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Abstract

We introduce causal neural networks, a generaliza-
tion of the usual feedforward neural networks which
allows input features and target outputs to be rep-
resented as input or output units. For inferring the
values of target outputs which are represented as in-
put units, we developed a forward-backward propa-
gation algorithm which uses gradient descent to min-
imize the error of the predicted output features. To
deal with the large number of possible structures and
feature selection, we use a genetic algorithm. Exper-
iments on a regression problem and 5 classification
problems show that the causal neural networks can
outperform the usual feedforward architectures for
particular problems.

1 Introduction

Bayesian belief networks (Pearl, 1988) are of large
interest due to their graphical structure modelling
independencies between variables, and the sound
Bayesian inference algorithm. Given a set of in-
stantiated values of particular observed features,
Bayesian belief networks can be used for inferring
the probability distribution of unobserved features.
Different neural network algorithms such as Boltz-
mann machines (Aarts and Korst, 1989) and Sig-
moid Belief networks (Neal, 1992) are quite similar
to Bayesian belief networks, but exact inference is
infeasible in all of these algorithms in case the mod-
els become more complex.

In this paper we introduce a much simpler class
of neural network architectures which we call causal
neural networks, since they also allow for represent-
ing causal relations between variables. The struc-
ture of the causal neural network allows us to repre-
sent target output values in the input layer and we
can also represent input feature values in the output
layer of a feedforward neural network. The latter
has already been studied in (Caruana and de Sa,
1997) and was shown to be effective for particular
problems. The causal neural network is a further
generalization of the well-known structure of feedfor-
ward neural networks. For inferring the value of an
output value which is represented as an input unit,

we can use backward propagation of error signals of
the predicted input feature values represented in the
output layer. This backward propagation algorithm
is a simple variant of the well known backpropaga-
tion algorithm (Rumelhart et al., 1986). The new re-
sulting forward-backward propagation algorithm is
used recursively for inference to minimize the error
of predicted feature values.

Similarly to Sigmoid Belief networks, causal neu-
ral networks try to find those values of target out-
puts which are useful for generating the desired in-
put feature values. Although there is no direct
causal relationship from input feature values repre-
sented by output units to target outputs represented
as input units, minimizing the reconstruction error
causes the system to infer those target outputs which
cause the generation of the given input feature val-
ues. The causal neural networks can therefore be
used to put causes in the input units and the effects
of these causes in the output units. This can simplify
the learning problem drastically and lead to better
generalization.

The learning algorithm for training the causal
neural networks is a simple extension of the normal
backpropagation algorithm and therefore learning is
quite fast. To deal with the large number of pos-
sible structures, we employ a genetic algorithm for
finding the best structures. In the following, we will
use the causal neural networks as a supervised learn-
ing algorithm which can deal with missing data and
causal relations in a principled way.

Outline of this paper. In section 2 we de-
scribe our causal neural networks with the forward-
backward algorithm for inference. In section 3 we
describe the genetic algorithm for evolving causal
neural network structures. In section 4 we describe
experimental results. Finally, section 5 concludes
this paper.

2 Causal neural networks

The learning task. We study supervised learning
on a dataset D consisting of L input vectors X* and
their target output vectors Y. The dataset may
consist of unknown input features which may make



the learning task more difficult. We assume that tar-
get outputs in the training data are always known,
but could be subject to noise.

In this section, we first describe the architecture,
and then the usual forward propagation and back-
propagation algorithms for training a causal neu-
ral network. To deal with unknown values, we add
an additional mean-input for all uninstantiated vari-
ables which is used to initialize the values of unin-
stantiated variables. Finally, we describe the recur-
rent forward-backward propagation algorithm for in-
ferring the desired output values and unknown input
features given the values of instantiated variables.

