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We use reinforcement learning (RL) to evolve soccer teaatesjies. RL
may profit significantly from world models (WMs). In high-densional,
continuous input spaces, however, learning accurate Wihsrasctable.
In this chapter, we show that incomplete WMs can help to duitikd
good policies. Our approach is based on a novel combinati@MACs
and prioritized sweeping. Variants thereof outperformeothalgorithms
used in previous work.

1 Introduction

Game playing programs have been a major focus of artificielligence
(Al) research. How to represent and evaluate positions?tdase plan-
ning for exploiting evaluations to select the optimal nexiva (action)?
Berliner’s non-adaptive backgammon program (1977) hadesviped
evaluation function (EF), costed many man-years of prognarg ef-
fort, but achieved only mediocre level of play. Tesauro’s-GBmmon
program (1992), however, used reinforcement learning (Rl§arnthe
backgammon EF by playing against itself. After only threenths of
training on a RS6000, TD-Gammon played at human expert.|Bask
in 1959 Samuel already constructed a RL program which lebaneEF
for the game of checkers, resulting in the first game playnogram that
defeated its own programmer. Related efforts are desciigeBaxter
(chess, 1997), Thrun (chess, 1995) and Schraudolph (Gd)199

Soccer.We apply RL to a game quite different from board games: soc-

cer. Itinvolves multiple interacting agents and ambiguapsits. We are
partly motivated by the popularity of the International 8@cRobocup.
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Most early research efforts in the field concentrated on émgnting
detailed behaviors exploiting the official Robocup socaerusator. But
recently machine learning (ML) and RL in particular haverbesed to
improve soccer teams [31] — mostly to improve cooperatiotwvben
players and to construct high-level strategies. The Rgbatnulator,
however, is too complex to evaluate and compare differentriethods
for soccer teams learning from scratch, without prewireti¢a and be-
haviors. Therefore we built our own simulator, which is slempfaster
and easier to comprehend.

Learning to play soccer. Our goal is to build teams of autonomous
agents that learn to play soccer from very sparse reinfoeoesignals:
only scoring a goal yields reward for the successful tearanTenem-
bers try to maximize reward by improving their adaptive dexi pol-
icy mapping (virtual) sensory inputs to actions. In prideithere are at
least two types of learning algorithms applicable to sudblams: rein-
forcement learning (RL), e.g., [24], [32], [38], and [34hdevolutionary
approaches, e.g., [11], [18], [9], and [20]. Here we descamovel RL
method and compatre its results to those obtained by preRauseth-
ods and an evolutionary approach.

Most existing RL algorithms are based on function approxarsa(FAS)

learning value functions (VFs) that map states or statefagiirs to the
expected outcome (reward) of a particular game [7], and J&8Ealistic,

partially observable, multi-agent environments, leagnialue functions
is hard though. This makes evolutionary methods a promisitegna-
tive. For instance, in previous work on learning soccertstjias [23]
we found thaProbabilistic Incremental Program Evolutiqi?IPE) [20],

a novel evolutionary approach to searching program spatpedorms
Q(\) [17], [38], and [42] combined with FAs based on linear néue-

works [22] or neural gas [21].

We identified several reasons for PIPE’s superiority: (lgdmplex envi-
ronments such as ours RL methods tend to be brittle — oncewdised,
good policies do not stabilize but tend to get destroyed ssquent
“unlucky” experiences. PIPE is less affected by this probleecause
good policies have a large probability of surviving. (2) Bllearns faster
by isolating important features in the sensory input, connlg them in
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programs of initially low algorithmic complexity, and swdapiently re-
fining the programs. This motivates our present approachbadded RL
should also be able to (a) stabilize or improve fine policessdpposed
to unlearning them), (b) profit from the existence of low-gexity so-

lutions, and (c) use incremental search to find more compéxiens

where simple ones do not work.

