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We use reinforcement learning (RL) to evolve soccer team strategies. RL
may profit significantly from world models (WMs). In high-dimensional,
continuous input spaces, however, learning accurate WMs isintractable.
In this chapter, we show that incomplete WMs can help to quickly find
good policies. Our approach is based on a novel combination of CMACs
and prioritized sweeping. Variants thereof outperform other algorithms
used in previous work.

1 Introduction

Game playing programs have been a major focus of artificial intelligence
(AI) research. How to represent and evaluate positions? Howto use plan-
ning for exploiting evaluations to select the optimal next move (action)?
Berliner’s non-adaptive backgammon program (1977) had a prewired
evaluation function (EF), costed many man-years of programming ef-
fort, but achieved only mediocre level of play. Tesauro’s TD-Gammon
program (1992), however, used reinforcement learning (RL)to learn the
backgammon EF by playing against itself. After only three months of
training on a RS6000, TD-Gammon played at human expert level. Back
in 1959 Samuel already constructed a RL program which learned an EF
for the game of checkers, resulting in the first game playing program that
defeated its own programmer. Related efforts are describedby Baxter
(chess, 1997) , Thrun (chess, 1995) and Schraudolph (Go, 1994).

Soccer.We apply RL to a game quite different from board games: soc-
cer. It involves multiple interacting agents and ambiguousinputs. We are
partly motivated by the popularity of the International Soccer Robocup.
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Most early research efforts in the field concentrated on implementing
detailed behaviors exploiting the official Robocup soccer simulator. But
recently machine learning (ML) and RL in particular have been used to
improve soccer teams [31] — mostly to improve cooperation between
players and to construct high-level strategies. The Robocup simulator,
however, is too complex to evaluate and compare different RLmethods
for soccer teams learning from scratch, without prewired tactics and be-
haviors. Therefore we built our own simulator, which is simpler, faster
and easier to comprehend.

Learning to play soccer. Our goal is to build teams of autonomous
agents that learn to play soccer from very sparse reinforcement signals:
only scoring a goal yields reward for the successful team. Team mem-
bers try to maximize reward by improving their adaptive decision pol-
icy mapping (virtual) sensory inputs to actions. In principle there are at
least two types of learning algorithms applicable to such problems: rein-
forcement learning (RL), e.g., [24], [32], [38], and [34], and evolutionary
approaches, e.g., [11], [18], [9], and [20]. Here we describe a novel RL
method and compare its results to those obtained by previousRL meth-
ods and an evolutionary approach.

Most existing RL algorithms are based on function approximators (FAs)
learning value functions (VFs) that map states or state/action pairs to the
expected outcome (reward) of a particular game [7], and [38]. In realistic,
partially observable, multi-agent environments, learning value functions
is hard though. This makes evolutionary methods a promisingalterna-
tive. For instance, in previous work on learning soccer strategies [23]
we found thatProbabilistic Incremental Program Evolution(PIPE) [20],
a novel evolutionary approach to searching program space, outperforms
Q(�) [17], [38], and [42] combined with FAs based on linear neural net-
works [22] or neural gas [21].

We identified several reasons for PIPE’s superiority: (1) Incomplex envi-
ronments such as ours RL methods tend to be brittle — once discovered,
good policies do not stabilize but tend to get destroyed by subsequent
“unlucky” experiences. PIPE is less affected by this problem because
good policies have a large probability of surviving. (2) PIPE learns faster
by isolating important features in the sensory input, combining them in
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programs of initially low algorithmic complexity, and subsequently re-
fining the programs. This motivates our present approach: VF-based RL
should also be able to (a) stabilize or improve fine policies (as opposed
to unlearning them), (b) profit from the existence of low-complexity so-
lutions, and (c) use incremental search to find more complex solutions
where simple ones do not work.