2.1 The architecture

The causal neural networks could have an arbitrary
(modular) structure, but in this paper we only con-
sider fully-connected feedforward neural networks
with a single hidden layer. The architecture con-
sist of one input layer with input units®: I, ..., I,
where |I| is the number of input units, one hidden
layer H with hidden units: Hy,..., H |, and one
output layer with output units: Oi,...,0|0|. The
network has weights: w;, for all input units 7; to hid-
den units Hp, and weights: wy, for all hidden Hj
to output units O,. Each hidden unit and output
unit has a bias by, or b, with a constant activation
of 1. The hidden units use Sigmoid activation func-
tions, whereas the output units use linear activation
functions. Finally, the input units and output units
have an additional mean-bias m; and m, (different
for every unit), which is used to deal with unknown
initial values for the uninstantiated variables.

We can represent input features and target out-
puts inside the input layer or in the output layer.
Input features could also not be used at all which
allows for feature elimination. The input features
which are represented in input (output) units form
the set F'I (FO), and the target outputs which are
represented in the input (output) units form the set
TI (TO). Figure 1 shows an example of a causal
neural network architecture. The figure also shows
the forward and backward propagation algorithms
used for inference.

The set FO is usually disjunct from the set FI,
since otherwise reconstruction of input feature val-
ues in F'O would be trivial and not useful for infer-
ring unknown values of target outputs. The input
feature values in F'O are useful, since the goal is to
reconstruct their values from the values of the inputs
units. In order to reconstruct these, causal explana-
tions of these values must be found in the (known
or unknown) input feature values and the unknown
target outputs of the set T'I. If the set F'I is empty,
the algorithm tries to infer the values of target out-
puts in 7T which minimize the reconstruction error.

LWhen we refer to a unit, we also mean its activation.

If FI is not empty, these feature input values serve
as a context for this reconstruction.
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Figure 1: A causal neural network consisting of one
hidden layer. Input features and target outputs can
be represented as input or output units.

Transformation of examples. Given an exam-
ple (X, Y?) we can represent the input features and
target outputs as either input or output units. De-
pending on the neural network structure which maps
input features and target outputs to input and out-
put units, we get a new training example (X7, Y.
To deal with unknown values for variables (e.g. miss-
ing data or the target outputs) which are represented
as input units, we use the values of their mean-bias
m; learned by the delta rule.

2.2 Forward propagation

Given the values of all input units, we can compute
the values for all output units with forward propa-
gation. The forward propagation algorithm for an
instance X looks as follows:

1) Clamp the known input feature values € FI
in the input layer: I; = X;, and clamp the mean-
bias for unknown feature values € F'I and for target
output values € T'T to the input layer: I; = m;.

2) Compute the values for all hidden units H, € H
as follows:

Hyp =o( Z winl; + bp)
i€EFIVUTT

Where o(z) is the Sigmoid function: o(z) =
1
Tre—s

3) Compute the values for all output units O, €
FOUTO:

Oo - thlo + bo
h

2.3 Backpropagation

For training the system we extend the backpropa-
gation algorithm (Rumelhart et al., 1986) in which
we also learn the mean-bias values using the delta
rule. If feature values in FO are unknown, we use



their mean-bias as a target output value. Although
leaving them completely out in the learning algo-
rithm would be another possibility, preliminary ex-
perimental results indicate that our approach can be
more efficient. The learning goal is to learn a map-
ping from the transformed instance X to Y. For this
we first use forward propagation to compute the out-
puts values O, and then we use backpropagation to
minimize the squared error measure:

0€FOUTO

To minimize this error function, we update the
weights and biases in the network using gradient de-
scent steps with learning rate a:

OF N
A o — — = Y, -0,)H
wp, aawho af 0,)H},

and

Z (Yo - Oo)who

0€EFOUTO

Awih = aHh(l — Hh)Ii

Update the mean-bias values for input and output
units using the delta rule:

A~

m; = mi+a(Xi—mi); and  m, =m,+a(Y,—m,)

2.4 Forward-backward propagation

For inferring the values of all unknown variables
given the instantiated values of known input features
we introduce the forward-backward propagation al-
gorithm:

1) Clamp the input units to their input feature
values. Unknown values for input features and tar-
get outputs € T will initially have their mean-bias
values as input value, after which their activations
will be continually updated.

