
way which has received little attention. Since particular standard RL algorithms
with function approximators may diverge, it is worth taking a look at aver-
aging RL methods which have been proved not to diverge. We explained the
reason why standard off-policy RL algorithms may diverge when combined with
linear function approximators — if an agent stays in the same state due to ex-
ploration, it may increase parameters which are shared by the state and the
best possible next state. This divergence will not happen for standard on-policy
RL algorithms or averaging RL. Averaging sample-based dynamic programming
techniques converge, although the resulting value function may not be the best
possible value function, whereas standard sample-based (off-policy) dynamic pro-
gramming does not have to converge. To compare standard RL to averaging RL,
we executed some experiments on maze problems with Q-value iteration and
CMACs as a linear function approximator. The results indicated a number of
things. First averaging DP always converges (as expected) and standard DP also
often converges, but can diverge if we set initial parameters to very large values.
Furthermore, the resulting value function and policy of averaging DP may be
better if the discount factor is not very large, whereas standard DP works best
for very large values of the discount factor. In future work, we want to compare
averaging and standard RL on a number of different problems. We are especially
interested in comparing convergence speed of on-policy RL and averaging RL



methods, since these methods seem most promising. Furthermore, we want to
analyze the convergence of averaging RL methods with changing policies.
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