Incomplete world models.Direct RL methods [7], and [38] use tempo-
ral differences (TD) [32] for training FAs to approximate the VF from
simulated sequences of states (positions) and actions (moves) during a
game.Indirect RL, however, learns a world model (WM) [15], and [40]
estimating the reward function and the transition probabilities between
states, then uses dynamic programming (DP) [5] or similar, faster algo-
rithms such as prioritized sweeping (PS — which we will use inour
experiments) [15] for computing the VF. This can significantly improve
learning performance in discrete state/action spaces [15]. In case of con-
tinuous spaces, WMs are most effectively combined withlocalFAs trans-
forming the input space into a set of discrete regions (core positions) and
then learning the VF. Similarly, continuous action spaces can be trans-
formed in a set of discrete actions. Previous work has already demon-
strated the effectiveness of learning discrete world models for robotic
localization and navigation tasks, e.g., [37]. Learning accurate WMs in
high-dimensional, continuous, and partially observable environments is
hard. However, this motivates our novel approach of learning useful but
incomplete models instead.

CMAC models. We will present a novel combination of CMACs and
world models. CMACs [1] usefilters mapping sensor-based inputs to
a set of activated cells. Each filter partitions the input space into sub-
sections in a prewired way such that each (possibly multi-dimensional)
subsection is represented by exactly one discrete cell of the filter. For ex-
ample, a filter might consist of a finite number of cells representing an
infinite set of colors represented by cubes with 3 dimensionsred, blue
and green, and activate the cell which encloses the current color input
component. For game playing, a filter may represent different but similar
positions and the activated cell may represent the presenceof a particular
position.
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In a RL context each cell has a Q-value for each action. The Q-values
of currently active cells are averaged to compute the overall Q-values
required for action selection. Previous work already combined CMACs
with Q-learning [38] and Q(�) methods [33], and [25]. Here we combine
CMACs with WMs by learning an independent model for each filter.
These models are then exploited by a version of prioritized sweeping
(PS) [15], and [41] for computing the Q-functions. Later we will find
that CMAC models can quickly learn to play a good soccer game and
surpass the performance of PIPE and an approach combining CMACs
and Q(�).

Outline. Section 2 describes our soccer environment. Section 3 presents
CMACs and describes how they can be combined with model-based
learning. Section 4 describes experimental results. Section 5 concludes
the chapter.

2 The Soccer Simulator

Our soccer simulator [23] runs discrete-time simulations involving two
teams consisting of either 1 or 3 players per team. A game lasts from timet = 0 to timetend = 5000. The field is represented by a two-dimensional
continuous Cartesian coordinate system. As in indoor soccer the field is
surrounded by impassable walls except for the two goals centered in the
east and west walls. There are fixed initial positions for allplayers and
the ball (see Figure 1).

Players/Ball. Each player and the ball are represented by a solid circle
and a variable real-valued position and orientation. A player whose circle
intersects the ball picks it up and then owns it. The ball owner can move
or shoot the ball. A shot is in the direction of the player’s orientation.
When shot, the ball’s initial speed is0:12 units per time step. Each fol-
lowing time step the ball slows down due to friction by0:005 units per
time step (unless it is picked up by a player) - the ball can travel freely at
most 1.5 units. At each discrete time step each player selects one of the
following actions:� go forward: move 0.025 units in current direction.� turn to ball: point player’s orientation towards ball.
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Figure 1. Players and ball (center) in initial positions. Players of a 1 player team
are those furthest in the back.

� turn to goal: point player’s orientation towards opponent’s goal.� shoot: if the player owns the ball then change player’s orientation
by a random angle from the interval [�5Æ; 5Æ] (to allow for noisy
shots), and shoot ball in the corresponding direction.

A player that makes a step forward such that its circle intersects another
player’s circle bounces back to its original position. If one of them owns
the ball prior to collision then it will lose it to the collision partner.

Action framework. During each time step all players execute one action
each, in randomly chosen order. Then the ball moves according to its
current speed and direction. If a team scores ort = tend then all players
and ball will be reset to their initial positions.

Sensory input.At any given time a player’s input vector~x consists of 16
(1 player) or 24 (3 players) components:� Three Boolean input components that tell whether the player/a

team member/opponent team owns the ball.
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respect to the player’s orientation and position.� Polar coordinates of both goals relative to the ball’s orientation and
position.� Ball speed.� Polar coordinates of all other players w.r.t. the player ordered by
(a) teams and (b) distances to the player.

