
Comparison of Machine Learning Techniques for
Multi-label Genre Classification

Mathijs Pieters and Marco Wiering

Institute of Artificial Intelligence and Cognitive Engineering
University of Groningen, The Netherlands??

{m.t.pieters,m.a.wiering}@rug.nl

Abstract. We compare classic text classification techniques with more
recent machine learning techniques and introduce a novel architecture
that outperforms many state-of-the-art approaches. These techniques
are evaluated on a new multi-label classification task, where the task
is to predict the genre of a movie based on its subtitle. We show that
pre-trained word embeddings contain ’universal’ features by using the
Semantic-Syntactic Word Relationship test. Furthermore, we explore the
effectiveness of a convolutional neural network (CNN) that can extract
local features, and a long short term memory network (LSTM) that can
find time-dependent relationships. By combining a CNN with an LSTM
we observe a strong performance improvement. The technique that per-
forms best is a multi-layer perceptron, with as input the bag-of-words
model.

Keywords: natural language processing, multi-label text classification,
movie subtitles, CNN model, LSTM network, bag-of-words model

1 Introduction

Text classification is the task of assigning specific categories to documents, exam-
ples are spam detection and sentiment analysis. Naive Bayes, a technique based
on applying Bayes’ Theorem, is frequently used as a baseline method for text
classification because it is relatively effective, fast, and easy to implement [11].
Numerous attempts have been made to tackle the poor assumptions of Naive
Bayes [8, 17].

Various types of neural networks have been developed throughout the years,
many of these techniques are used for natural language processing (NLP) ap-
plications. A traditional method is the multilayer perceptron (MLP), trained
on the bag-of-words (BoW) model [1]. The BoW model is a sparse represen-
tation of texts, ignoring both word order and semantic and syntactic features,
treating texts as unordered sets of words. In order to capture the subtleties of

?? This paper is published as a chapter in the Springer book: Artificial Intelligence
in the Communications and Information Science Series. Eds. B. Verheij and M.A.
Wiering, 2018. DOI: 10.1007/978-3-319-76892-2 11

2 Mathijs Pieters and Marco Wiering

language, we seek a dense representation that does capture these features. Many
state-of-the-art word embedding techniques [12, 15] are based on the distribu-
tional hypothesis [3], stating that linguistic items with similar distributions have
similar meanings. These dense representations capture multiple degrees of sim-
ilarity [14], both semantic and syntactic, such that similar words have similar
representations.

Convolutional neural networks (CNN) make use of the internal structure of
the dense representation, both in the feature domain, and the temporal (word
order) domain. CNN models have achieved remarkable results on various text
classification tasks [21, 5]. Whereas CNN models make use of the word order for a
specific region size, recurrent neural networks (RNN) have the ability to capture
long-term dependencies for texts of any length. More specifically, the Long Short-
Term Memory (LSTM) architecture [4] is well suited for longer texts because of
its ability to remember information for long periods of time.

In this paper, we introduce a novel dataset which we will use for multi-label
text classification. We compare several state-of-the-art techniques, such as the
concatenation-CNN and the LSTM network, with more traditional techniques.
Furthermore, we introduce a novel architecture that applies a histogram on word
embeddings, followed by an MLP. Unlike most research, we trained our own word
embeddings, making our setup stand-alone.

In section 2 we introduce our dataset, followed by section 3 where we explain
the used methods. The experimental setup is described in section 4, and in
section 5 we show and discuss the results. We conclude the paper in section 6
with a conclusion and a proposal for future work.

2 Dataset

The dataset used in the experiment is an intra-lingual movie subtitle corpus,
collected by [9], and originates from OpenSubtitles1. We extracted the English
corpus, and removed all tokens apart from the spoken text. Subsequently, we
convert all words to lowercase and remove punctuation, see Figure 1. We did not
apply stop word removal or stemming. The total dataset consists of 44,171 sub-
titles, with in total 135,862,112 words and 920,705 unique words. Every subtitle
is linked to at least one, and often multiple genres. In total the dataset contains
subtitles with 27 different genres, ranging from animation and comedy, to docu-
mentary. Because every subtitle can have multiple genres, the classification task
is considered a multi-label classification task. This should not be confused with
multi-class classification, where every document has exactly one label. Multi-
label classification is considered to be significantly more difficult, due to the vast
amount of possible label combinations.

