
Musical Instrument Classification using
Democratic Liquid State Machines

Jornt R. de Gruijl jornt.degruijl@phil.uu.nl
Marco A. Wiering marco@cs.uu.nl

Utrecht University, Department of Information and Computing Sciences, Padualaan 14, 3584 CH Utrecht

Abstract

The Liquid State Machine (LSM) is a rel-
atively new recurrent neural network archi-
tecture, in which a static recurrent spiking
neural network referred to as a ‘liquid’ and
a trainable read-out network are combined
to tackle time-series data. In this paper we
describe the Democratic Liquid State Ma-
chine (DLSM) that uses an ensemble of sin-
gle LSMs. We investigated the feasibility of
the two LSM architectures as a complex spec-
trum analyzer over a broad frequency range
using a musical instrument classification task
in which bass guitar and flute had to be rec-
ognized by timbre. The experiments showed
that single LSMs correctly classified 96% of
all test samples, whereas the DLSMs classi-
fied 99% of all test samples correctly, improv-
ing overall performance to near perfection.

1. Introduction

Time-series data, such as sound, have long been a
problematic type of input for classic feedforward neu-
ral networks. This is due to the fact that they lack the
ability to retain information, which is a necessity for
real-time processing of temporal patterns. Possible so-
lutions for this problem are to use a time-delayed neu-
ral network (Waibel et al., 1988) or a recurrent neural
network (RNN). The problem of using a time-delay
neural network is that one has to decide in advance
how many previous time-steps to take into account as
useful input information. This is related to the (un-
known) Markov order of the system. If one specifies
too many inputs, the result is often slow learning and
overfitting, whereas with too few inputs the task can-
not be learned well. A problem with traditional re-
current neural networks trained with algorithms such
as backpropagation through time (BPTT) (Rumelhart
et al., 1986) or real-time recurrent learning (Williams

& Zipser, 1989), is that learning long-term dependen-
cies is made very difficult due to the problem of van-
ishing gradients (Hochreiter, 1998). This occurs when
the error that is being backpropagated dilutes with ev-
ery step, so that it cannot reliably learn from inputs
that lie many (e.g. more than 10) steps in the past.
A more advanced recurrent neural network architec-
ture is Long-Short Term Memory (LSTM) (Hochre-
iter & Schmidhuber, 1997). LSTM is ideally suited
for remembering particular events, such as remember-
ing whether some lights were on or off (Bakker et al.,
2003), but in a previous comparison to evolving Spik-
ing neural networks, LSTM was outperformed on cer-
tain toy problems (Koopman et al., 2003).

Two new recurrent neural network architectures are
the echo state network (Jaeger, 2001), and the liq-
uid state machine (Maass et al., 2002). These novel
architectures share the principle of using a static fil-
ter (dubbed ‘liquid’) that transforms a temporal input
stream to an activation pattern and a function approx-
imator that learns to map the activation pattern to the
desired output. Usually, a non-adaptive liquid is used,
which makes it unnecessary to search in the space of
recurrent neural networks. In this case, only a feedfor-
ward mapping has to be learned, which can be done
by e.g. feedforward neural networks (Rumelhart et al.,
1986).

In this paper we propose the Democratic Liquid State
Machine (DLSM) that uses bagging and majority vot-
ing to enhance the capabilities of a single LSM. Since
LSMs generally have low bias and high variance, an
ensemble approach may turn out to be very fruitful.
We compare the LSM and the DLSM on a musical
instrument classification task. In this task we made
our own bass guitar and flute samples and studied the
classification accuracy of both algorithms.

Outline. In Section 2, we describe the Liquid State
Machine approach and in Section 3 we describe the
DLSM. Section 4 describes the experimental setup,

and Section 5 presents the results. In Section 6 we
discuss the obtained results and sketch future possi-
bilities.

2. Liquid State Machines

The Liquid State Machine (LSM) (Maass et al., 2002)
utilizes two principles: the capacity of forward pro-
cessing neural networks to work with high dimensional
vectors, and the property of recurrent neural networks
of retaining information. Since the latter occurs even
without training, one could train a function approxi-
mator such as a linear or feedforward neural network
on the perturbations in an untrained recurrent neu-
ral network. The difference between the LSM and
the Echo State Network (ESN) (Jaeger, 2001) lies in
the type of untrained recurrent neural network that is
used. For the ESN, a recurrent neural network with
neurons with a sigmoid activation function are used,
whereas for the LSM a spiking neural network consist-
ing of spiking neurons is used.

