CMAC Models Learn to Play Soccer

Proceedings of the 8th International Conference on Artificial Neural Networks
(ICANN’98), L. Niklasson and M. Bodén and T. Ziemkei (eds.), Springer-Verlag,
London, pages 443-448. 1998.

Marco Wiering, Rafal Salustowicz, Jiirgen Schmidhuber
IDSIA
Lugano, Switzerland

Abstract

Traditional reinforcement learning methods require a function approx-
imator (FA) for learning value functions in large or continuous state
spaces. We describe a novel combination of CMAC-based FAs and adap-
tive world models (WMs) estimating transition probabilities and rewards.
Simple variants are tested in multiagent soccer environments where they
outperform the evolutionary method PIPE which performed best in pre-
vious comparisons.

1 Introduction

Most existing reinforcement learning (RL) methods are based on function ap-
proximators (FAs) learning value functions (VFs) which map state/action pairs
to the expected outcome (reinforcement) of a trial [8, 10]. In non-Markovian,
multiagent environments, learning value functions is hard. This makes evo-
lutionary methods a promising alternative. For instance, in previous work
on learning soccer strategies [7] we found that Probabilistic Incremental Pro-
gram Evolution (PIPE) [5], a novel evolutionary approach to searching program
space, outperforms Q()\) [4, 8, 10] combined with FAs based on linear neural
networks or neural gas [6]. PIPE was able to isolate important features and
combine them in programs with low algorithmic complexity. This motivates
our present approach: VF-based RL should also profit from (a) feature selec-
tion, (b) existence of low-complexity solutions, and (c) incremental search for
more complex solutions where simple ones do not work.

World models. Direct RL methods [8, 10] do not require a world model
(WM). They use temporal differences (TD) [8] for training FAs to learn a VF
from simulated trajectories through state/action space. Indirect RL, however,
learns a WM [3] estimating the reward function and the transition probabilities
between states, then uses dynamic programming [2, 3] for computing the VF.
This can significantly speed up learning in discrete state/action spaces [3].

For continuous spaces, WMs are most effectively combined with local FAs
consisting of many small, localized parts. While learning accurate WMs in
high-dimensional, continuous, partially observable environments is hard, it is
possible to learn useful but incomplete models instead.

CMAC models. We will present a novel combination of CMACs with
world models. CMACs [1] use filters mapping inputs to a set of activated
cells. Each cell has a Q-value for each action. The Q-values of currently active
cells are averaged to compute overall Q-values required for action selection.
Previous work combined CMACs with Q-learning [10] and Q(\) methods [9].
We combine CMACs with WMs and learn an independent model for each filter.
These WMs are then used by a version of prioritized sweeping (PS) [3] for
computing the Q-functions. Later we will see that CMAC models can quickly
learn to play a good soccer game and to surpass PIPE’s performance.

Outline. Section 2 describes our soccer environment. Section 3 presents
our CMAC-based FAs and describes how they are combined with model-based
learning. Section 4 describes experimental results. Section 5 concludes.

2 Soccer Simulations

Our discrete-time simulations (see [7] for details) involve two teams. There
are 1 or 3 players per team. We use a two-dimensional continuous Cartesian
coordinate system for the field. As in indoor soccer the field is surrounded by
impassable walls except for the two goals centered in the east and west walls.
There are fixed initial positions for all players and the ball (see Figure 1).

1D D al

Figure 1: Players and ball (center) in initial positions. Players of a 1 player
team are those furthest in the back.

Players/Ball. Players are represented by solid circles. A player whose
circle intersects the ball can pick it up and own it. The ball can be moved or
shot by the player who owns it. When shot, the speed of the ball decreases over
time due to friction. Players collide when their circles intersect. This causes
both players to bounce back to their positions at the previous time step. If one
of them has owned the ball then the ball will change owners. Player actions
are: {go_forward, turn_to_ball, turn_to_goal, shoot}.

Action framework. A game lasts from time ¢ = 0 to time t.,q = 5000.
The temporal order in which players execute their moves during each time step
is chosen randomly. We use policy-sharing for selecting actions: all players
share the same Q-functions or PIPE-programs. Once all players have selected
a move, the ball moves according to its speed and direction. If a team scores
or t = tenq then all players and ball will be reset to their initial positions.

Input. At any given time a player’s input vector Z consists of 16 (1 player)
or 24 (3 players) features: (1) Three boolean inputs that tell whether the
player/a team member/opponent team has the ball. (2) Polar coordinates
(distance, angle) of both goals and the ball with respect to the player’s orien-
tation and position. (3) Polar coordinates of both goals relative to the ball’s
orientation and position. (4) Ball speed. (5) Polar coordinates of all other
players w.r.t. the player ordered by (a) teams and (b) distances to the player.