Because of the limited availability of computer power we will narrow our
focus to the classification of the following genres: ”Romance”, ”Thriller”, and
”Action”. This subset consists of 15,500 subtitles, with in total 48,998,774 words

1 http://www.opensubtitles.org/

Comparison of Machine Learning Techniques 3

and 448,101 unique words. The distribution of the subtitle lengths is depicted
in Figure 2.

Fig. 1. Text preprocessing, single sen-
tence example.

Fig. 2. Distribution of subtitle lengths

3 Methods

In this paper, we will differentiate between models that use the BoW model,
and models that use word embeddings. For the first model we have two different
methods, and for the latter we will discuss four methods.

3.1 Bag of Words

We will use the BoW model for both the Naive Bayes classifier and the multi-
layer perceptron. Let d = {d1, ..., dn} be a collection of documents, where dij
denotes the number of occurrences of word i in document j. Furthermore, let
l = {l1, ..., ln} be the according labels, where li is itself a set of possibly multiple
labels.

Multinomial Naive Bayes transformations We will focus on the Multi-
nomial version of the Naive Bayes model (MNB), where each word position is
assumed to be independent of every other word. We will use several improve-
ments proposed by [17], e.g. normalising the weight vectors.

To train the MNB model, we apply the transformations described in equation
1. For a test document t, with word i occurring ti times, the document is labelled
according to equation 2 for some threshold θ.

4 Mathijs Pieters and Marco Wiering

dij
(1.1)
= dij log

∑
k 1∑

k 1i occurs in k

dij
(1.2)
=

dij√∑
k(dkj)2

wgi
(1.3)
= log

∑
j:g∈lj

dij

(1)

wg
(2.1)
=
∑
i

tiwgi

wg
(2.2)
=

wg −minwg

maxwg −minwg

l(t)
(2.3)
= {g : wg > θ}

(2)

In equation 1.1, we down-weight common words, a heuristic known as ”inverse
document frequency”. Common words have little influence on the class of a
document, but small variations can cause spurious correlations. Note that in
most literature a ”term frequency” heuristic precedes equation 1.1, we however
found that this did not improve the accuracy. Therefore as shown in equation
1.1 we just use the term frequency. In order to prevent that document length
affects the classification, we normalize every document according to equation
1.2. Finally, in equation 1.3 we add the weights of all documents belonging to
the same genre.

For classification we first multiply each word frequency with the weight, as
illustrated in equation 2.1. In standard multi-class classification, we could now
assign a label to the class with the highest score. However, since the task is
multi-label classification, we have to be able to assign multiple labels to a single
document. We do this by first normalizing the weights according to equation 2.2,
and then assign each label for which the weight is greater than the predefined
threshold θ. By increasing θ we can trade-off recall for precision (defined in
section 5.1). We determine this threshold by means of the validation set.

Multi-layer Perceptron The multi-layer perceptron (MLP) has been shown
to be effective on a wide variety of tasks, despite its simplicity. We use a fully
connected network, with two hidden layers. We use the ReLU activation function,
and in every layer we apply L2-normalisation before activation. The input of the
MLP is again the BoW model, with the n most frequent words. Every word
frequency is rescaled according to dij = log (1 + dij), reducing the influence of
frequently occurring words.