2.1. The Main Idea of the LSM

Input is fed into the liquid of an LSM M , which gen-
erates a corresponding liquid state. The liquid state
can be regarded as the output of some operator or fil-
ter LM that maps input functions u(·) onto functions
xM (t):

xM (t) = (LMu)(t).

Because not all inputs last the same number of time
steps and the amount of information that can be repre-
sented by a finite number of nodes is limited, an LSM
is supposed to have a fading memory.

Fading memory (Boyd & Chua, 1985) is a continuity
property of filters F that requires any output (Fu)(T)
of input function u(·) ∈ Un to possibly be approx-
imated by the output (Fv)(T) of an input function
v(·) ∈ Un that approximates u(·) in a sufficiently long
time interval [0, T]. With this requirement met, F
has fading memory if for every u ∈ Un and for ev-
ery ε > 0 there exist δ > 0 and T > 0 such that if
||(Fv)(T)− (Fu)(T)|| < ε for all v ∈ Un it holds that
||u(t)− v(t)|| < δ for all t ∈ [0, T].

To illustrate this, one could view the liquid metaphor-
ically as an actual liquid, e.g. a pond. Rain on the
pond causes the surface to ripple, but due to friction
the ripples fade. The most recent drops contribute the
most to the current state of the pond’s surface. Like-
wise, in a liquid, inputs decay as time goes by, causing
more recent inputs to have a larger influence on the
current liquid state than other ones.

In addition to the property of fading memory, the LSM
needs to have the properties of approximation and sep-
aration. The property of separation means that that
distinctly different input patterns should yield dis-
tinctly different liquid state representations. Any fil-
ter that has this characteristic can be used as a liquid.
The property of approximation means that the read-
out network can learn the target function until an ar-
bitrary precision. Maass et al. have proven that LSMs
satisfying the properties of separation and approxima-
tion have universal power for computations with fading
memory on time-series (Maass et al., 2002).

Taking a liquid state xM (t) as input, the read-out net-
work functions as a function fM that transforms at
any time t the liquid state into an output y(t):

y(t) = fM (xM (t)).

The read-out network does not need some form of
memory, since information about earlier states is re-
tained by the liquid. Thus, the liquid is used to trans-
form a temporal stream of inputs to an activation pat-
tern of the neurons in the liquid at time-step t. The
read-out network is now trained to map the activation
pattern xM (t) to the desired output y(t), which can
be done using supervised learning algorithms such as
feedforward neural networks.

2.2. Computations in the Liquid

We will describe the liquid we have used in our experi-
ments, which can be seen as a simplified version of the
integrate-and-fire model (Gerstner & Kistler, 2002).
In the brain there are many kinds of neurons, but some
things they all have in common. They all have means
of sending a signal and receiving incoming signals: an
axon and dendrites, respectively. When the sum of
incoming signals exceeds a certain threshold level, the
neuron generates an electro-chemical pulse along its
axon. It then enters an absolute refractory period in
which it cannot fire, followed by a relative refractory
period in which it is hard to excite a response from the
neuron. 1

Due to the biological nature of the task, the decision
was made to use a liquid consisting of spiking neurons,
which are similar in many ways to organic neurons.
Spiking neurons accumulate input signals until they
exceed a certain threshold, at which point they reset
their activation value and fire a pulse (usually a 1 in-

1Even this is greatly simplified. For more in-depth in-
formation about biological neurons, we refer you to books
such as “Cognitive Neuroscience – the Biology of the Mind”
by Gazzaniga, Ivry and Mangun (2002).

stead of the 0 indicating inactivity), as described by
the following formula:

f(a) = { 1, if a ≥ θ, and 0 otherwise

In the function above, θ is the threshold value. For the
experiments a value of θ = 1 was used. If the threshold
is not reached, the activation exponentially decreases
back to 10% of its original level, which took 15 time
steps in the experiments with the selected decay factor
φ:

φ15 = 0.1 → φ = e
1
15 ln 0.1

To calculate the activation value at(i) at time t for
neuron i, the following recursive formula is used:

at(i) = φ · at−1(i) + it(i)

Where it(i) is the sum of incoming signals at time t
for neuron i:

it(i) =
∑

j

wjif(at−1(j))

The summation above is over the incoming connec-
tions with weights wij , and depends on the liquid
structure. f(a) is the threshold function as defined
before.