Policy-sharing. All players share the same Q-functions or PIPE-
programs. Still their behaviors differ due to different, situation-specific
inputs. Policy-sharing has the advantage of greatly reducing the num-
ber of adaptive free parameters, which tends to reduce the number of
required training examples (learning time) and increase generalization
performance, e.g., [16]. A potential disadvantage of policy sharing, how-
ever, is that different players cannot develop truly different strategies to
be combined in fruitful ways.

3 CMAC Models

CMACs [1] use multiple,a priori designed filters to quantize the input
space. Each filter consists of several cells with associatedQ-values. Ap-
plying the filters to the current input yields a set of activated cells (a
discrete distributed representation of the input). Their Q-values are aver-
aged to compute the overall Q-value.

Filter design. In principle filters may yield arbitrary divisions of the in-
put space, such as hypercubes. To avoid the curse of dimensionality one
may use hashing to group a random set of inputs into an equivalence
class, or use hyperslices omitting certain dimensions in particular filters
[33]. Although hashing techniques may help to overcome storage prob-
lems, we do not believe that random grouping is the best we cando.
Since our soccer simulation involves a fair number of input dimensions
(16 or 24), we use hyperslices to reduce the number of adjustable param-
eters. Our filters divide the state-space by splitting it along single input
dimensions into a fixed number of cells — input components aretreated
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in a mutually independent way. Of course we could also construct filters
combining different input features, and this is what we would have to do
for representing the high amount of context-dependency in agame such
as chess. Finally, we apply multiple filters to the same inputcomponent
to allow for smoother generalization.

Partitioning the input space.We use two filters for each input compo-
nent, both splitting the same component. Input components representing
Boolean values, distances (or speeds), and angles, are split in various
ways (see Figure 2): (1) Filters associated with aBooleaninput compo-
nent just return its value. (2)Distanceor ball-speedinput components are
rescaled to values between 0 and 1. Then the filters partitionthe compo-
nents inton orn+1 quanta. (3)Angleinput components are partitioned
in n equal quanta in a circular (and thus natural) way — one filter groups
the angles359Æ and0Æ to the same cell, the other separates them by a cell
boundary.

Selecting an action.Applying all filters on a player’s current input vector
at timet returns the active cellsff t1; : : : ; f tzg, wherez is the number of
filters. The Q-value of selecting actiona given input~x is calculated by
averaging all Q-values of the active cells:Q(~x; a) = zXk=1Qk(f tk; a)=z;
whereQk is the Q-function of filterk. Instead of just averaging the Q-
values of all filters, we might also weigh them according to particular
active strategies or the predictive ability of each filter, or alternatively we
may use a voting scheme in which each filter votes for a specificaction.

After computing the Q-values of all actions we select an action according
to the Max-random exploration rule: select the action with maximal Q-
value with probabilityPmax, and a uniformly random action otherwise.

Learning with WMs. Learning accurate models for high-dimensional
input spaces is hard. Usually there are so many possible successor states
that storing all of them for each different input would be infeasible and
updates would cost a lot of time. Instead we introduce a novelcombi-
nation of model-based RL and CMACs. We use a set of independent
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Figure 2. We use two filters for each input component, resulting in a total of
32 (1 player) or 48 (3 players) filters. Filters of a Boolean input component just
return the Boolean value as cell number. The figure (activated cells are marked)
illustrates decompositions of (A) a continuous distance input component into
10 discrete cells, (B) the same component into 11 cells, (C) acontinuous angle
component into 10 cells, (D) the same component into 10 different cells.

models to estimate the dynamics of each filter. To estimate the tran-
sition model for filterk, we count the transitions from activated cellf tk to activated cellf t+1k at the next time-step, given the selected ac-
tion. These counters are used to estimate the transition probabilitiesPk(jji; a) = P (f t+1k = jjf tk = i; a), wherej andi are cells, anda is an action. For each transition we also compute the averagerewardRk(i; a; j) by summing the immediate reinforcements, given that we
make a step from active celli to cell j by selecting actiona.

