
CMAC Models Learn to Play SoccerProceedings of the 8th International Conference on Arti�cial Neural Networks(ICANN'98), L. Niklasson and M. Bod�en and T. Ziemkei (eds.), Springer-Verlag,London, pages 443-448. 1998.Marco Wiering, Rafa l Sa lustowicz, J�urgen SchmidhuberIDSIALugano, SwitzerlandAbstractTraditional reinforcement learning methods require a function approx-imator (FA) for learning value functions in large or continuous statespaces. We describe a novel combination of CMAC-based FAs and adap-tive world models (WMs) estimating transition probabilities and rewards.Simple variants are tested in multiagent soccer environments where theyoutperform the evolutionary method PIPE which performed best in pre-vious comparisons.1 IntroductionMost existing reinforcement learning (RL) methods are based on function ap-proximators (FAs) learning value functions (VFs) which map state/action pairsto the expected outcome (reinforcement) of a trial [8, 10]. In non-Markovian,multiagent environments, learning value functions is hard. This makes evo-lutionary methods a promising alternative. For instance, in previous workon learning soccer strategies [7] we found that Probabilistic Incremental Pro-gram Evolution (PIPE) [5], a novel evolutionary approach to searching programspace, outperforms Q(�) [4, 8, 10] combined with FAs based on linear neuralnetworks or neural gas [6]. PIPE was able to isolate important features andcombine them in programs with low algorithmic complexity. This motivatesour present approach: VF-based RL should also pro�t from (a) feature selec-tion, (b) existence of low-complexity solutions, and (c) incremental search formore complex solutions where simple ones do not work.World models. Direct RL methods [8, 10] do not require a world model(WM). They use temporal di�erences (TD) [8] for training FAs to learn a VFfrom simulated trajectories through state/action space. Indirect RL, however,learns a WM [3] estimating the reward function and the transition probabilitiesbetween states, then uses dynamic programming [2, 3] for computing the VF.This can signi�cantly speed up learning in discrete state/action spaces [3].For continuous spaces, WMs are most e�ectively combined with local FAsconsisting of many small, localized parts. While learning accurate WMs inhigh-dimensional, continuous, partially observable environments is hard, it ispossible to learn useful but incomplete models instead.1



CMAC models. We will present a novel combination of CMACs withworld models. CMACs [1] use �lters mapping inputs to a set of activatedcells. Each cell has a Q-value for each action. The Q-values of currently activecells are averaged to compute overall Q-values required for action selection.Previous work combined CMACs with Q-learning [10] and Q(�) methods [9].We combine CMACs with WMs and learn an independent model for each �lter.These WMs are then used by a version of prioritized sweeping (PS) [3] forcomputing the Q-functions. Later we will see that CMAC models can quicklylearn to play a good soccer game and to surpass PIPE's performance.Outline. Section 2 describes our soccer environment. Section 3 presentsour CMAC-based FAs and describes how they are combined with model-basedlearning. Section 4 describes experimental results. Section 5 concludes.2 Soccer SimulationsOur discrete-time simulations (see [7] for details) involve two teams. Thereare 1 or 3 players per team. We use a two-dimensional continuous Cartesiancoordinate system for the �eld. As in indoor soccer the �eld is surrounded byimpassable walls except for the two goals centered in the east and west walls.There are �xed initial positions for all players and the ball (see Figure 1).
Figure 1: Players and ball (center) in initial positions. Players of a 1 playerteam are those furthest in the back.Players/Ball. Players are represented by solid circles. A player whosecircle intersects the ball can pick it up and own it. The ball can be moved orshot by the player who owns it. When shot, the speed of the ball decreases overtime due to friction. Players collide when their circles intersect. This causesboth players to bounce back to their positions at the previous time step. If oneof them has owned the ball then the ball will change owners. Player actionsare: fgo forward, turn to ball, turn to goal, shootg.Action framework. A game lasts from time t = 0 to time tend = 5000.The temporal order in which players execute their moves during each time stepis chosen randomly. We use policy-sharing for selecting actions: all playersshare the same Q-functions or PIPE-programs. Once all players have selecteda move, the ball moves according to its speed and direction. If a team scoresor t = tend then all players and ball will be reset to their initial positions.