Incomplete world models.Direct RL methods [7], and [38] use tempo-
ral differences (TD) [32] for training FAs to approximatesth'F from
simulated sequences of states (positions) and actionse@halring a
game.Indirect RL, however, learns a world model (WM) [15], and [40]
estimating the reward function and the transition prolidxsl between
states, then uses dynamic programming (DP) [5] or simidestefr algo-
rithms such as prioritized sweeping (PS — which we will useum
experiments) [15] for computing the VF. This can signifi¢amnprove
learning performance in discrete state/action spaceslfi8hse of con-
tinuous spaces, WMs are most effectively combined loithl FAs trans-
forming the input space into a set of discrete regions (cosétipns) and
then learning the VF. Similarly, continuous action spacas loe trans-
formed in a set of discrete actions. Previous work has ajrel@inon-
strated the effectiveness of learning discrete world nsfi@l robotic
localization and navigation tasks, e.g., [37]. Learninguaate WMS in
high-dimensional, continuous, and partially observalbarenments is
hard. However, this motivates our novel approach of legrniseful but
incomplete models instead.

CMAC models. We will present a novel combination of CMACs and
world models. CMACs [1] usdilters mapping sensor-based inputs to
a set of activated cells. Each filter partitions the inputcgpmto sub-
sections in a prewired way such that each (possibly muttiesisional)
subsection is represented by exactly one discrete celedfltar. For ex-
ample, a filter might consist of a finite number of cells représg an
infinite set of colors represented by cubes with 3 dimensreds blue
and green, and activate the cell which encloses the curcdot mput
component. For game playing, a filter may represent diftdvahsimilar
positions and the activated cell may represent the presdracearticular
position.
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In a RL context each cell has a Q-value for each action. ThalQeg
of currently active cells are averaged to compute the ov€alalues
required for action selection. Previous work already coraiCMACs
with Q-learning [38] and Q) methods [33], and [25]. Here we combine
CMACs with WMs by learning an independent model for eachrfilte
These models are then exploited by a version of prioritizegdeping
(PS) [15], and [41] for computing the Q-functions. Later wél find
that CMAC models can quickly learn to play a good soccer ganie a
surpass the performance of PIPE and an approach combinir§gGSM

and Q@).

Outline. Section 2 describes our soccer environment. Section 3qiese
CMACs and describes how they can be combined with modeledbase
learning. Section 4 describes experimental results. @e&iconcludes
the chapter.

2 The Soccer Simulator

Our soccer simulator [23] runs discrete-time simulation®iving two
teams consisting of either 1 or 3 players per team. A gamefiash time

t = 0 to timet,,qs = 5000. The field is represented by a two-dimensional
continuous Cartesian coordinate system. As in indoor sdbesfield is
surrounded by impassable walls except for the two goalscedtn the
east and west walls. There are fixed initial positions fop&dyers and
the ball (see Figure 1).

Players/Ball. Each player and the ball are represented by a solid circle
and a variable real-valued position and orientation. A @tayhose circle
intersects the ball picks it up and then owns it. The ball avoa® move

or shoot the ball. A shot is in the direction of the player'seatation.
When shot, the ball’s initial speed @s12 units per time step. Each fol-
lowing time step the ball slows down due to friction BY05 units per
time step (unless it is picked up by a player) - the ball cavelrireely at
most 1.5 units. At each discrete time step each player sebee of the
following actions:

e go_forward: move 0.025 units in current direction.

e turn_to_ball: point player’s orientation towards ball.
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Figure 1. Players and ball (center) in initial positionsy@rs of a 1 player team
are those furthest in the back.

e turn_to_goal point player’s orientation towards opponent’s goal.

e shoot if the player owns the ball then change player’s orientatio
by a random angle from the intervat$°, 5°] (to allow for noisy
shots), and shoot ball in the corresponding direction.

A player that makes a step forward such that its circle ietdssanother
player’s circle bounces back to its original position. lieasf them owns
the ball prior to collision then it will lose it to the collish partner.

Action framework. During each time step all players execute one action
each, in randomly chosen order. Then the ball moves acaptdints
current speed and direction. If a team scores ert,,, then all players
and ball will be reset to their initial positions.

Sensory input. At any given time a player’s input vect@rconsists of 16
(1 player) or 24 (3 players) components:

e Three Boolean input components that tell whether the player
team member/opponent team owns the ball.



8 booktitle

e Polar coordinates (distance, angle) of both goals and theviia
respect to the player’s orientation and position.

e Polar coordinates of both goals relative to the ball's dagon and
position.