Prioritized sweeping (PS).We could immediately apply dynamic pro-
gramming (DP) [5] to the estimated models. Online learning with DP,
however, is computationally expensive. But fortunately there are more
efficient update management methods. We will use a method similar to
prioritized sweeping (PS) [15] which may be the most efficient available



Model-Based RL for Evolving Soer Strategies 11
update mechanism. PS updates the Q-value of the filter/cell/action triple
with the largest update size before updating others. Each update is made
via the usual Bellman backup [5]:Qk(i; a) Xj Pk(jji; a)(Vk(j) +Rk(i; a; j))
whereVk(i) = maxaQk(i; a) and 2 [0; 1℄ is the discount factor. After
each player action we update all filter models and use PS to compute the
new Q-functions. PS uses a parameter to set the maximum number of
updates per time step and a cutoff parameter� preventing tiny updates.
Note that PS may use different numbers of updates for different filters,
since some filters tend to make larger updates than others andthe total
number of updates per time step is limited. The complete PS algorithm
is given in Appendix A.

Non-pessimistic value functions.Policy sharing requires the fusion of
experimental data from different players into a single representation. This
data, however, is generated by different player histories.In fact, certain
experiences of certain players will probably never occur toothers —
there is no obvious and straightforward way of data fusion. For instance,
the unlucky experience of one particular player may cause the VF ap-
proximation to assign low values to certain actions for all players. After
having identified this problem, we tried a heuristic solution to overcome
this weakness. We computenon-pessimisticvalue functions: we decrease
the probability of the worst transition from each cell/action and renormal-
ize the other probabilities. Then we apply PS to the adjustedprobabili-
ties (details of the algorithm are given in Appendix B). The effect is that
only frequently occurring bad experiences have high impacton the Q-
function. Experiments showed small but significant improvements over
the basic algorithm. The method is quite similar to Model-Based Interval-
Estimation [41], an exploration algorithm extending Interval Estimation
[12] by computing optimistic value functions for action selection.

Multiple restarts. The method sometimes may get stuck with continu-
ally losing policies which hardly ever score and fail to prevent (many)
opponent goals (also observed with our previous simulations based on
linear networks and neural gas). We could not overcome this problem by
adding standard exploration techniques (evaluating alternative actions of
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losing policies is hard, since the perturbed policy will usually still lead to
negative rewards). Instead we reset Q-functions and WMs once the team
has not scored for 5 successive games but the opponent scoredduring the
most recent game (we check these conditions every 5 games). After each
restart, the team will gather different experiences affecting policy quality.
We found that multiple restarts can significantly increase the probability
of finding good policies.

We usePmax = 1:0 in the Max-random exploration rule, since that
worked best. The reason multiple restarts works better without explo-
ration is that it makes the detection of losing policies easier. Hopeless
greedy policies will loose 0-something, whereas with exploration our
agents may still score although they remain unable to improve their pol-
icy from the generated experiences. Thus, using greedy policies we may
use a simpler rule for restarting.

Learning with Q(�). Possibly the most widely used RL algorithm is Q-
learning [38], which tries out sequences of actions throughstate/action
space according to its policy and uses environmental rewards to estimate
the expected long-term reward for executing specific actions in particu-
lar states. Q-learning repeatedly performs a one-step lookahead backup,
meaning that the Q-value of the current state/action pair (SAP) becomes
more like the immediately received reward plus the estimated value of
the next state.

Q(�)-learning [38], [17], and [42] combines TD(�) methods [32] with Q-
learning to propagate state/action updates back in time such that multiple
SAPs which have occurred in the past are updated based on a single cur-
rent experience. Q(�)-learning has outperformed Q-learning in a number
of experiments [14], [19], and [42]. For purposes of comparison we also
use online Q(�)-learning for training the CMACs to play soccer. The de-
tails of the algorithm are given in Appendix C.