When a node fires, the pulse travels along weighted
connections to other neurons. After this, the neuron
that fired enters an absolute refractory period in which
it cannot fire. During this time it can still accumulate
input signals, potentially causing the neuron to fire
immediately once the refractory period is over. How-
ever, the decay factor possibly causes them to have
extinguished enough to have little or no effect. An ab-
solute refractory period of 15 time steps was selected.
Unlike biological neurons, the spiking neurons used in
the experiment had no relative refractory period.

2.3. Mapping the Liquid to the Read-out
Network

There are multiple ways to map the liquid state to the
read-out network. Some examples are to use activa-
tion patterns at a certain point in time of a randomly
selected number of neurons in the liquid, or only those
of a designated output layer, or even of the entire liq-
uid. Another approach could be to use firing rates of
neurons.

For the representation of the liquid states, it was de-
cided to use a vector containing the activation values
of all of the non-input nodes of the liquid. Thus, when
the read-out network was called upon to classify the

sample, it would be fed a list of activation values of
that particular point in time. This way, no additional
factors have to be introduced (e.g. firing rates) and
the chances of leaving crucial liquid nodes out of the
read-out network’s input are eliminated.

3. Democratic LSMs

There exist a number of general algorithms that learn
multiple models (classifiers) and combine them to pro-
duce the final result. One method is stacked general-
ization (Wolpert, 1992) which combines induced mod-
els from the bottom layer to the top-layer, where in-
dependent model errors are used to select models for
predicting the answer to a query. Stacked generaliza-
tion can be seen as a meta-theory for combining mod-
els. An example of this theory is the hierarchical mix-
tures of experts that uses gating networks to divide the
input-space into regions where experts are responsible
for giving the outputs (Jordan & Jacobs, 1992). An-
other ensemble algorithm is bagging (Breiman, 1996)
which learns a set of independent models by first boot-
strapping the data to get a training set and then trains
a new classifier on this data set. This is subsequently
repeated a number of times. The models are then com-
bined by using majority voting of the predicted classes.
Another method which receives a lot of attention is
boosting (Freund & Schapire, 1996; Schapire et al.,
1997) which sequentially trains a set of models where
the data is reweighted after learning each new classi-
fier. This is done so that misclassified examples get
higher weight in the training data for the next classi-
fier. By combining multiple classifiers through voting,
individual errors are corrected by the other classifiers.

Here we introduce democratic Liquid State Machines
which are similar to using a bagging method with liq-
uid state machines. However, since a liquid state ma-
chine consists of a liquid and a read-out network, there
are two options to use bagging; (1) A single liquid is
used, and multiple read-out networks are trained using
this liquid; (2) Multiple liquids and read-out networks
are independently trained and used together with ma-
jority voting to produce the final result.

The first option we discarded, since we are using ran-
domly initialized liquids. That could cause a liquid
unable to represent all frequency bands equally well
to be used for all read-out networks, leading to poor
performance if a characteristic frequency should fall in
such a range. Also, the diversity found in the read-out
networks trained on a single liquid could be relatively
small. We used the second method, and thereby ini-
tialized multiple liquids for which separate read-out
networks are used.

It is well-known that bagging methods perform best if
a classifier has a small bias and a large variance. Due
to the large dimensionality of inputs (based on the
many neurons in the liquid) and the use of a feedfor-
ward neural network as read-out network, we expect
LSMs to have a large variance and thus to profit from
using the ensemble method. We will see in the exper-
iments whether our expectations turn out to be right.

4. Experimental Set-up

LSMs are relatively new and have been shown to per-
form well on toy problems. Little is still known about
the feasibility of using them for more practical tasks,
though promising research in this field has been done
(Vreeken, 2004). We decided to investigate the feasi-
bility of utilizing the LSM principle for a practical task
that – to our knowledge – had not been formally inves-
tigated yet: complex spectrum analysis over a broad
frequency range.