¢ Ball speed.

e Polar coordinates of all other players w.r.t. the playereced by
(a) teams and (b) distances to the player.

Policy-sharing. All players share the same Q-functions or PIPE-
programs. Still their behaviors differ due to differentusition-specific
inputs. Policy-sharing has the advantage of greatly redutie num-
ber of adaptive free parameters, which tends to reduce theauof
required training examples (learning time) and increasegdization
performance, e.g., [16]. A potential disadvantage of gpaditaring, how-
ever, is that different players cannot develop truly déferstrategies to
be combined in fruitful ways.

3 CMAC Models

CMACs [1] use multiplea priori designed filters to quantize the input
space. Each filter consists of several cells with associatedlues. Ap-
plying the filters to the current input yields a set of acedcells (a
discrete distributed representation of the input). Theudlues are aver-
aged to compute the overall Q-value.

Filter design. In principle filters may yield arbitrary divisions of the in-
put space, such as hypercubes. To avoid the curse of dinmatisyaone
may use hashing to group a random set of inputs into an eguival
class, or use hyperslices omitting certain dimensions itiquéar filters
[33]. Although hashing techniques may help to overcomeagi®iprob-
lems, we do not believe that random grouping is the best wedcan
Since our soccer simulation involves a fair number of ingotehsions
(16 or 24), we use hyperslices to reduce the number of adhjlegparam-
eters. Our filters divide the state-space by splitting ihglsingle input
dimensions into a fixed number of cells — input componentdraated
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in a mutually independent way. Of course we could also caosfilters

combining different input features, and this is what we widduve to do
for representing the high amount of context-dependencygame such
as chess. Finally, we apply multiple filters to the same imqmmponent
to allow for smoother generalization.

Partitioning the input space. We use two filters for each input compo-
nent, both splitting the same component. Input componepigsenting
Boolean values, distances (or speeds), and angles, atenspérious
ways (see Figure 2): (1) Filters associated witBamleaninput compo-
nentjust return its value. (Bistanceor ball-speednput components are
rescaled to values between 0 and 1. Then the filters parthimeompo-
nents intau,. or n.+ 1 quanta. (3Angleinput components are partitioned
in n. equal quantain a circular (and thus natural) way — one filteags

the angles59° and0° to the same cell, the other separates them by a cell
boundary.

Selecting an actionApplying all filters on a player’s current input vector
at timet returns the active cell§f}, ..., f}, wherez is the number of
filters. The Q-value of selecting actiengiven inputZ is calculated by
averaging all Q-values of the active cells:

Q. a) = 2 Qu(fl.a)/=

where(),, is the Q-function of filterk. Instead of just averaging the Q-
values of all filters, we might also weigh them according tdtipalar
active strategies or the predictive ability of each filteralbernatively we
may use a voting scheme in which each filter votes for a spextion.

After computing the Q-values of all actions we select anoacgiccording
to the Max-random exploration rule: select the action witliximal Q-
value with probabilityP,,,., and a uniformly random action otherwise.

Learning with WMs. Learning accurate models for high-dimensional
input spaces is hard. Usually there are so many possiblessmcstates
that storing all of them for each different input would beeas$ible and
updates would cost a lot of time. Instead we introduce a noaeibi-
nation of model-based RL and CMACs. We use a set of indepénden
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Figure 2. We use two filters for each input component, rasylin a total of

32 (1 player) or 48 (3 players) filters. Filters of a Boolegpuhcomponent just
return the Boolean value as cell number. The figure (active¢dls are marked)
illustrates decompositions of (A) a continuous distangaircomponent into
10 discrete cells, (B) the same component into 11 cells, (€)r¢inuous angle
component into 10 cells, (D) the same component into 10reiffecells.

models to estimate the dynamics of each filter. To estimagetrdm-
sition model for filterk, we count the transitions from activated cell
ff to activated cellf/*' at the next time-step, given the selected ac-
tion. These counters are used to estimate the transitiobapilities
Pi(cjlei,a) = P(fi = ¢;|ft = ¢i,a), wherec; andc; are cells, and

a is an action. For each transition we also compute the avesgard

Ry (ci,a,c;) by summing the immediate reinforcements, given that we
make a step from active celf to cell ¢; by selecting action.