3.2 Skip-gram Model

Many state-of-the-art techniques require dense word vectors as input. It is hy-
pothesised that the techniques developed by e.g. [12] create dense word vectors
that contain ’universal’ features that can be used for various tasks. We will fo-
cus on the Skip-gram model [13]. In this model, each current word is used as an
input, and the target is to predict the words that occur within a certain con-
text c before and after the center word, as illustrated in Figure 3. Furthermore,
we use Negative sampling (NGE) as objective, where the task is to distinguish

Comparison of Machine Learning Techniques 5

the target word from k negative samples drawn from a noise distribution. Since
frequent words generally provide less information, we apply subsampling to all
words as described in [13]. We train the model using all subtitles in our dataset,
in section 4.2 we denote the used hyperparameters. In order to explore the qual-
ity of the word vectors we use the Semantic-Syntactic Word Relationship test
set, defined in [12]. This test set consists of five types of semantic questions and
nine types of syntactic questions. The task is to predict a word, based on the
relationship between three given words. An example for the semantic test is:
”What word is similar to Oslo in the same way as France is similar to Paris?”,
the answer would be Norway. This test is performed by computing the vector
x = vector(”france”) - vector(”paris”) + vector(”oslo”), and finding the word
that has the smallest cosine distance to this vector x (different from the three
question words). An answer is considered correct only if the closest word is iden-
tical to the word in the question. Table 1 shows the results on the word analogy
task, indicating the effectiveness of the technique as well as generalizability of
the used dataset. For the accuracy we denote both the percentage correct, and
the number of correct classified pairs combined with the total number of pairs.
Note that we used a subsection of the original test set, because some of the test
words do not occur in our dataset. We evaluated 6,067 out of the original 8,869
semantic relations, for the syntactic relations we evaluated 10,300 out of 10,675
pairs. The results show that for the semantic relations the categories Common
capital city and Man-Woman are learned very accurately, whereas Currency
scores poorly. We expect that this is a result of the nature of movie subtitles,
relationships (Man-Woman) and famous locations (Common capital city) play
an important part in many movies, in contrast to currencies. The syntactic rela-
tions show a more balanced result, probably because all nine syntactic categories
occur in spoken language.

6 Mathijs Pieters and Marco Wiering

Table 1. Results of Semantic-
Syntactic Word Relationship test
set.

Category Accuracy

Semantic: 43.9 % (2665/6067)

Common capital city 86.6 % (433/506)
All capital cities 43.1 % (996/2310)
Currency 7.40 % (37/502)
City-in-state 35.4 % (824/2328)
Man-Woman 89.3 % (375/420)

Syntactic: 61.8 % (6362/10300)

Adjective to adverb 31.1 % (271/870)
Opposite 25.6 % (180/702)
Comparative 81.6 % (1087/1332)
Superlative 64.4 % (723/1122)
Present participle 62.7 % (622/992)
Nationality adjective 68.6 % (1044/1521)
Past tense 61.3 % (957/1560)
Plural nouns 82.1 % (1093/1332)
Plural verbs 44.3 % (385/869)

Fig. 3. The Skip-gram architecture,
with a context size c of 2.

3.3 MLP on Histogram of Word Embeddings

Previous research has shown that first training a part of the model on an un-
supervised task can reduce the training time and increase the accuracy on the
supervised task [16]. Because the pre-trained word embeddings contain various
features, we expect that a basic model can find relationships between several fea-
tures in order to learn a supervised task. Preliminary experiments have shown
that taking scalar indicators (such as min, max, or mean) of a single feature
over all words in combination with an MLP does not lead to satisfying results.
Both the min and max operators can be affected by single, meaningless outliers,
whereas the mean operator can potentially reduce significant positive and nega-
tive weights to a meaningless average. In order to capture more information we
propose to use a histogram, where each word-embedding feature is described by
a certain number of bins. Every bin denotes the relative frequency of a range of
values for that specific feature. We will now describe the method used to convert
a document to a word-embedding histogram, that subsequently can be used as
an input for an MLP. Let every subtitle be consisting of n words, such that

X = x1 ⊕ x2 ⊕ ...⊕ xn (3)

where xt ∈ Rk is the k-dimensional word embedding and ⊕ is the concatena-
tion operator. Note that in most literature word embeddings are referred to by
”words”, we will use ”concepts” because the word embeddings are actually the