2) Clamp the target output values in Y for all
input features € F'O to their value in the instance
X. For unknown values of input features we use
their mean-bias values as target output values in Y.

3) Use forward propagation to infer the output
values O; € FOUTO.

4) Use backward propagation to update the values
of uninstantiated input units by gradient descent on
the error over the predicted input features € FO:

Al =ay Y Hy(1 = Hp)win, Y (Yo = Op)who
h 0eFO

5) Repeat Step (3) until some termination condition
holds.

Here, a3 is the backward learning rate. We re-
cursively apply the forward-backward algorithm to
infer the values of all uninstantiated variables. The

algorithm may not always converge, however, since
values of uninstantiated variables in the input layer
may become infinite to best predict the output fea-
tures. In the experiments we iterate the algorithm
for 400 times which therefore makes inference much
slower than with the usual feedforward neural net-
works. The learning time is exactly the same, since
for learning we just make use of the backpropagation
algorithm.

3 Evolving causal neural networks

The additional freedom we gain with our causal neu-
ral networks can also give us problems, since how
can we decide whether we should represent an input
feature by an input or output unit, and should the
target output(s) be represented as input or output
unit(s)? For optimizing the structure of the causal
neural networks, we use genetic algorithms (Holland,
1975) and cross-validation. Thus, we divide the to-
tal dataset D in three data-sets: the learning dataset
D, the cross-validation (halting) dataset D., and
the test dataset D;. In our experiments, we use the
causal neural networks for regression and classifica-
tion purposes. For the regression task it is possible
that some of the target output values are represented
as input units and others as output units. Therefore
we can evolve mixed architectures. For the classifica-
tion task there is only one target output value (the
classification of an input pattern), and we use the
genetic algorithm only with populations of homoge-
neous structures in which the target output value is
always represented by an output unit or by an in-
put unit (we call the corresponding networks forward
networks (FN) or backward networks (BN)). Input
features can be used as input units, output units, or
not at all. When the target outputs are represented
as input units, the structure should contain at least
one input feature in the output layer. Furthermore,
we evolve the number of hidden units and the learn-
ing rate.

The genetic algorithm. We use crossover and
mutation operators for evolving the population of
structures. We use tournament selection with size 3
and the elitist strategy. Given a structure, we train
it n; times on the learning dataset D; and use cross-
validation after each ¢. iterations to look whether we
should stop the learning process. The best test-error
over these n; train-test trials is kept as fitness value
for the structure. After evolving G generations, we
compute the error of the best trained individual dur-
ing the last generation on the test dataset D, and
return this as a single experimental result.

4 Experiments

We performed a number of experiments to validate
the usefulness of our approach compared to the usual
feedforward neural networks structures trained with



backpropagation. We use two different experiments.
The first is a regression task in which there are 3
input features and 3 target outputs. In the second
experiment, we use 5 real-world datasets from the
UCI repository (Merz et al., 1997).

4.1 The regression problem

The input consists of three inputs X, X5, X3 which
are drawn from a random uniform distribution be-
tween 0 and 0.33. The target outputs are computed
as:

10.0
Y = -1
' Og(U(X1)+U(X2)+X3
s 10.0
Yo = (X7 + X5) % —log(U(Xl) s e _
10.0

Ys = (VX1 +/X2) x —log(

o(X1) +o(X2) + X5

Here o(x) denotes the Sigmoid function. This is
an artificial problem which we constructed to show
the advantage of using mixed architectures. We
can see that Y7 is a building block for Y5 and Y3,
which means that we could put Y; in the input
layer, together with X; and X, to infer Y3, Y3,
and also X3. We will refer to this architecture as
a mixed architecture. Another advantage of this
mixed architecture is that inferring X3 from Y7,
X, and X5 may be easier than inferring Y; from
X1, X, and X3, since the function is the same as:
X3 = 100(Y1) — 0(X1) — 0(X2). Thus, we do not
have to approximate the logarithmic function in this
way.