Prioritized sweeping (PS).We could immediately apply dynamic pro-
gramming (DP) [5] to the estimated models. Online learnintp\DP,
however, is computationally expensive. But fortunatelgréhare more
efficient update management methods. We will use a methoithsito
prioritized sweeping (PS) [15] which may be the most effitmrailable
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update mechanism. PS updates the Q-value of the filtedcath triple
with the largest update size before updating others. Eadhtaps made
via the usual Bellman backup [5]:

Qr(ci,a) ZPk(cj|cZ~, a)(YVi(¢j) + Ri(ci, a,¢5))

whereVy(¢;) = max, Qk(c;, a) andy € [0, 1] is the discount factor. After
each player action we update all filter models and use PS tpoatnthe
new Q-functions. PS uses a parameter to set the maximum mwhbe
updates per time step and a cutoff parametareventing tiny updates.
Note that PS may use different numbers of updates for diftdikers,
since some filters tend to make larger updates than otherthartdtal
number of updates per time step is limited. The complete B&i#hm

is given in Appendix A.

Non-pessimistic value functionsPolicy sharing requires the fusion of
experimental data from different players into a singleespntation. This
data, however, is generated by different player histotiefact, certain
experiences of certain players will probably never occuottrers —
there is no obvious and straightforward way of data fusiam.ifistance,
the unlucky experience of one particular player may causevih ap-
proximation to assign low values to certain actions for &lyprs. After
having identified this problem, we tried a heuristic solatio overcome
this weakness. We computen-pessimistigalue functions: we decrease
the probability of the worst transition from each cell/aatand renormal-
ize the other probabilities. Then we apply PS to the adjugtedabili-
ties (details of the algorithm are given in Appendix B). Tlieet is that
only frequently occurring bad experiences have high impacthe Q-
function. Experiments showed small but significant improeats over
the basic algorithm. The method is quite similar to Modet&alInterval-
Estimation [41], an exploration algorithm extending InerEstimation
[12] by computing optimistic value functions for actioneetion.

Multiple restarts. The method sometimes may get stuck with continu-
ally losing policies which hardly ever score and fail to met/(many)
opponent goals (also observed with our previous simulattmased on
linear networks and neural gas). We could not overcome toislem by
adding standard exploration techniques (evaluatingradtase actions of



12 booktitle

losing policies is hard, since the perturbed policy will albystill lead to
negative rewards). Instead we reset Q-functions and WMs threcteam
has not scored for 5 successive games but the opponent stoned the
most recent game (we check these conditions every 5 gamiés) e&ch
restart, the team will gather different experiences aiffiggbolicy quality.
We found that multiple restarts can significantly incredmegrobability
of finding good policies.

We useP,,.., = 1.0 in the Max-random exploration rule, since that
worked best. The reason multiple restarts works betterowitlexplo-
ration is that it makes the detection of losing policies eladilopeless
greedy policies will loose 0-something, whereas with esgqtion our
agents may still score although they remain unable to imgtoeir pol-
icy from the generated experiences. Thus, using greedgipshve may
use a simpler rule for restarting.

Learning with Q( \). Possibly the most widely used RL algorithm is Q-
learning [38], which tries out sequences of actions throsigle/action
space according to its policy and uses environmental restardstimate
the expected long-term reward for executing specific astinrparticu-
lar states. Q-learning repeatedly performs a one-stepluedkd backup,
meaning that the Q-value of the current state/action p&iPj®ecomes
more like the immediately received reward plus the estichatdue of
the next state.

Q()\)-learning [38], [17], and [42] combines TDR) methods [32] with Q-
learning to propagate state/action updates back in timethiat multiple
SAPs which have occurred in the past are updated based ogla sur-
rent experience. Qf-learning has outperformed Q-learning in a number
of experiments [14], [19], and [42]. For purposes of comgamiwe also
use online QX)-learning for training the CMACs to play soccer. The de-
tails of the algorithm are given in Appendix C.