Comparison of Machine Learning Techniques 7

representation of the concept of a word, and not the word itself. The concate-
nation of the word embeddings results in a matrix X ∈ Rn×k, where n and k
denote the number of words in the subtitle and dimension of the word embed-
ding respectively. In order to use this matrix in combination with a histogram,
we first need to scale the values such that we can use bins with a prefixed size
and range. We normalize the matrix X according to

Xij =
Xij −miniXij

maxiXij −miniXij
(4)

We will now make a histogram along every word dimension, using s bins, where
every bin has a width of size 1/s. The range of the bins are denoted by {b1 =
[0, 1s), b2 = [1s ,

2
s), ..., bs = [s−1s , 1]}. For every bin bl and every word dimension

k we now calculate

Hlk = card({Xjk : Xjk ∈ bl}) (5)

Subsequently, we calculate the L1 norm

Hlk =
Hlk∑s
i=1Hik

(6)

and calculate the z-score

Zlk =
Hlk − µ

σ
(7)

where µ, and σ are the mean and standard deviation of all values in H respec-
tively. The resulting matrix Z ∈ Rs×k is then used as an input for an MLP.

3.4 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a feedforward neural network, orig-
inally used for image classification [7]. CNN models have shown to be effective
on various NLP tasks, by utilising local features of the word embeddings [6].
We will now describe the CNN architecture. Let every document of length n
be described by a sequence as defined in equation 3 (padded if necessary). Let
xi:i+j denote the concatenation of concept xi up to xi+j . The convolutional filter
w ∈ Rh×k is applied to a window of h concepts, which produces a new feature
ci. Note that k denotes again the word embedding size. We could in theory slide
the convolution along the word-features too, there is however no reason to as-
sume that any specific local relationships exist between concepts. The window
of concepts xi:i+h−1 generates a new feature by

ci = f(w ◦ xi:i+h−1 + b) (8)

where ◦ is the element-wise multiplication, b ∈ R is a bias term, and f is a non-
linear function such as the sigmoid, hyperbolic tangent, etc. By applying this

8 Mathijs Pieters and Marco Wiering

filter to all possible windows, we obtain a feature map c = [c1, c2, ..., cn−h+1].
Note that we can use multiple filters, with possibly different filter widths.
In order to capture the more significant events, we subsequently apply a max
pooling operation on the feature map c. Throughout the paper we will differen-
tiate between two types of max pooling, namely max-over-time pooling and 1-D
max pooling.

Max-over-time pooling The first technique extracts a single (maximum)
scalar from each feature map. By using multiple convolutional filters, with vary-
ing filter widths, we obtain several features which are then passed on to a fully
connected layer. This architecture was introduced by [6], and is referred to as
concatenation-CNN (C-CNN). Whereas the architecture introduced by [6] uses
a final softmax layer, we adapt the network for a multi-label problem by using
a sigmoid activation output layer.

1-D max pooling Max-over-time pooling reduces a feature map to a single
feature, we can also reduce the feature map to several features, for different
windows. In order to determine the maximum value for a window of size m we
define

pi = max(ci:i+m−1) (9)

with i = (1, 1+s, 1+2s, ...), where s denotes the size of the stride. In both the con-
volutional layer and the 1-D max pooling layer we can vary the stride, meaning
that instead of moving the filter one step at the time, we move the filter several
places per step. We use multiple filters for the same region, making it possible
to learn complementary features from the same regions. With l filters, the gen-
erated l feature maps are combined to create a matrix X ∈ Rl×b(n−h−m+2)/sc.
These feature maps are then used in combination with an LSTM network, as
explained in section 3.6.