To this end, a classification task is used in which two
musical instruments, the bass guitar and the flute,
have to be identified by frequency analysis. Audio
classification tasks using neural networks can be done
by selecting key characteristics of the samples, analyz-
ing a sample to extract these characteristics and then
feeding the resulting information vector into a forward
processing network (Malheiro et al., 2004). The hybrid
network autonomously performs the first two steps,
providing an improvement in terms of engineering.

The research focused on the tonal overlap of the two in-
struments, since the set of common tones is the only set
where the distinction between the two musical instru-
ments must be made by timbre alone. An advantage
was the fact that this set is relatively small, thus cre-
ating natural boundaries for the range of sound frag-
ments.

4.1. Processing the Input-streams

The information fed to the read-out network in this
project came directly from the liquid. The liquid’s
input was pre-processed: a Fast Fourier Transform
(FFT) algorithm with a fixed time window of 5.8 ms.
was used to preprocess the sound samples, transform-
ing the wave pattern into a vector of frequencies and
their respective amplitudes. This is similar to the pre-
processing that occurs in the human cochlea and was
considered to be highly likely to boost the performance
of the LSM. Feeding the liquid raw wave data was
therefore not attempted.

The vectors resulting from the FFT were inserted into
the liquid one by one every 5.8 ms. For every sam-

ple, 5 ‘snapshots’ (or fragments) of liquid activations
at different time steps were made, which were in turn
passed on to the read-out network. These results of the
read-out network after each snapshot are then com-
bined using a majority voting procedure. The idea
behind the snapshots procedure was that some part
of a sound clip is likely to correspond with some of
the data learned by the network, facilitating classifica-
tion, while the chances of wrongly classifying a musical
instrument because of an uncharacteristic activation
pattern are decreased.

4.2. The Liquid Structure

For every frequency band that the FFT algorithm sup-
plied there was one input neuron (for a total of 64).
The input neuron added the FFT-value (between 0
and 1) for this frequency band to its discounted pre-
vious activation. It fired when its activity exceeded
the firing threshold 1. Note that the only information
used about the volume of a frequency band this way
is whether the activity of the neuron (computed us-
ing FFT-values over multiple steps) exceeded its firing
threshold or not. The volume levels of the recordings
also differed greatly, making volume not much of a
characteristic by which to determine what musical in-
strument was heard. The LSMs have to use crucial in-
formation about the timbre (the auditive fingerprint)
of an instrument, for which the complete frequency
spectrum plays a central role for the classification task.

For every input neuron there was a four-neuron col-
umn, thus creating a grid with 64 columns and five
(5) rows, of which one row consisted solely of input
neurons. The neurons were randomly connected with
the chance of two neurons connecting given by the for-
mula:

Pc(a, b) = C · e−
D(a,b)2

λ2

Here D(a, b) denotes the Hamming distance between
nodes a and b. C is a constant between 0 and 1 and
regulates the balance between local and global connec-
tions together with λ. For the experiments we used
C = 0.9 and λ = 2.

Throughout the liquid all weights for the connections
were set to 0.2, causing at least 5 simultaneous activa-
tions to be needed for a neuron to fire. A total of 10%
of the connections was inhibitory as opposed to exci-
tatory. These connections were randomly distributed
through the liquid.

4.3. The Read-out Network

The read-out network was a feedforward neural net-
work with two output units trained using the back-

propagation algorithm with a learning speed of 0.1.
Training ended when the read-out network gave only
correct answers that had an activity at least a factor
1.5 bigger than the activity of the wrong output unit
on the training set, or when 2000 iterations had been
done.

Though normally a network with a small number of
hidden neurons works best for classification tasks –
since this forces the network to generalize over the data
– we found through trial and error that using 50 hid-
den neurons worked best for this task. This is possibly
due to the way the network was trained. Presumably,
when combined with the conditions for ending train-
ing, this large number of hidden neurons allowed the
network to represent many possible properties a sam-
ple could have with a small weight attached, thus cre-
ating a good generalization performance.

4.4. The Sound Files

The sound files used were 16-bit mono Wave-files with
a sample rate of 22 kHz.

The total set of 234 samples was equally divided in
117 recordings of bass guitar sounds and 117 of flute
sounds. Per run, the system was trained on a random
set of 100 bass and 100 flute samples, after which it
was tested on the remaining samples. For the experi-
mental results we repeated this 10 times using different
training and test sets.