PIPE. The other competitor i®robabilistic Incremental Program Evo-
lution (PIPE) [20]. PIPE is a novel technique for automatic program
synthesis. It combines probability vector coding of pragiastructions
[26], [27], and [28], Population-Based Incremental Leagn{2], and
tree-coded programs like those used in some variants of t@ePro-
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gramming (GP) [9], [10], and [13]. PIPE iteratively genesasuccessive
populations of functional programs according to an adagtiobability
distribution over all possible programs. In each iteratitolets all pro-
grams play one soccer game; then the best program is usefihe tiee
distribution. Thus PIPE stochastically generates betber lzetter pro-
grams. All details can be found in [23].

4 Experiments

We compare the CMAC model to CMAC-®)and PIPE [20], which out-
performed Qf)-learning combined with various FAs in previous com-
parisons [21], and [23].

Task. We train and test the learners against handmade programs of
different strengths. The opponent programs are mixtures @fogram
which randomly executes actions (random program) and ad{gjoim-
gram which moves players towards the ball as long as they tiowo

it, and shoots it straight at the opponent’s goal otherwise.five oppo-

nent programs, calle@pponentf,), use the random program to select
an action with probability’, € {0, 1, 3, 3,1}, respectively, and the good
program otherwise.

CMAC model set-up. We play a total of 200 games. After every 10
games we test current performance by playing 20 test gana@&ssaghe
opponent and summing the score results. The reward is +% ifehm
scores and -1 if the opponent scores. The discount fact@t i <.98.
After a coarse search through parameter space we choselltheirig
parameters: 2 filters per input component (total of 32 or 48rf) num-
ber of cellsn, = 20 (21 for the second filters of distance/speed input
components). Q-values are initially zero. PS uses 0.01 and a max-
imum of 1000 updates per time step. We only compute non-pestss
value functions for the 3-player teams for which we wge 1.96.

CMAC Q( \) set-up.We play a total of 200 games. After every 20 games
we test current performance of the policy (during tests w&tinae se-
lecting actions according to the current exploration sakeby playing
20 test games against the opponent and summing the scoles.résie
reward is +1 if the team scores and -1 if the opponent scofes.dis-
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count factor is set to 0.98. We conducted a coarse searchgipa-
rameter space to select learning parameters. We use on{ixlewih

replacing traces [30] andl = 0.8 for the 1-player case, and= 0.5 for

the 3-player case. The initial learning rate is settc= 1.0, the learning
rate decay parametgr(see Appendix C) is set t@3.

We use Max-random exploration with,,,,. linearly increased from 0.7
in the beginning of the simulation to 1.0 at the end. As for GBAA
models we use two filters per input component (total of 32 orfi48
ters). The number of cells is set tg = 10 (11 for the second filters
of distance/speed input components). All Q-values ar@lhjtzero. In
general, learning performance does not very sensitivebexe on the
used parameters. E.g., using= 20 results in only slightly worse per-
formance. Small values for (< 0.3) do make things worse though.

PIPE set-up. For PIPE we play a total of 1000 games. After every 50
games we test performance of the best program found durangtist
recent generation. Parameters for all PIPE runs are the aanmethe
previous experiments [23].

Results : 1-Player caseWe plot number of points (2 for scoring more
goals than the opponent during the 20 test games, 1 for aniieQ dor
scoring less) against number of training games in Figure 3.

We observe that on average our CMAC model wins against alalbst
training programs. Only against the best 1-player teBm= 0) it wins
as often as it loses, and often plays ties (it finds a blockiradegy lead-
ing to a 0-0 result). Against the worst two teams, CMAC modwbss
finds winning strategies.

CMAC-Q()) finds programs that on average win against the random
team, although they do not always win. It learns to play alzsutvell
as the 75% random and 50% random teams. CMAQG}@ no match
against the best opponent, and although it seems that pefme jumps
up at the end of the trial, longer trials do not lead to bete&fgrmances.

PIPE is able to find programs beating the random team and qgfiite
ten discovers programs that win against 75% random tearaactiun-
ters great difficulties in learning good strategies agalmsbetter teams,
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though: although PIPE may execute more games (1000 vs. #4©),
probability of generating programs that perform well agaithe good
opponents is very small.