PIPE. The other competitor isProbabilistic Incremental Program Evo-
lution (PIPE) [20]. PIPE is a novel technique for automatic program
synthesis. It combines probability vector coding of program instructions
[26], [27], and [28], Population-Based Incremental Learning [2], and
tree-coded programs like those used in some variants of Genetic Pro-
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gramming (GP) [9], [10], and [13]. PIPE iteratively generates successive
populations of functional programs according to an adaptive probability
distribution over all possible programs. In each iterationit lets all pro-
grams play one soccer game; then the best program is used to refine the
distribution. Thus PIPE stochastically generates better and better pro-
grams. All details can be found in [23].

4 Experiments

We compare the CMAC model to CMAC-Q(�) and PIPE [20], which out-
performed Q(�)-learning combined with various FAs in previous com-
parisons [21], and [23].

Task. We train and test the learners against handmade programs of
different strengths. The opponent programs are mixtures ofa program
which randomly executes actions (random program) and a (good) pro-
gram which moves players towards the ball as long as they do not own
it, and shoots it straight at the opponent’s goal otherwise.Our five oppo-
nent programs, calledOpponent(Pr), use the random program to select
an action with probabilityPr 2 f0; 14 ; 12 ; 34 ; 1g, respectively, and the good
program otherwise.

CMAC model set-up. We play a total of 200 games. After every 10
games we test current performance by playing 20 test games against the
opponent and summing the score results. The reward is +1 if the team
scores and -1 if the opponent scores. The discount factor is set to 0.98.
After a coarse search through parameter space we chose the following
parameters: 2 filters per input component (total of 32 or 48 filters) num-
ber of cellsn = 20 (21 for the second filters of distance/speed input
components). Q-values are initially zero. PS uses� = 0:01 and a max-
imum of 1000 updates per time step. We only compute non-pessimistic
value functions for the 3-player teams for which we usez� = 1.96.

CMAC Q(�) set-up.We play a total of 200 games. After every 20 games
we test current performance of the policy (during tests we continue se-
lecting actions according to the current exploration scheme) by playing
20 test games against the opponent and summing the score results. The
reward is +1 if the team scores and -1 if the opponent scores. The dis-
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count factor is set to 0.98. We conducted a coarse search through pa-
rameter space to select learning parameters. We use online Q(�) with
replacing traces [30] and� = 0:8 for the 1-player case, and� = 0:5 for
the 3-player case. The initial learning rate is set to� = 1:0, the learning
rate decay parameter� (see Appendix C) is set to0:3.

We use Max-random exploration withPmax linearly increased from 0.7
in the beginning of the simulation to 1.0 at the end. As for CMAC-
models we use two filters per input component (total of 32 or 48fil-
ters). The number of cells is set ton = 10 (11 for the second filters
of distance/speed input components). All Q-values are initially zero. In
general, learning performance does not very sensitively depend on the
used parameters. E.g., usingn = 20 results in only slightly worse per-
formance. Small values for� (< 0:3) do make things worse though.

PIPE set-up. For PIPE we play a total of 1000 games. After every 50
games we test performance of the best program found during the most
recent generation. Parameters for all PIPE runs are the sameas in the
previous experiments [23].

Results : 1-Player case.We plot number of points (2 for scoring more
goals than the opponent during the 20 test games, 1 for a tie, and 0 for
scoring less) against number of training games in Figure 3.

We observe that on average our CMAC model wins against almostall
training programs. Only against the best 1-player team (Pr = 0) it wins
as often as it loses, and often plays ties (it finds a blocking strategy lead-
ing to a 0-0 result). Against the worst two teams, CMAC model always
finds winning strategies.

CMAC-Q(�) finds programs that on average win against the random
team, although they do not always win. It learns to play aboutas well
as the 75% random and 50% random teams. CMAC-Q(�) is no match
against the best opponent, and although it seems that performance jumps
up at the end of the trial, longer trials do not lead to better performances.