3.5 Long Short-Term Memory Network

A Recurrent Neural Network (RNN) has the ability to capture time-dependent
relations between words. It does this dynamically, without the use of fixed-size
context windows. In particular, the Long Short-Term Memory Network (LSTM)
[4] excels at tasks where long term dependencies are important. This network
has received a lot of attention because of its capability of capturing important
events throughout time series, and being relatively unsusceptible of gaps between
important events. Given a sequence as described by equation 3, at time step t

Comparison of Machine Learning Techniques 9

the LSTM network updates ct and ht with input xt as follows


it
ft
ot
ĉt

 =


sigm
sigm
sigm
tanh

W · [ht−1, xt] (10)

ct = ft ◦ ct−1 + it ◦ ĉt (11)

ht = ot ◦ tanh(ct) (12)

where ct and ht are the memory and hidden state respectively, it, ft, ot, and ĉt
are the input gate vector, forget gate vector, output gate vector, and current cell
state vector respectively. Note that in equations 10 and 12 the functions sigm
and tanh are applied element-wise. In order to map the output of the LSTM
network to the output layer, we apply mean-over-time pooling on the output
gate vectors ot, meaning that we calculate the mean of all ht values over all time
steps t. Finally, the mean-over-time pooling is followed by a fully-connected layer
with a sigmoid activation function.

The traditional LSTM network may have problems when the change of the
parameters of one layer has an effect on the distribution of the input to all
subsequent layers, also known as internal covariance shift. A solution proposed
by [2], called Batch Normalized LSTM (BN-LSTM), normalizes both the input-
to-hidden and hidden-to-hidden transformations by empirically estimating their
means and standard deviations.

3.6 CNN-BN-LSTM

We discussed that CNN leverages the local features of words, whereas LSTM
dominates in tasks where long term relations play a part. By combining the two
techniques, we hope to get the best of both worlds. We start with applying a
CNN layer, followed by a 1-D max pooling layer, as discussed in section 3.4.
The resulting matrix is then used as input for the LSTM network, such that
there are b(n − h − m + 2)/sc time steps, each with dimension l. Similar to
the procedure discussed in section 3.5, we subsequently apply mean-over-time
pooling on the output gate vectors, together with a fully-connected layer with
sigmoid activation. An example of this network is shown in figure 4.

10 Mathijs Pieters and Marco Wiering

Fig. 4. Graphical representation of the CNN-BN-LSTM network. The hyperparameters
of this example are as follows. The word-embedding size is 6. The convolutional layer
uses a window size of 2, with a stride of 1, this is followed by 1-D max-pooling with a
window size of 3, and a stride of 1.

4 Experimental Setup

4.1 Dataset

The proposed models are tested on the dataset introduced in section 2. We split
the dataset into a validation set and a train-test set of respectively 1500 and
14,000 subtitles, so that we tune the hyperparameters on the validation set and
use cross validation on the train-test set. We use 7-fold cross validation in order
to test the methods, the train set consists each time of 12,000 movies, the test
set of 2,000 movies.

4.2 Hyperparameters and Training

The following hyperparameters are all determined by performing a grid search
on the validation set. For the MNB model we only take into account words that
occur more than 3 times. We use a classification threshold θ of 0.7 for the MNB
model. For all other models we use a threshold value of 0.5.

For the BoW-MLP model we use the 50,000 most frequent words. The first
hidden layer contains 512 nodes, the second layer 256. In both layers we apply
the ReLU activation function, followed by dropout [19] with a dropout rate of
0.5.

Throughout all experiments we use a word embedding size of 300. We use
static word embeddings, we thus apply no back propagation on the word em-
beddings in any of the experiments. We trained the word-embeddings on all
subtitles, thus not only on the used subset for the multi-label classification task.
The training was performed for 12 epochs, using a learning rate of 0.1, a mini-
batch size of 16, a subsample threshold of 10−3, a context size c of 5, and with
15 negative samples.

For the MLP-Histogram model we use 25 bins, followed by 128 hidden nodes
in the first layer of the MLP, and 64 nodes in the second layer. Furthermore,
in order to prevent overfitting we add Gaussian noise to the input with a mean

Comparison of Machine Learning Techniques 11

of 0, and a standard deviation of 0.02. Additionally, after each layer dropout is
applied with a rate of 0.5. Finally, in each layer the ReLU activation function is
applied.

The BN-LSTM model uses 300 hidden units, on both the input and output
connections we use dropout with a rate of 0.2. We constrain the L2-norm of the
gradient to not exceed 10, this is known as gradient clipping.