CMAC Model 1-Player

game points

Opponent (0.75)--------
Opponent (0.50) - T
Opponent (0.25)

Opponent (0.00 -——~- |

0 50 100 150 200
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_ Opponent (0.50)--------
~~"Opponent (0.25):- x
Opponent (0.00)- ===+ 1

game points

#games

Figure 3. Number of points (means of 20 simulations) duries} phases for
teams consisting of 1 player. Note the varying x-axis sgalin

It tends to learn from the best of the losing programs. Thisiin does
not greatly facilitate the discovery of winning programs.



16 booktitle

Results : 3-Players casélNe plot number of points (2 for scoring more
goals than the opponent during the 20 testgames) againtaraftrain-
ing games in Figure 4.
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Figure 4. Number of points (means of 20 simulations) durest phases for
teams consisting of 3 players. Note the varying x-axis sgali
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Again, CMAC model always learns winning strategies agaimstvorst
2 opponents. Itloses on average against the best 3-player(teth P. =
0.25) though. Note that this strategy mixture works better thisvags
using the deterministic progran®( = 0) against which CMAC model
plays ties or even wins. In fact, the deterministic progrands to clutter
agents such that they obstruct each other. The deternsimigtionent’s
behavior also is easier to model. All of this makes the ststibhaersion
a more difficult opponent.

CMAC-Q is clearly worse than CMAC model — it learns to win only
against the worst opponent.

PIPE performs well only against random and 75% random opgene
For the better opponents it runs into the same problems asioned
above.

Score differencesWe show maximal obtained score differences in Ta-
ble 1 (1 player) and Table 2 (3 players). Although PIPE penfbetter
against the weakest opponent than CMAC-models or CMAC-QEPI
often cannot score against strong opponents. CMAC-moteisgver,
do score against the good opponents, and are able to finchéhtdece)
winning policies against all opponents.

We should keep in mind that score differences may have a\anggnce.
For instance, in some experiments with the 1-player CMAC ehaop-

ponent (0.0) may continuously win 760-0 in test matchess Exireme
score difference is caused by resetting the (losing) CMAGI@hgust

before testing. PIPE has a small advantage here, sincedttheebest
program of the last generation for testing and thus alméswtnish the
probability of testing a really bad policy.

Discussion.Despite treating all components independently the CMAC
model is able to learn good reactive soccer strategiesrprejeactions
that activate those cells of a filter which promise highestage reward.
The use of a model often quickly stabilizes good stratege®n suf-
ficient experiences (5-20 learning games), the policy vahdty change
anymore. The reason is that deterministic policies geaeiatilar expe-
riences.
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Table 1. Best average score differences for different lagnmethods against 1-
player opponents of varying strengths. * = Although CMACduats were some-
times able to score 7 goals, they also sometimes lost 0-760.

| Learning Alg.| 1.0] 0.75] 05]|025/ 0.0]
CMAC model 85-2 68-3| 27-1|6-15| 1-146*
CMAC-Q 92-6| 52-23| 10-7| 1-4 0-13
PIPE 225-18| 127-35| 19-13| 0-3 0-10

Table 2. Best average score differences for different lagrmethods against
3-player opponents of varying strengths.

| Learning Alg.| 1.0 0.75] 0.5]0.25] 0.0]
CMAC model | 161-31| 236-100| 84-70| 6-20| 0.3-0
CMAC-Q 111-26 36-73| 13-58| 3-23| 0-24
PIPE 297-18| 163-64| 30-31| 0-11| 0-21

Early experiences with a random initial policy may greattypact the
final policy’s quality. They may result in continually logjrpolicies (es-
pecially against better opponents) that are unable to ivgymue to the
near-impossibility of learning from bad experiences. kmtsreasons we
performed multiple restarts (1 up to more than 10). Sincetestrate-
gies often remain either winners or losers, the step-wiggorements
shown in the learning curves are mainly due to multiple réstahe ups
and downs in the learning curves are caused by unstablagsoiiath
unstable score results.

CMAC model tends to be quite robust under variations of fittesign

(e.g., combining multiple input components) and numberatisc Con-

ducting additional experiments with filters combining diste and angle
input components, or 10/11 instead of 20/21 cells per fiterpbtained
similar levels of performance.