Most of the sound files were made especially for this
research. For those recordings, three bass guitars and
three flutes that were significantly different in timbre
were used. To further prevent overfitting some au-
dio snippets from compact discs of several performing
artists were used. These samples did not necessarily
only use tones that the bass guitar and flute have in
common. But since they were relatively few (approxi-
mately 15% of the total number of samples), they were
expected to give the system a bias at most.

The set of samples consisted of fragments of scales
or melodies, two-tone intervals, and single tones. On
most of the recordings only one instrument (bass or
flute) could be heard. But to test the LSM’s robust-
ness, other recordings could also feature ‘noise’ rang-
ing from softly playing instruments to roaring crowds.
Care was exercised so as not to select recordings of
both bass guitar and flute, though.

Although some were longer, most sound files were
roughly one second in length, meaning they would be
fed into the liquid in about 170 time steps. Combined
with the five snapshot approach, that would boil down
to 34 time steps between snapshots.

The snapshot method can also be regarded as provid-
ing the LSM with five times the number samples that
was originally recorded. In the rest of this article, we
will refer to such very short fragments of original sam-
ples as ‘fragments’ while using the term ‘samples’ to
indicate original complete sound files. The multiple
classifications of the single fragments of a sample are
also used for majority voting over the classification of
the complete sample.

5. Experimental Results

The experiments were done with software written in
Java, run on a system with a 1.92 GHz AMD Athlon
XP 2600+ processor with 512 MB of RAM, under Mi-
crosoft Windows XP Professional. A total of 50 single
liquid state machines were tested on 10 different test
sets (and training sets). For the DLSMs, 10 runs were
performed, each with a different test set (and training
set), with 10 LSMs to vote.

There is a structural difference between the tables
with the results for the single LSMs and the DLSMs:
those for the single LSMs have no ‘undecided’ cate-
gory, whereas those for the democratic LSMs do. This
is because single LSMs get a fragment or sample ei-
ther wrong or right. Fragments could theoretically be
undecided with the read-out network giving equal out-
put for both, but in practice this never happens. Fur-
thermore, because of the 5 snapshots procedure, either
bass or flute had to be chosen in the end, with no mid-
dle way possible. Because we used 10 LSMs in the
DLSM setup, things were different there. It was pos-
sible for 5 LSMs to vote for one instrument while the
other half voted for another. In this case the classifi-
cation is “undecided”.

5.1. Results with Single LSMs

The experimental results with single LSMs are shown
in Tables 1, 2, and 3. As can be deduced from Tables
1 and 2, the bass and flute were about equally diffi-
cult for the single LSMs. Apparently no easy means
of identification was found to circumvent an in-depth
analysis of the input, otherwise either flute or bass
would have been classified correctly significantly more.
Table 3 shows that the total accuracy of the single
LSMs on fragments is 88.4% and on the samples it is
95.9% which are rather good results.

Simple tones made up for most of the training and
test sets, and unsurprisingly these were usually cor-
rectly classified. They did not score highest, though,
probably due to the fact that a single tone does not
hold as much information for classification as several

Table 1. Classification accuracy of the single LSMs for the
bass guitar samples.

Average Std. Dev.

Fragments Wrong 12.7 % 7.6 %

Samples Wrong 3.2 % 6.8 %

Table 2. Classification accuracy of the single LSMs for the
flute samples.

Average Std. Dev.

Fragments Wrong 10.6 % 5.3 %

Samples Wrong 5.0 % 6.8 %

tones do. On top of that, it was observed that from
run to run errors could concentrate in certain parts of
the frequency range. This is probably due to the ran-
domness of the liquid, causing it to react in different
ways in different parts of the frequency range. A single
tone in a part of the frequency range that the liquid
does not respond well to, makes it hard to classify the
sample without additional tones in other parts of the
frequency range. As a result two-tone intervals and
fragments of scales scored relatively higher.

Despite the few samples taken from compact discs,
those sample fragments were classified correctly re-
markably often. This is possibly due to professional
mixing, enhancing salient features. There was a dif-
ference between the scores for bass and flute in this cat-
egory, however. The system performed slightly better
on the flute CD samples, which was probably caused
by the fact that the average bass sample had more
background noise than the average flute sample. A
live performance for flute is not often accompanied by
roaring crowds and a flute is often recorded with a very
clean sound in the studio. A bass, on the other hand,
is often found playing in front of noisy people when
performing live and adding some amount of electronic
effects when recording in a studio. All in all, the LSMs
performed well and proved to handle large amounts of
noise with relative ease.