For the CNN-BN-LSTM network we use similar LSTM hyperparameters,
proceeded by a CNN. The CNN consists of 200 feature maps, with a window
size of 8, a filter stride of 2, followed by a 1-D max pool filter of size 4, with
a stride of 2. The activation function used in the CNN is the ReLU. Again we
constrain the L2-norm of the gradient to a maximum of 10.

In the C-CNN model we use filters of width 3,4 and 5, all with 128 feature
maps. We apply dropout with a rate of 0.5, and constrain the L2 norm again to
10.

For the CNN-BN-LSTM and the C-CNN model we pad the documents to a
maximum length of 4000 words. In all models we use a mini-batch size of 20. We
train the MLP-BoW and C-CNN for 6 epochs, all other models are trained for
10 epochs. We used the Adadelta update rule [20] for training, while shuffling
the mini-batches.

Throughout all experiments (apart from training the word-embeddings) we
anneal the learning rate α using exponential decay, defined by α = α0r

t/k, where
α0 is the initial learning rate, r is the decay rate, t is the iteration step, and k
indicates the decay step, such that every k steps the learning rate is decayed.
In all experiments we use a decay rate r of 0.97. For the MLP-Histogram, BN-
LSTM, and CNN-BN-LSTM we used an initial learning rate of 0.1, for the
MLP-BoW and C-CNN we use an initial learning rate of 0.005.

5 Results and Discussion

5.1 Metrics

In order to compare our models we will use the F1 score, which takes into account
both the recall and precision. Recall, precision, and the F1 score for one label
are respectively defined as:

recall =
|{relevant labels} ∩ {retrieved labels}|

|{relevant labels}| (13)

precision =
|{relevant labels} ∩ {retrieved labels}|

|{retrieved labels}| (14)

F1 = 2 · precision · recall

precision + recall
(15)

In order to calculate the final recall, precision, and F1-score of the models,
we calculate the mean scores over all three genres.

12 Mathijs Pieters and Marco Wiering

5.2 Results

The results of our models are listed in Table 2. Our baseline method (MNB)
does not perform well. The model that performs best is the MLP-BoW model,
with an average F1-score of 0.77 ± 0.02. This is a significant higher result (P <
0.005) compared to the other models. The novel MLP-Histogram model achieves
the second highest F1-score. The BN-LSTM does not perform well on it own,
however, in combination with a CNN layer (CNN-BN-LSTM) the model obtains
the third best results. Finally, the C-CNN model is outperformed by all but two
models.

Romance Thriller

Model Recall Precision F1-score Recall Precision F1-score

MNB 0.93 ± 0.08 0.49 ± 0.14 0.64 ± 0.10 0.02 ± 0.01 0.67 ± 0.14 0.04 ± 0.03
MLP-BoW 0.75 ± 0.13 0.77 ± 0.04 0.76 ± 0.09 0.72 ± 0.01 0.77 ± 0.01 0.74 ± 0.08
MLP-Histogram 0.61 ± 0.03 0.72 ± 0.04 0.66 ± 0.02 0.78 ± 0.04 0.77 ± 0.02 0.77 ± 0.02
BN-LSTM 0.17 ± 0.13 0.72 ± 0.10 0.25 ± 0.14 0.76 ± 0.08 0.74 ± 0.05 0.75 ± 0.02
C-CNN 0.52 ± 0.17 0.69 ± 0.09 0.56 ± 0.10 0.77 ± 0.05 0.76 ± 0.09 0.76 ± 0.05
CNN-BN-LSTM 0.54 ± 0.05 0.74 ± 0.03 0.62 ± 0.04 0.76 ± 0.04 0.79 ± 0.02 0.77 ± 0.03