Multiple restarts helped CMAC model to avoid getting stucikhwos-
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ing policies. When we tried CMAC-Q with multiple restartsdanithout
exploration, it often found blocking strategies (leadingOt0 results)
against all 1-player opponents, but did not learn to win.rhizey block-
ing strategies against multi-agent teams, however, is rhaatter.

All methods perform better in the single agent case. Thigecabably be
explained by the fact that the multi-agent case yields mig@fecantly
different game configurations so that finding a policy thatksdine for
all of them is more difficult.

5 Conclusion

Model-based RL is a promising method for learning to contaot
tonomous agents. Since learning accurate world modelgim dimen-
sional, continuous spaces is difficult, we have focused amlag useful
but incomplete models instead. Here we have described d condi-
nation of CMACs and incomplete world models which allowsdscov-
ering successful soccer strategies and tends to outpebfotimPIPE and
a Q(\)/CMAC combination. Especially against better opponersAC
models proved superior.

In some environments and for different games certain maomgobex fil-
ters grouping multiple context-dependent input companerdy be nec-
essary. Filters combining many different, mutually depsmdnput com-
ponents for a particular task may require a lot of storageespislany
of the possible input combinations, however, will never kpegienced.
A more space-efficient approach will use decision tree nwotiekeep
track of rewards and transition probabilities between feafes defining
“interesting” input component combinations. Startinghnéin initial set
of low-complexity decision trees consisting of single rgotmponents,
new leaf nodes may be generated online using statistidalassione in,
e.g., the G-algorithm [8]. This may lead to more and morerimfative
patterns which could be useful for describing the main attarsstics
of positions in games such as chess or soccer. Finally, filexarchies
could be constructed such that combinations of active céltifferent
filters activate higher-level filter cells, thus allowing fmore context-
dependent yet compact representations. This could makeapproach
suitable for learning evaluation functions of a wide variet games.
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Appendix A: Prioritized Sweeping

An efficient method determining which updates to performriengized
sweeping (PS) [15]. PS assigns priorities to updating thalQes of dif-
ferent states according to a heuristic estimate of the $iteedQ-values’
updates. The algorithm keeps track of a “backward modeditirgd states
to predecessor state/action pairs. After the update ofta stdue the
state’s predecessors are inserted in a priority queue wittten used
for updating the Q-values of actions that can be performélddse states
which have the highest priority.

Our Prioritized Sweeping. Moore and Atkeson’s PS (M+As PS) [15]
calculates the priority of some state by checking all triaorss to up-
dated successor states and identifying the one whose upmiatéution
is largest. Our variant allows for computing tkegactsize of updates
of state values since they have been used for updating thelu@svof
their predecessors, and yields more appropriate prisritialike our PS,
M+As PS cannot detect large state-value changes due to miziayl
update steps, and will not process the corresponding statesmplete
description of both algorithms is given in [40].

Our implementation of CMAC models uses a set of predecessisr |
Preds(j) containing all predecessor cells of cglh filter £. We denote
the priority of celli of filter £ by |Ax(4)|, where the value\, (i) equals
the change o¥/.(i) since the last time it was processed by the priority
gueue. To calculate it, we constantly update all Q-valuggedecessor
cells of currently processed cells, and track changés @f.

The model-based update of the Q-val@g(c,a), Q-update(k,c,a)
looks as follows:

Qk(cv a) — ZP;(G)(R;E(C,&,]) + ’YVk(j)),

whereP’(a) = P;(j|c, a). The details of our PS look as follows:
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Our-Prioritized-Sweeping(x) :
1) Compute active cells: fi,...,[f.;
2) For £k =1 to z do:
2a) Update f;, ——- Va do:
2a.1) Q-update(k, fi,a);
2b) Set |Ak(fk)| to 00,
2c) Promote (k, fr) to top of queue;
3) While (n < U, & queue # nil)
3a) Remove top (k,c) from the queue;
3b) Ax(c) « 0;
3c) V Predecessor cells k,i of k,c

do:
3c.1) V(i) < Vi(i);
3c.2) VYa do:
3c.2.1) Q-update(k,i,a);
3c.3) Vi(i) « max, Qx(i,a);
3c.4) Ap(i) < Ag(7) + Vi (i) — Vi (4)
3c.5) If |Ax(i)] > €
3c.5.1) Insert i at priority
[Ax(@)]5

3d) n+n-+1;
4) Empty queue, but keep Aj(i) values;

HereU,,.. is the maximal number of updates to be performed per update-
sweep. The parameterc IR* controls update accuracy. Note that an-
other difference to M+A's PS is that we remove all entriesrfithe queue
after having processed all updates.