PIPE is able to find programs beating the random team and quiteof-
ten discovers programs that win against 75% random teams. Itencoun-
ters great difficulties in learning good strategies againstthe better teams,
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though: although PIPE may execute more games (1000 vs. 200),the
probability of generating programs that perform well against the good
opponents is very small.
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Figure 3. Number of points (means of 20 simulations) during test phases for
teams consisting of 1 player. Note the varying x-axis scalings.

It tends to learn from the best of the losing programs. This inturn does
not greatly facilitate the discovery of winning programs.
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Results : 3-Players case.We plot number of points (2 for scoring more
goals than the opponent during the 20 testgames) against number of train-
ing games in Figure 4.
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Again, CMAC model always learns winning strategies againstthe worst
2 opponents. It loses on average against the best 3-player team (withPr =0:25) though. Note that this strategy mixture works better than always
using the deterministic program (Pr = 0) against which CMAC model
plays ties or even wins. In fact, the deterministic program tends to clutter
agents such that they obstruct each other. The deterministic opponent’s
behavior also is easier to model. All of this makes the stochastic version
a more difficult opponent.

CMAC-Q is clearly worse than CMAC model — it learns to win only
against the worst opponent.

PIPE performs well only against random and 75% random opponents.
For the better opponents it runs into the same problems as mentioned
above.

Score differences.We show maximal obtained score differences in Ta-
ble 1 (1 player) and Table 2 (3 players). Although PIPE performs better
against the weakest opponent than CMAC-models or CMAC-Q, PIPE
often cannot score against strong opponents. CMAC-models,however,
do score against the good opponents, and are able to find (at least once)
winning policies against all opponents.

We should keep in mind that score differences may have a largevariance.
For instance, in some experiments with the 1-player CMAC model, op-
ponent (0.0) may continuously win 760-0 in test matches. This extreme
score difference is caused by resetting the (losing) CMAC model just
before testing. PIPE has a small advantage here, since it uses the best
program of the last generation for testing and thus almost lets vanish the
probability of testing a really bad policy.

Discussion.Despite treating all components independently the CMAC
model is able to learn good reactive soccer strategies preferring actions
that activate those cells of a filter which promise highest average reward.
The use of a model often quickly stabilizes good strategies:given suf-
ficient experiences (5-20 learning games), the policy will hardly change
anymore. The reason is that deterministic policies generate similar expe-
riences.
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Table 1. Best average score differences for different learning methods against 1-
player opponents of varying strengths. * = Although CMAC-models were some-
times able to score 7 goals, they also sometimes lost 0-760.

Learning Alg. 1.0 0.75 0.5 0.25 0.0

CMAC model 85-2 68-3 27-1 6-15 1-146*
CMAC-Q 92-6 52-23 10-7 1-4 0-13
PIPE 225-18 127-35 19-13 0-3 0-10

Table 2. Best average score differences for different learning methods against
3-player opponents of varying strengths.

Learning Alg. 1.0 0.75 0.5 0.25 0.0

CMAC model 161-31 236-100 84-70 6-20 0.3-0
CMAC-Q 111-26 36-73 13-58 3-23 0-24
PIPE 297-18 163-64 30-31 0-11 0-21

Early experiences with a random initial policy may greatly impact the
final policy’s quality. They may result in continually losing policies (es-
pecially against better opponents) that are unable to improve, due to the
near-impossibility of learning from bad experiences. For such reasons we
performed multiple restarts (1 up to more than 10). Since tested strate-
gies often remain either winners or losers, the step-wise improvements
shown in the learning curves are mainly due to multiple restarts. The ups
and downs in the learning curves are caused by unstable policies with
unstable score results.

CMAC model tends to be quite robust under variations of filterdesign
(e.g., combining multiple input components) and number of cells. Con-
ducting additional experiments with filters combining distance and angle
input components, or 10/11 instead of 20/21 cells per filter,we obtained
similar levels of performance.

Multiple restarts helped CMAC model to avoid getting stuck with los-
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ing policies. When we tried CMAC-Q with multiple restarts and without
exploration, it often found blocking strategies (leading to 0-0 results)
against all 1-player opponents, but did not learn to win. Learning block-
ing strategies against multi-agent teams, however, is muchharder.