3 CMAC Models

CMAC:s [1] use multiple filters to extract multiple characteristic input features.
Each filter consists of several cells with associated Q-values. Applying the
filters yields a set of activated cells (a discrete distributed representation of the
input). Their Q-values are averaged to compute the overall Q-value.

General remarks on filter design. In principle the filters may yield
arbitrary divisions of the state-space, such as hypercubes. To avoid the curse
of dimensionality one may use hashing to group a random set of inputs into an
equivalence class, or use hyperslices omitting certain dimensions in particular
filters [9]. Although hashing techniques may help to overcome storage problems,
we do not believe that the random grouping is natural. We prefer hyperslices
which group inputs by using subsets of all input-dimensions.

Soccer filter design. Since our soccer simulation involves a fair number
of input dimensions (16 or 24), we use hyperslices to reduce the number of
adjustable parameters. Our filters divide the state-space by splitting it along
single input dimensions into a fixed number of cells. Multiple filters are applied
to the same input to allow for smoother generalization. For certain tasks with
low-complexity solutions, this architecture will generalize well and training time
will be short.

Partitioning the input space. Inputs representing Boolean values, dis-
tances (or speeds), and angles, are split in various ways: (1) Filters associated
with Boolean inputs just return the input. (2) Distance or ball-speed inputs are
rescaled to values between 0 and 1. Then the filters partition the input into n.
equal quanta. (3) Angle inputs are partitioned in n. equal quanta in a circular
(and thus natural) way — the angles 359° and 0° are grouped to the same cell.

Selecting an action. Applying all filters on a player’s current input vector
at time ¢ returns the active cells {f{,..., f!}, where z is the number of filters.
The Q-value of selecting action a given input Z is calculated by

Qa) = 3 Qu(fha)/z,
k=1

where @, is the Q-function of filter k. After computing the Q-values of all
actions we select the action with maximal Q-value.

Learning with WMs. We introduce a novel combination of model-based
RL and CMACs. Learning accurate models for complex tasks is hard. Instead
we use a set of independent models to estimate the dynamics of the activated

cell of a specific filter. To estimate the transition model for filter k, we count the
transitions from activated cell ff to activated cell f,ﬁ“ at the next time-step,
given the selected action. These counters are used to estimate the transition
probabilities Py (c;lei,a) = P(fiT' = ¢j|ff = ci,a), where ¢; and ¢; are cells,
and a is an action. For each transition we also compute the average reward
Ry (ci,a,cj) by summing the immediate reinforcements, given that we make a
step from active cell ¢; to cell ¢; by selecting action a.

Prioritized sweeping (PS). We could immediately apply dynamic pro-
gramming (DP) to the estimated models. For online learning DP is computa-
tionally very expensive, however, and some sort of efficient update-step man-
agement should be performed instead. This is done by a method similar to
prioritized sweeping (PS) [3] which updates the Q-value of the filter/cell /action
triple with the largest update size before updating others. Each update is made
via the usual Bellman backup [2]:

Qy(ciya) = Z Py(cjlei, a)(vVi(ej) + Ry (ciya,¢5)

where Vi (¢;) := max, Qf(ci,a) and + is the discount factor. PS uses a pa-
rameter to set the maximum number of updates per time step and a cutoff
parameter € so that small updates are not made. After each player action we
update all filter models and use PS to compute the new Q-functions. Note that
PS can use different numbers of updates for different filters.

Non-pessimistic value functions. There is no straightforward way of
combining experiences of different players in policy-sharing multiagent teams.
For instance, an agent may expect certain actions to be bad due to previous
unlucky experiences of another agent. To overcome this problem we compute
non-pessimistic value functions: we decrease the probability of the worst tran-
sition from each cell/action to the lowest bound of its 95% confidence interval
and renormalize the other probabilities. Then we use PS with the new proba-
bilities.

Multiple restarts. The method sometimes may get stuck with continually
losing policies (also observed with our previous simulations based on linear
networks and neural gas). We could not overcome this problem by adding
standard exploration techniques. Instead we reset Q-function and WM once
the team has not scored for 5 games but the opponent scored during the most
recent game.

4 Experiments

We compare the CMAC model to PIPE [5], a novel evolutionary program search
method which outperformed Q(\)-learning combined with various FAs in pre-
vious comparisons [6, 7].

Task. We train and test the learners against handmade programs of dif-
ferent strengths. The programs are mixtures of a program which randomly
executes actions and a program which moves players towards the ball as long

as they do not own it, and shoots it straight at the opponent’s goal otherwise.
Our five mixture programs, called Opponent(P,), use the random program with
probability P, € {0,%,%,3 1}.