Action Mean

Model Recall Precision F1-score Recall Precision F1-score

MNB 0.83 ± 0.11 0.71 ± 0.15 0.73 ± 0.08 0.59 ± 0.02 0.62 ± 0.05 0.47 ± 0.04
MLP-BoW 0.81 ± 0.06 0.82 ± 0.06 0.81 ± 0.05 0.76 ± 0.03 0.79 ± 0.03 0.77 ± 0.02
MLP-Histogram 0.80 ± 0.03 0.79 ± 0.06 0.79 ± 0.02 0.73 ± 0.01 0.76 ± 0.01 0.74 ± 0.01
BN-LSTM 0.75 ± 0.05 0.80 ± 0.06 0.77 ± 0.01 0.56 ± 0.04 0.75 ± 0.04 0.59 ± 0.04
C-CNN 0.75 ± 0.07 0.80 ± 0.08 0.77 ± 0.03 0.68 ± 0.06 0.75 ± 0.02 0.70 ± 0.04
CNN-BN-LSTM 0.78 ± 0.01 0.83 ± 0.05 0.80 ± 0.03 0.69 ± 0.03 0.78 ± 0.03 0.73 ± 0.03

Table 2. The results on the test set, after the specified number of epochs. Both the
mean and standard deviation of the cross validation are displayed. We denote the
recall, precision, and F1-score for the three genres, together with the mean of the
recall, precision, and F1-score of the three genres.

5.3 Discussion

Our baseline model (MNB) does not perform well, the genre thriller has a very
low recall and therefore a low F1-score. The other two genres have however a very
high recall (higher than all other models). We expect that the poor results on the
genre thriller are caused by a combination of how the threshold is determined
and the poor assumptions of the MNB model. We also experimented with n-
grams, with n ranging from 1 to 3, but the performance decreased for n higher
than 1.

Comparison of Machine Learning Techniques 13

The MLP-BoW model outperformed all other (more complex) models. This
was in contrast with our expectations, because the model is relatively simple
compared to the other machine learning models. Not only is the F1-score high,
the training time was also relatively short. The fact that this model achieves the
highest F1-score could suggest that there exist some combinations of important
’indicator words’ that are strong predictors for certain genres. We experimented
with adding more layers to the network, but this had no significant positive effect
on the results. Removing one layer had a negative effect on the accuracy.

Considering that the MLP-Histogram model only takes into account the rel-
ative frequency of word embedding feature values the model performs remark-
ably well. This is another illustration of the ’universal’ features of word em-
beddings. Similar to the MLP-BoW model, the training time is relatively short.
Furthermore, this newly proposed model performed best with using the word-
embeddings.

The BN-LSTM model performs rather poorly. We expect that this is due to
the length of the documents. A careful observation of Figure 2 shows that the
genre romance has relatively long subtitles. This could explain the poor results
on this genre for models that are susceptible for document length. Although the
BN-LSTM network does suffer less from vanishing gradients compared to other
RNN networks, the network still has problems with documents of substantial
length. Another explanation for the inadequacy of the BN-LSTM model could
be that for this task word order is irrelevant and only the occurrence of certain
words is important. Preliminary experiments have shown that stacking multi-
ple BN-LSTM layers on top of each other had no effect on the final accuracy.
The accuracy increases drastically with the use of batch normalization. Adding
batch normalization also causes faster, more stable convergence. Furthermore,
the model often diverged without the use of gradient clipping.

Contrary to the MNB model, we saw that for the C-CNN model the use of
n-grams (by means of the filter widths) did increase the performance. Although
the similar model introduced in [6] achieves state-of-the-art results on various
tasks with a similar model, we find only moderate results on our task. One
main difference is that the documents in the datasets used in [6] are significantly
shorter compared to our dataset, making them less susceptible for outliers that
can affect the max-over-time pooling.

By combining a CNN model with a BN-LSTM model (into the CNN-BN-
LSTM model) we see a performance improvement compared to a separate C-
CNN or BN-LSTM model. By combining the two methods we get the powerful
feature extractor of the CNN model, and the capability of detecting long term
dependencies of the LSTM model. The downside of this method is that even more
hyperparameters have to be tuned. Exploratory research indicated that adding
a CNN layer after the BN-LSTM or CNN-BN-LSTM model did not improve the
accuracy.