All methods perform better in the single agent case. This canprobably be
explained by the fact that the multi-agent case yields more significantly
different game configurations so that finding a policy that works fine for
all of them is more difficult.

5 Conclusion

Model-based RL is a promising method for learning to controlau-
tonomous agents. Since learning accurate world models in high dimen-
sional, continuous spaces is difficult, we have focused on learning useful
but incomplete models instead. Here we have described a novel combi-
nation of CMACs and incomplete world models which allows fordiscov-
ering successful soccer strategies and tends to outperformboth PIPE and
a Q(�)/CMAC combination. Especially against better opponents CMAC
models proved superior.

In some environments and for different games certain more complex fil-
ters grouping multiple context-dependent input components may be nec-
essary. Filters combining many different, mutually dependent input com-
ponents for a particular task may require a lot of storage space. Many
of the possible input combinations, however, will never be experienced.
A more space-efficient approach will use decision tree models to keep
track of rewards and transition probabilities between leafnodes defining
“interesting” input component combinations. Starting with an initial set
of low-complexity decision trees consisting of single rootcomponents,
new leaf nodes may be generated online using statistical tests as done in,
e.g., the G-algorithm [8]. This may lead to more and more informative
patterns which could be useful for describing the main characteristics
of positions in games such as chess or soccer. Finally, filterhierarchies
could be constructed such that combinations of active cellsof different
filters activate higher-level filter cells, thus allowing for more context-
dependent yet compact representations. This could make ourapproach
suitable for learning evaluation functions of a wide variety of games.
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Appendix A: Prioritized Sweeping

An efficient method determining which updates to perform is prioritized
sweeping (PS) [15]. PS assigns priorities to updating the Q-values of dif-
ferent states according to a heuristic estimate of the size of the Q-values’
updates. The algorithm keeps track of a “backward model” relating states
to predecessor state/action pairs. After the update of a state value the
state’s predecessors are inserted in a priority queue whichis then used
for updating the Q-values of actions that can be performed inthose states
which have the highest priority.

Our Prioritized Sweeping. Moore and Atkeson’s PS (M+A’s PS) [15]
calculates the priority of some state by checking all transitions to up-
dated successor states and identifying the one whose updatecontribution
is largest. Our variant allows for computing theexactsize of updates
of state values since they have been used for updating the Q-values of
their predecessors, and yields more appropriate priorities. Unlike our PS,
M+A’s PS cannot detect large state-value changes due to manysmall
update steps, and will not process the corresponding states. A complete
description of both algorithms is given in [40].

Our implementation of CMAC models uses a set of predecessor listsPredsk(j) containing all predecessor cells of cellj in filter k. We denote
the priority of celli of filter k by j�k(i)j, where the value�k(i) equals
the change ofVk(i) since the last time it was processed by the priority
queue. To calculate it, we constantly update all Q-values ofpredecessor
cells of currently processed cells, and track changes ofVk(i).
The model-based update of the Q-valueQk(; a), Q-update(k; ; a)
looks as follows:Qk(; a) Xj P kj(a)(Rk(; a; j) + Vk(j));
whereP kj(a) = Pk(jj; a). The details of our PS look as follows:
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Our-Prioritized-Sweeping(x):1) Compute ative ells: f1; : : : ; fz;2) For k = 1 to z do:2a) Update fk --- 8a do:2a.1) Q-update(k; fk; a);2b) Set j�k(fk)j to 1;2) Promote (k; fk) to top of queue;3) While (n < Umax & queue 6= nil)3a) Remove top (k; ) from the queue;3b) �k() 0;3) 8 Predeessor ells k; i of k; do: 3.1) V 0k(i) Vk(i);3.2) 8a do:3.2.1) Q-update(k; i; a);3.3) Vk(i) maxaQk(i; a);3.4) �k(i) �k(i) + Vk(i)� V 0k(i)3.5) If j�k(i)j > �3.5.1) Insert i at priorityj�k(i)j;3d) n n+ 1;4) Empty queue, but keep �k(i) values;

HereUmax is the maximal number of updates to be performed per update-
sweep. The parameter� 2 IR+ controls update accuracy. Note that an-
other difference to M+A’s PS is that we remove all entries from the queue
after having processed all updates.