Simulation set-up. We compare the normal
feedforward network (FN) with no input features
in the output layer to the backward network (BN)
with all outputs in the input layer and no other in-
puts (which is of course not suited for this task),
and to the mixed architecture with Y; and X;, X5
in the input layer, and Y5,Y3 and X3 in the output
layer. We also evolve mixed architectures using the
genetic algorithm with a population size of 30, 50
generations, and n; = 1. For the non-evolving ar-
chitectures, the number of hidden units is 5. The
learning rate & = 0.2 and o = 0.1. We perform
100 simulations with different distributions for the
three datasets consisting of 100 examples, for which
10 networks of each type are trained and tested us-
ing cross-validation. The trained network with the
smallest cross-validation error is used for testing on
the test dataset D;. For this the root of the mean
squared error is computed. The results are shown in
table 1.

Experimental results. The figure shows that
the mixed architecture performs better than the
usual feedforward network. Thus, putting target
output values inside the input layer of a feedforward

Table 1: The Training results (RMSE) on the 3 in-
put 3 output function. Averages are computed over
100 simulations.

FN BN MIX-NN

GA MIX-NN

0.009540.0075 0.105+0.012 0.006840.0026

0.007140.0034

neural network can be useful. As expected, the com-
plete backward network is not suited for this task.

_ 1) The genetic algorithm is shown to be able to almost

always find the best possible architecture (the Mix-
NN architecture).

4.2 Experiments on real datasets

We also performed experiments on real datasets
from the UCI repository (Merz et al., 1997). We use
the following 5 datasets consisting of three medical
diagnosis datasets: Hepatitis (155 examples), Liver
disease (345), Pima Indians (768), and two other
datasets: Chess Kr-vs-kp (3196), and Vote (435).
We also make 10% of the input features in the four
datasets unknown to examine how unknown (miss-
ing) values affect the performance of the different
neural network architectures. For these binary clas-
sification problems, we threshold at 0 to compute the
output class. The results are given as percentage of
wrong classifications.

Simulation set-up. We run 10 simulations with
different random partitionings of the total dataset
into Dy, D., and Dy; all datasets have % of the num-
ber of examples of the total dataset. We use the ge-
netic algorithm on forward (GA-FN) and backward
networks (GA-BN) and let it run for 50 generations
using a population size of 30 and n; = 3. For the
normal forward and backward architectures which
are not evolved, we use 4 hidden units for which 500
networks are trained and tested each on the cross-
validation dataset. The best was used for testing on
the test dataset D;.

Table 2: The Training results on the 5 datasets with
and without adding missing (unknown) input feature
values.

Data Set Mis. FN BN GA-FN GA-BN
Hepatitis 0% 0.46+£0.11 0.37+0.04 0.38+0.07 0.37+0.05
Hepatitis 10% 0.51+0.09 0.36+£0.06 0.42+0.08 0.36+0.04
Liver Dis. 0% 0.43+0.04 0.39+0.05 0.44+0.05 0.40+0.04
Liver Dis. 10% 0.434+0.05 0.39+0.06 0.43+0.04 0.4140.07
Pima Ind. 0% 0.254+0.04 0.24+0.03 0.26+0.05 0.2440.03
Pima Ind. 10% 0.354+0.07 0.24+0.03 0.30+0.05 0.2440.03
Chess 0% 0.05+0.01 0.25+0.02 0.07+0.02 0.07+£0.01
Chess 10% 0.14+0.01 0.25+0.02 0.17+£0.02 0.14+0.01
Vote 0% 0.06+£0.02 0.11+£0.02 0.07+0.02 0.07+£0.01
Vote 10% 0.08+0.02 0.11+£0.02 0.07+0.01 0.08+0.02
Average 0.276 0.271 0.261 0.238