The performance of the system regarding bass over-
tones is worth special mention. Overtones are basi-
cally the same as normal tones, minus the lowest fre-
quency. As an effect, they are among the rare bass
tones that can be as high as some of the higher flute
tones. Only four training samples for these overtones

Table 3. Total classification accuracy of the single LSMs.

Average Std. Dev.

Fragments Wrong 11.6 % 5.2 %

Samples Wrong 4.1 % 4.1 %

existed, yet 85% of the fragments was classified cor-
rectly. The most spectacular result was in one run
where there were no training samples for overtones in
the training set, since they were all part of the test
set. Despite that, one all-overtone sample was classi-
fied correctly 100% of the time, and the other samples
normally. Apparently the system learned to do a de-
cent frequency analysis, since flute CD samples were
the only other ones to get into the same frequency
range, which could have easily led the LSM to be mis-
taken.

Another interesting observation worth mentioning is
the fact that flute and bass samples with a vibrato
tone in it were almost always classified correctly. Pos-
sibly the system used this as a salient feature, since
most flute tones have some vibrato, but the fact that
the bass also benefited from this suggests otherwise.
Most likely it is due to the fact that vibrato is not
necessarily only a change in volume, but also a slight
pitch shift, going up and down periodically. Because
of this continuous sweeping across frequency bands,
neighboring input neurons are sequentially activated
through time, causing new neurons in the liquid to
fire while other neurons sit through their refractory
periods. This way, a pattern that defines the tone can
be held almost continuously by the liquid, making it
easier for the read-out network to classify.

5.2. Results with Democratic LSMs

The results of the DLSMs are shown in Tables 4, 5, and
6. The performance of the DLSMs is significantly bet-
ter than that of single LSMs. The only samples that
were incorrectly classified were flute samples. Most of
these mistakes occurred during a run in which there
were hardly any training samples similar to the sam-
ples that were incorrectly identified.

Performance increased overall with the greatest in-
crease lying in the classification of single-tone sam-
ples. Most errors in identifying these were caused
by random liquid structures incapable of adequately
representing certain frequency-bound characteristics.
Such individual errors are now canceled out. For the
other files, majority voting in general causes a decrease

Table 4. Classification accuracies of the Democratic LSMs
for the bass guitar samples.

Average Std. Dev.

Fragments Wrong 8.6 % 5.5 %
Fragments Undecided 1.5 % 2.5 %

Samples Wrong 0.0 % 0.0 %
Samples Undecided 0.6 % 0.5 %

Table 5. Classification accuracies of the Democratic LSMs
for the flute samples.

Average Std. Dev.

Fragments Wrong 7.6 % 6.3 %
Fragments Undecided 1.2 % 3.5 %

Samples Wrong 1.8 % 6.1 %
Samples Undecided 0.0 % 0.0 %

in misidentified fragments, which in turn leads to im-
proved performance in classifying samples.

The performance on all samples of the Democratic
LSMs is 99.1% with 0.3% of the samples undecided.
This is an excellent performance, but some frag-
ments were structurally mistakenly identified, seem-
ingly without reason for an experienced human ear.

The only general trend found in problematic cases is
that some bass samples had tones without a clear on-
set, swelling like a flute tone. However, since the LSMs
that were used are presumed to be insensitive to this
feature due to the structure of the spiking liquid, this
seems unlikely. For flute tones, no satisfying explana-
tion was found either. It would seem that despite the
positive results overall, there remains the question of
which features the LSMs deem salient for classification
and whether these are at all similar to the properties
the human brain primarily takes into account.

6. Discussion

In this paper we described the Democratic Liquid
State Machine that extends the normal LSM by using
an ensemble method and majority voting using mul-
tiple liquids and read-out networks. The experimen-
tal results on a musical instrument classification task
showed an excellent performance of the DLSM, getting
an accuracy of about 99% on the testing samples.

Another musical instrument classification experiment
using flute, eight other wind instruments and a pi-

Table 6. Total classification accuracies of the Democratic
LSMs.

Average Std. Dev.