Appendix B: Non-Pessimistic Value Func-
tions

To compute non-pessimistic value functions we decrease theprobability
of the worst transition from each filter/cell/action and then renormalize
the other probabilities. Then we use the adjusted probabilities to compute
the Q-functions. Thus we substitute the following forQ-update(k; ; a):
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Q-update-Non-Pessimistic(k,i,a):1) m argminjfRk(i; a; j) + Vk(j)g;2) n Cki (a);3) P  P̂ kim(a);4) P kim(a) (P� z2�2n+ z�pnqP (1�P )+ z2�4n )1+ z2�n ;5) �P  P kim(a)� P̂ kim(a);6) 8j 6= m6a) P kij(a) P̂ kij(a)� �PCkij(a)Cki (a)�Ckim(a);7) Q-update(k; i; a);

HereCkij(a) counts the number of transitions of celli to j in filter k
after selecting actiona andCki (a) counts the number of times actiona
was selected and celli of filter k was activated. We obtain̂P kij(a), the
estimated transition probability, by dividing them.

The variablez� determines the step size for decreasing worst transition
probabilities. To select the worst transition in step 2, we only compare
existing transitions (we check whetherP̂ kij(a) > 0 holds). Note that if
there is only one transition for a given filter/cell/action triplet then there
will not be any renormalization. Hence the “probabilities”may not sum
up to 1. Consequentially, if some filter/cell/action has notoccurred fre-
quently then it will contribute just a comparatively small Q-value and
thus have less impact on the computation of the overall Q-value.

Appendix C: Q(�)-learning

Q-learning [38], and [39] enables an agent to learn a policy by repeatedly
executing actions given the current state. At each time stepthe algorithm
uses 1-step lookahead to update the currently selected filter/cell/action
pairs (FCAPs):
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Q-learning(k, ct, at, r t, ct+1):1) e0t  (rt + Vk(t+1)�Qk(t; at));2) Qk(t; at) Qk(t; at) + �n(k; t; a)e0t;

HereVk() = maxaQk(; a), �n(k; ; a) is the learning rate for thenth
update of FCAP(k; ; a), ande0t is the temporal difference or TD(0)-
error, which tends to decrease over time.

The learning rate�n(k; ; a) should decrease online, such that it fulfills
two conditions for stochastic iterative algorithms [39], [7]. The condi-
tions for the learning rate�n(k; ; a) are:

(1)
P1n=1 �n(k; ; a) =1, and

(2)
P1n=1 �2n(k; ; a) <1.

Learning rate adaptions for which the conditions are satisfied may be of
the form :�n = 1n� , wheren is a variable that counts the number of times
an FCAP has been updated.

Q(�)-learning uses eligibility traceslt(k; ; a) [3], and [32] to allow for
updating multiple FCAPs which have occurred in the past. We use the
replacing traces algorithm [30]:lt+1(k; ; a) �lt(k; ; a) if fkt 6= lt+1(k; ; a) 1 if fkt =  andat = alt+1(k; ; a) 0 if fkt =  andat 6= a
where� discounts the influence of FCAPs occurring in the distant fu-
ture relative to immediate FCAPs. After updating the eligibility traces
we update the Q-values:8(k; ; a) do :Qk(; a) Qk(; a) + �[e0t�tk(; a) + etlt(k; ; a)℄
where�tk(; a) denotes the indicator function which returns 1 if(k; ; a)
occurred at timet, and 0 otherwise (� = �n(k; ; a)). The TD-erroret of
the value function is defined as:et  (rt + Vk(t+1)� Vk(t)).
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The procedure described here updates all occurred FCAPs at each time
step. This is computationally expensive. We actually used afaster method
which allows for updating Q-values in time proportional to O(zjAj), the
number of filters times actions [42].
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