Input. At any given time a player's input vector ~x consists of 16 (1 player)or 24 (3 players) features: (1) Three boolean inputs that tell whether theplayer/a team member/opponent team has the ball. (2) Polar coordinates(distance, angle) of both goals and the ball with respect to the player's orien-tation and position. (3) Polar coordinates of both goals relative to the ball'sorientation and position. (4) Ball speed. (5) Polar coordinates of all otherplayers w.r.t. the player ordered by (a) teams and (b) distances to the player.3 CMAC ModelsCMACs [1] use multiple �lters to extract multiple characteristic input features.Each �lter consists of several cells with associated Q-values. Applying the�lters yields a set of activated cells (a discrete distributed representation of theinput). Their Q-values are averaged to compute the overall Q-value.General remarks on �lter design. In principle the �lters may yieldarbitrary divisions of the state-space, such as hypercubes. To avoid the curseof dimensionality one may use hashing to group a random set of inputs into anequivalence class, or use hyperslices omitting certain dimensions in particular�lters [9]. Although hashing techniques may help to overcome storage problems,we do not believe that the random grouping is natural. We prefer hypersliceswhich group inputs by using subsets of all input-dimensions.Soccer �lter design. Since our soccer simulation involves a fair numberof input dimensions (16 or 24), we use hyperslices to reduce the number ofadjustable parameters. Our �lters divide the state-space by splitting it alongsingle input dimensions into a �xed number of cells. Multiple �lters are appliedto the same input to allow for smoother generalization. For certain tasks withlow-complexity solutions, this architecture will generalize well and training timewill be short.Partitioning the input space. Inputs representing Boolean values, dis-tances (or speeds), and angles, are split in various ways: (1) Filters associatedwith Boolean inputs just return the input. (2) Distance or ball-speed inputs arerescaled to values between 0 and 1. Then the �lters partition the input into ncequal quanta. (3) Angle inputs are partitioned in nc equal quanta in a circular(and thus natural) way | the angles 359� and 0� are grouped to the same cell.Selecting an action. Applying all �lters on a player's current input vectorat time t returns the active cells ff t1; : : : ; f tzg, where z is the number of �lters.The Q-value of selecting action a given input ~x is calculated byQ(~x; a) := zXk=1Qk(f tk; a)=z;where Qk is the Q-function of �lter k. After computing the Q-values of allactions we select the action with maximal Q-value.Learning with WMs. We introduce a novel combination of model-basedRL and CMACs. Learning accurate models for complex tasks is hard. Insteadwe use a set of independent models to estimate the dynamics of the activated



cell of a speci�c �lter. To estimate the transition model for �lter k, we count thetransitions from activated cell f tk to activated cell f t+1k at the next time-step,given the selected action. These counters are used to estimate the transitionprobabilities Pk(cj jci; a) = P (f t+1k = cj jf tk = ci; a), where cj and ci are cells,and a is an action. For each transition we also compute the average rewardRk(ci; a; cj) by summing the immediate reinforcements, given that we make astep from active cell ci to cell cj by selecting action a.Prioritized sweeping (PS). We could immediately apply dynamic pro-gramming (DP) to the estimated models. For online learning DP is computa-tionally very expensive, however, and some sort of e�cient update-step man-agement should be performed instead. This is done by a method similar toprioritized sweeping (PS) [3] which updates the Q-value of the �lter/cell/actiontriple with the largest update size before updating others. Each update is madevia the usual Bellman backup [2]:Qf (ci; a) :=Xj Pf (cj jci; a)(
Vf (cj) + Rf (ci; a; cj))where Vf (ci) := maxaQf (ci; a) and 
 is the discount factor. PS uses a pa-rameter to set the maximum number of updates per time step and a cuto�parameter � so that small updates are not made. After each player action weupdate all �lter models and use PS to compute the new Q-functions. Note thatPS can use di�erent numbers of updates for di�erent �lters.Non-pessimistic value functions. There is no straightforward way ofcombining experiences of di�erent players in policy-sharing multiagent teams.For instance, an agent may expect certain actions to be bad due to previousunlucky experiences of another agent. To overcome this problem we computenon-pessimistic value functions: we decrease the probability of the worst tran-sition from each cell/action to the lowest bound of its 95% con�dence intervaland renormalize the other probabilities. Then we use PS with the new proba-bilities.Multiple restarts. The method sometimes may get stuck with continuallylosing policies (also observed with our previous simulations based on linearnetworks and neural gas). We could not overcome this problem by addingstandard exploration techniques. Instead we reset Q-function and WM oncethe team has not scored for 5 games but the opponent scored during the mostrecent game.4 ExperimentsWe compare the CMAC model to PIPE [5], a novel evolutionary program searchmethod which outperformed Q(�)-learning combined with various FAs in pre-vious comparisons [6, 7].Task. We train and test the learners against handmade programs of dif-ferent strengths. The programs are mixtures of a program which randomlyexecutes actions and a program which moves players towards the ball as long