Appendix B: Non-Pessimistic Value Func-
tions

To compute non-pessimistic value functions we decreasprtitmbility
of the worst transition from each filter/cell/action andrthrenormalize
the other probabilities. Then we use the adjusted prolbigsiio compute
the Q-functions. Thus we substitute the following @iupdate(k, c, a):
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Q-update-Non-Pessimistick,i,a) :
1) m < argming{ Ry (i,a,5) +vVi(j)};
2) n < Cf(a);
3) P+ Pt (a);

2 52
P-Zayza,/p1_p)tia
4) Pl (a) ¢ DAV DN,
1422
5) Ap « Pl (a) - Ph,(a);

6) Vj#m
~ A C’f.(a)
6a) Pzﬁ(“) — le;(a) - m,
7) Q-update(k,i,a);

Here Cf;(a) counts the number of transitions of célto j in filter &
after selecting action andC¥(a) counts the number of times actian
was selected and cellof filter £ was activated. We obtaiﬁ’i’;(a), the
estimated transition probability, by dividing them.

The variablez, determines the step size for decreasing worst transition
probabilities. To select the worst transition in step 2, way@wompare
existing transitions (we check whethé’[;(a) > 0 holds). Note that if
there is only one transition for a given filter/cell/actioipket then there

will not be any renormalization. Hence the “probabilities&y not sum

up to 1. Consequentially, if some filter/cell/action has aoturred fre-
quently then it will contribute just a comparatively smalhv@lue and
thus have less impact on the computation of the overall Qeval

Appendix C: Q()A)-learning

Q-learning [38], and [39] enables an agent to learn a poaepeatedly
executing actions given the current state. At each timeteeeplgorithm
uses 1-step lookahead to update the currently selectedciliéaction
pairs (FCAPS):
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Q-learning (k, ¢, &, 1y, C11) :

1) e < (re + YVi(errr) — Qrler, ar)) s
2) Qrlcr, ar) < Qrler, ar) + ay(k, ¢y a)el;

HereV,(c) = max, Qx(c,a), a,(k, c,a) is the learning rate for the
update of FCAP(k, c,a), ande; is the temporal difference or TD(0)-
error, which tends to decrease over time.

The learning ratev, (k, ¢, a) should decrease online, such that it fulfills
two conditions for stochastic iterative algorithms [391].[The condi-
tions for the learning rate, (k, ¢, a) are:

(1) =2, an(k, ¢, a) = oo, and
(2) >, a?(k,c,a) < oo.

Learning rate adaptions for which the conditions are satigiay be of
the form :o,, = nig wheren is a variable that counts the number of times
an FCAP has been updated.

Q(\)-learning uses eligibility tracels(k, ¢, a) [3], and [32] to allow for
updating multiple FCAPs which have occurred in the past. & the
replacing traces algorithm [30]:

lLisi(k,c,a) < yA(k,c,a) if fF#c
livi(k,c,a) 1 if f¥=canda, =a
livi(k,c,a) < 0 if f¥=canda, #a
where \ discounts the influence of FCAPs occurring in the distant fu-

ture relative to immediate FCAPs. After updating the eligyjptraces
we update the Q-values(k,c,a) do:

Qk(ca Cl) — Qk(ca Cl) + O‘[einltc(ca Cl) + 6tlt(k7 ¢, a)]

wheren}.(c, a) denotes the indicator function which returns 14f ¢, a)
occurred at time, and 0 otherwised = «a,,(k, ¢, a)). The TD-errore, of
the value function is defined as: + (r; + yVi(cii1) — Vi(cr))-
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The procedure described here updates all occurred FCAR attiene
step. This is computationally expensive. We actually udedter method
which allows for updating Q-values in time proportional t¢:01|), the

number of filters times actions [42].
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