Experimental results. The results are given
in table 2. For the Hepatitis problem the neural
networks do not perform very well; this can be ex-
plained by the small number of learning examples
(there were only 52 examples used for training). Dif-
ferent learning rates or numbers of hidden units did
not improve the results. The forward networks per-
form better than the backward networks on Vote and
Chess, but it is interesting to see that the backward
networks perform better on the medical diagnosis
datasets in which the disease causes the observed
symptoms. The backward models also suffer much
less from missing data. Using the genetic algorithm
can help to find better structures, which is especially
clear for the backward networks which can combine
input features with target outputs in the input layer
to learn correct mappings for Vote and Chess.

5 Conclusion

We described a new neural network architecture
which is a generalization of normal feedforward neu-
ral networks. These causal neural networks can rep-
resent feature inputs and target outputs in the input
or output layer of a feedforward network. Although
we only used them for supervised learning tasks in
this paper, the causal neural networks can also be
used for pattern completion, and extended for unsu-
pervised learning purposes. The training algorithm
of the causal neural networks is very fast, since it
is a simple extension of the normal backpropagation
algorithm, although the question may arise whether
this is a valid thing to do if there are missing val-
ues. For inference in our causal networks we devel-
oped the forward-backward propagation algorithm
which should be executed recursively to infer all the
values of all uninstantiated variables. We want to
look closer at stopping conditions for this propaga-
tion and the effects of early stopping on the obtained
approximation.

Experiments on a regression task and 5 datasets
from the UCI repository show that the causal neural
networks with target outputs in the input layer can
outperform the usual feedforward neural networks
for medical datasets in which target outputs (dis-
eases) cause the input features (symptoms). Fur-
thermore, these backward networks are much less
sensitive to missing data. For other problems, ar-
chitectures found by a genetic algorithm which mix
input features and target outputs in the input layer
performs quite well compared to the usual feedfor-
ward neural networks.

The causal neural networks are similar to Sigmoid
Belief networks in some way, since they both try to
infer causal output variables given instantiated fea-
ture values. The difference is that Sigmoid Belief
network use a probabilistic setting and try to max-
imize the likelihood of generating the instantiated

feature values, whereas in causal neural networks the
goal is to minimize the squared error of the instan-
tiated feature values represented as ouput units.

It is interesting to analyse the meaning of hid-
den unit representations in the case of having tar-
get outputs represented by input units. In the case
of non-linear dimensionality reduction (DeMers and
Cottrell, 1993) with a four layer feedforward neural
network with a bottleneck, the hidden units in the
second layer represent a non-linear manifold for re-
constructing the input. This may also be applied for
supervised learning in which the input and output
consist of feature inputs and target outputs. Recon-
structing the output could then be done by propa-
gating the values of known feature inputs. A simi-
lar technique was applied in (Hancock and Thorpe,
1994) for training a car to follow roads. Here the
authors computed the eigenvectors of the generated
camera images and a given corresponding steering
command to train the system. Afterwards, the sys-
tem was applied by linearly combining the eigenvec-
tors for the newly generated camera images which
also gives the control commands. It remains a ques-
tion whether such reconstructions can always be
used to generate the correct output.

In causal neural networks, we are less interested
in dimensionality reduction, but try to evolve an ar-
chitecture which can use the input units to infer the
values of separate output units. In this case the hid-
den units repesentations should be mixed to infer the
values of output units. The mixture is dependent on
the values of input units. Therefore if an target out-
put is represented as input unit, forward-backward
propagation derives its value which causes the hid-
den units to be mixed in the best possible way for
reconstructing the given values of output units. It
should be clear that this cannot be done with all pos-
sible architectures, therefore a suitable architecture
needs to be evolved.

In future work, we want to study more general
graphical structures to model the dependencies be-
tween variables. For learning and inference we
can employ variations of the backpropagation and
forward-backward propagation algorithms.
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