as they do not own it, and shoots it straight at the opponent's goal otherwise.Our �ve mixture programs, called Opponent(Pr), use the random program withprobability Pr 2 f0; 14 ; 12 ; 34 ; 1g.CMAC model set-up. We play a total of 200 games. Every 10 gameswe test current performance by playing 20 test games against the opponentand summing the score results. The reward is +1 if the team scores and -1 ifthe opponent scores. The discount factor is set to 0.98. After a coarse searchthrough parameter space we chose the following parameters. We use 2 �ltersper input (total of 32 or 48 �lters) and set the number of cells nc := 20, Q-values are initially zero. PS uses � := 0:01 and a maximum of 1000 updates pertime step.PIPE set-up. For PIPE we play a total of 1000 games. Every 50 games wetest performance of the best program found during the most recent generation.Parameters for all PIPE runs are the same as in previous experiments [7].Results. We plot number of points (2 for scoring more goals than theopponent during the 20 testgames) against number of games in Figure 2.
0

0.5

1

1.5

2

0 50 100 150 200

ga
m

e 
po

in
ts

#games

CMAC Model 1-Player

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00) 0

0.5

1

1.5

2

0 50 100 150 200

ga
m

e 
po

in
ts

#games

CMAC Model 3-Players

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

0

0.5

1

1.5

2

0 200 400 600 800 1000

ga
m

e 
po

in
ts

#games

PIPE 1-Player

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)

0

0.5

1

1.5

2

0 200 400 600 800 1000

ga
m

e 
po

in
ts

#games

PIPE 3-Players

Opponent (1.00)
Opponent (0.75)
Opponent (0.50)
Opponent (0.25)
Opponent (0.00)Figure 2: Number of points (means of 20 simulations) during test phases forteam sizes 1 and 3. Note the varying x-axis scalings.1-Player case. We observe that our CMAC model wins against almost alltraining programs. Only against the best 1-player team (Pr = 0) it learns toplay ties (it always �nds a blocking strategy leading to a 0-0 result). PIPE isable to �nd programs beating the random and 75% random teams, but oftendoes not �nd programs that win or play ties against the better teams.3-Player case. CMAC model wins against most training opponents, butloses against the best 3-player team (with Pr = 0:25). Note that this strategymixture works better than always using the deterministic program (Pr = 0)



against which CMAC models play ties or even win. PIPE performs worse | itonly wins against the worst opponents.Discussion. Despite treating all features independently the CMAC modelis able to learn good, reactive soccer strategies preferring actions that activatethose cells of a �lter which promise highest average reward. The use of a modelstabilizes good strategies: given su�cient experiences, the policy will hardlychange anymore.5 ConclusionA novel combination of CMACs and world models allows for �nding successfulsoccer strategies with low complexity, and tends to outperform PIPE.In some environments certain more complex �lters grouping multiple context-dependent inputs may be necessary. Instead of handcrafting CMAC �lters forthe value function, methods learning them from reinforcement will be an inter-esting topic for future research.Acknowledgments. This work was supported in part by SNF grant 2100-49'144.96 \Long Short-Term Memory".References[1] J. S. Albus. A new approach to manipulator control: The cerebellarmodel articulation controller (CMAC). Dynamic Systems, Measurementand Control, 97:220{227, 1975.[2] R. Bellman. Adaptive Control Processes. Princeton University Press, 1961.[3] A. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learningwith less data and less time. Machine Learning, 13:103{130, 1993.[4] J. Peng and R. J. Williams. Incremental multi-step Q-learning. MachineLearning, 22:283{290, 1996.[5] R. P. Sa lustowicz and J. Schmidhuber. Probabilistic incremental programevolution. Evolutionary Computation, 5(2):123{141, 1997.[6] R. P. Sa lustowicz, M. A. Wiering, and J. Schmidhuber. Evolving soccerstrategies. In Proceedings of the Fourth International Conference on Neu-ral Information Processing (ICONIP'97), pages 502{506. Springer-VerlagSingapore, 1997.[7] R. P. Sa lustowicz, M. A. Wiering, and J. Schmidhuber. Learning teamstrategies: Soccer case studies. Machine Learning, 1998. To appear.[8] R. S. Sutton. Learning to predict by the methods of temporal di�erences.Machine Learning, 3:9{44, 1988.



[9] R. S. Sutton. Generalization in reinforcement learning: Successful exam-ples using sparse coarse coding. In D. S. Touretzky, M. C. Mozer, and M. E.Hasselmo, editors, Advances in Neural Information Processing Systems 8,pages 1038{1045. MIT Press, Cambridge MA, 1996.[10] C. Watkins. Learning from Delayed Rewards. PhD thesis, King's College,Cambridge, 1989.