CMAC model set-up. We play a total of 200 games. Every 10 games
we test current performance by playing 20 test games against the opponent
and summing the score results. The reward is +1 if the team scores and -1 if
the opponent scores. The discount factor is set to 0.98. After a coarse search
through parameter space we chose the following parameters. We use 2 filters
per input (total of 32 or 48 filters) and set the number of cells n. := 20, Q-
values are initially zero. PS uses € := 0.01 and a maximum of 1000 updates per
time step.

PIPE set-up. For PIPE we play a total of 1000 games. Every 50 games we
test performance of the best program found during the most recent generation.
Parameters for all PIPE runs are the same as in previous experiments [7].

Results. We plot number of points (2 for scoring more goals than the
opponent during the 20 testgames) against number of games in Figure 2.

CMAC Model 1-Player CMAC Model 3-Players
T

2} E 1% i
£ £
2 2
2 el oy i
§, 777777 Opponent (1.00) ——— %
Opponent (0.75) I
i Opponent (0.50) b 05 I Opponent (0.25) . E
& Opponent (0.25) H— Opponent (0.00) —~=~=
0 L Opponent (0.0Q) ----- . 0) S .)
0 50 100 150 200 0 50 100 150 200
#games #games
PIPE 1-Player PIPE 3-Players
T T T T
| ral |
] . . g 9 15| |
< e B | — P
2 /" Opponent (1.00) ——— s | - T
o /" Opponent (0.75) - 4 e 1 Gpponent (1.00
8 Opponent (0.50) - g Opponent (0.75)
= " Opponent (0.25). S Opponent (0.50) -
" Opponent(0.00) == 1 o5F Opponent (0.25) ,
N B o Opponent (0.00) -~~~
600 800 1000 0 200 400 600 800 1000
#games #games

Figure 2: Number of points (means of 20 simulations) during test phases for
team sizes 1 and 3. Note the varying x-axis scalings.

1-Player case. We observe that our CMAC model wins against almost all
training programs. Only against the best 1-player team (P, = 0) it learns to
play ties (it always finds a blocking strategy leading to a 0-0 result). PIPE is
able to find programs beating the random and 75% random teams, but often
does not find programs that win or play ties against the better teams.

3-Player case. CMAC model wins against most training opponents, but
loses against the best 3-player team (with P, = 0.25). Note that this strategy
mixture works better than always using the deterministic program (P, = 0)

against which CMAC models play ties or even win. PIPE performs worse — it
only wins against the worst opponents.

Discussion. Despite treating all features independently the CMAC model
is able to learn good, reactive soccer strategies preferring actions that activate
those cells of a filter which promise highest average reward. The use of a model
stabilizes good strategies: given sufficient experiences, the policy will hardly
change anymore.

5 Conclusion

A novel combination of CMACs and world models allows for finding successful
soccer strategies with low complexity, and tends to outperform PIPE.

In some environments certain more complex filters grouping multiple context-
dependent inputs may be necessary. Instead of handcrafting CMAC filters for
the value function, methods learning them from reinforcement will be an inter-
esting topic for future research.

Acknowledgments. This work was supported in part by SNF grant 2100-
49'144.96 “Long Short-Term Memory”.

References

[1] J. S. Albus. A new approach to manipulator control: The cerebellar
model articulation controller (CMAC). Dynamic Systems, Measurement
and Control, 97:220-227, 1975.

[2] R. Bellman. Adaptive Control Processes. Princeton University Press, 1961.

[3] A.Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning
with less data and less time. Machine Learning, 13:103-130, 1993.

[4] J. Peng and R. J. Williams. Incremental multi-step Q-learning. Machine
Learning, 22:283-290, 1996.

[5] R. P. Satustowicz and J. Schmidhuber. Probabilistic incremental program
evolution. Evolutionary Computation, 5(2):123-141, 1997.

[6] R. P. Satustowicz, M. A. Wiering, and J. Schmidhuber. Evolving soccer
strategies. In Proceedings of the Fourth International Conference on Neu-
ral Information Processing (ICONIP’97), pages 502-506. Springer-Verlag
Singapore, 1997.

[7] R. P. Salustowicz, M. A. Wiering, and J. Schmidhuber. Learning team
strategies: Soccer case studies. Machine Learning, 1998. To appear.

[8] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9—44, 1988.

[9] R. S. Sutton. Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding. In D. S. Touretzky, M. C. Mozer, and M. E.
Hasselmo, editors, Advances in Neural Information Processing Systems 8,
pages 1038-1045. MIT Press, Cambridge MA, 1996.

[10] C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, 1989.