14 Mathijs Pieters and Marco Wiering

6 Conclusion and Future Work

In this paper we described various techniques that can be used for multi-label
classification of movie genres based on subtitles. First, we established a base-
line using a multinomial naive Bayes (MNB) classifier combined with several
heuristics that ”tackle the poor assumptions of MNB” [17]. We trained word
embeddings on an unsupervised task, and showed that these embeddings con-
tain indicative features for genre classification. We developed a novel architecture
that combines a histogram of the word embeddings with an MLP. Despite the
simple nature of this model it outperforms several more complex models. Both
the C-CNN network and the BN-LSTM perform poorly on their own. However,
by combining both techniques we observe a drastic increase in performance. The
model that performs best is the MLP-BoW model, a surprising result given that
many papers consider this network to be a baseline method.

We observed that simple models sometimes outperform more complex, state-
of-the-art networks. The best network thus completely depends on the prob-
lem at hand. Therefore we would like to stress that exploring simpler text-
classification methods is of great importance when a new dataset is studied.
This directly relates to the principle of Occam’s razor, stating that of all possi-
ble hypotheses, the one with the fewest assumptions should be used. When we
decide to use a specific technique, we make certain assumptions about the data.
A simple technique is less prone to overfit the data compared to a more complex
technique, because it makes less assumptions about the data. With more as-
sumptions, it is easier to choose parameters such that they only fit the observed
data, and do not generalise well.

In follow-up work we would like to consider non-static word embeddings. In
[6] it is shown that for certain tasks the performance improves when either non-
static word embeddings, or a combination of both static and non-static word
embeddings are used. Moreover, we would like to explore the use of random
word embeddings and word embeddings trained by others, e.g. [13]. The final
F1-scores could be improved by using more advanced threshold techniques, and
in future research the number of genres should be extended (up to 27). Finally,
experiments on more datasets can be conducted, e.g. the Movie Review Senti-
ment dataset [10] and the Stanford Sentiment Treebank [18].

References

1. James Clark, Irena Koprinska, and Josiah Poon. A neural network based ap-
proach to automated e-mail classification. In Web Intelligence, 2003. Proceedings.
IEEE/WIC International Conference on, pages 702–705, 2003.

2. Tim Cooijmans, Nicolas Ballas, César Laurent, and Aaron C. Courville. Recurrent
batch normalization. CoRR, abs/1603.09025, 2016.

3. Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954.

4. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

Comparison of Machine Learning Techniques 15

5. Rie Johnson and Tong Zhang. Effective use of word order for text categorization
with convolutional neural networks. arXiv preprint arXiv:1412.1058, 2014.

6. Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

7. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

8. David D Lewis. Naive (bayes) at forty: The independence assumption in informa-
tion retrieval. In European conference on machine learning, pages 4–15. Springer,
1998.

9. Pierre Lison and Jörg Tiedemann. Opensubtitles2016: Extracting large parallel
corpora from movie and tv subtitles. In Proceedings of the 10th International
Conference on Language Resources and Evaluation, 2016.

10. Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 142–150, 2011.

11. Andrew McCallum and Kamal Nigam. A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on learning for text categorization,
volume 752, pages 41–48, 1998.

12. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

13. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pages 3111–3119, 2013.

14. Tomas Mikolov, Scott Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities
in continuous space word representations. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2013.

15. Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, 2014.

16. Alec Radford, Rafal Józefowicz, and Ilya Sutskever. Learning to generate reviews
and discovering sentiment. CoRR, abs/1704.01444, 2017.

17. Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and David R. Karger. Tackling
the poor assumptions of naive bayes text classifiers. In Proceedings of the Twentieth
International Conference on Machine Learning, pages 616–623, 2003.

18. Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. Recursive deep models for semantic compo-
sitionality over a sentiment treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing, pages 1631–1642, 2013.

19. Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

20. Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701, 2012.

21. Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-
works for text classification. In Advances in neural information processing systems,
pages 649–657, 2015.