Fragments Wrong 8.1 % 4.8 %
Fragments Undecided 1.4 % 2.6 %

Samples Wrong 0.9 % 2.6 %
Samples Undecided 0.3 % 0.3 %

ano in a one-versus-one classification paradigm yielded
98% correctly identified samples in the piano-versus-
other cases.2 (Essid et al., 2004) The samples used
were recordings of solo musical phrases taken from
CDs of classical music and jazz, and included both
live and studio performances. Identification was done
by doing an extensive and advanced feature analysis
of the entire sample, rendering real-time classification
impossible. It would appear that the DLSM yields
similar results without a lot of a priori knowledge and
assumptions about the input. Furthermore, it enables
real-time classification.

The matter of which features of the samples were used
by the DLSMs for classification is one that raises ques-
tions. Though the system performs extremely well,
little is known about the actual processes by which a
decision is made. We do not know whether a DLSM
scrutinizes the same qualities of the sounds that the
human brain does. Thus we cannot tell to what mea-
sure a DLSM is biologically plausible.

For future research, it would be interesting to see how
such a system would perform on similar classification
tasks with more than two categories, e.g. the musical
instruments used by Essid et al. (2004). Furthermore,
it is worth investigating how the DLSM would per-
form on a more complex frequency analysis task, such
as discriminating between a hobo and a clarinet by
timbre, thus taxing the separation property of the liq-
uids more. This would also shed more light on the
performance of the DLSM when compared to earlier
research in musical instrument classification.

Research as to the feasibility of a DLSM as an on-line
music genre classifier may also prove fruitful. Many
downloadable music files on computer networks are of-
ten found lacking such information, causing inefficien-
cies in processes such as search commands. Should a
DLSM prove capable of classifying music genres (which

2Since they used no bass guitar in this experiment, we
selected the piano, which is the instrument that approxi-
mates the sound of a bass the most out of the instruments
they used.

may also involve such characteristics as rhythm), it
could be used as an on-line learning system monitor-
ing such files and adding informative labels in case
they are missing and learning from them if they are
present.

The excellent performance of the DLSM in our experi-
ments bodes well for future application. In those cases
where individual LSMs perform well in general, but ex-
hibit a high variance, a DLSM stabilizes and increases
performance.

Acknowledgments

We would like to thank Harm Aarts, Hado van Hasselt,
Wilco Moerman and Leo Pape for graciously permit-
ting us to use their code. Our thanks also go out to
Maaike van den Broek who provided us with approxi-
mately 100 samples worth of flute snippets.

References

Bakker, B., Zhumatiy, V., Gruener, G., & Schmidhu-
ber, J. (2003). A robot that reinforcement-learns to
identify and memorize important previous observa-
tions. Proceedings of the 2003 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS2003) (pp. 430–435).

Boyd, S., & Chua, L. O. (1985). Fading memory and
the problem of approximating nonlinear operators
with Volterra series. IEEE Transactions on Circuits
and Systems, 1150–1161.

Breiman, L. (1996). Bagging predictors. Machine
Learning, 24, 123–140.

Essid, S., Richard, G., & David, B. (2004). Musical in-
strument recognition based on class pairwise feature
selection. ISMIR Proceedings 2004.

Freund, Y., & Schapire, R. E. (1996). Experiments
with a new boosting algorithm. Proceedings of
the thirteenth International Conference on Machine
Learning (pp. 148–156). Morgan Kaufmann.

Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2002).
Cognitive neuroscience, second edition. W. W. Nor-
ton and Company.

Gerstner, W., & Kistler, W. (2002). Spiking neural
models. Cambridge University Press.

Hochreiter, S. (1998). Recurrent neural net learning
and vanishing gradient. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, 6(2), 107–116.

Hochreiter, S., & Schmidhuber, J. (1997). Long-short
term memory. Neural Computation, 9(8), 1735–
1780.

Jaeger, H. (2001). The ‘echo state’ approach to ana-
lyzing and training recurrent neural networks. GMD
report 148.

Jordan, M. I., & Jacobs, R. A. (1992). Hierarchies
of adaptive experts. In J. E. Moody, S. J. Han-
son and R. P. Lippmann (Eds.), Advances in neural
information processing systems 4, 985–993. Morgan
Kauffmann.

Koopman, A., van Leeuwen, M., & Vreeken, J. (2003).
Dynamic neural networks, comparing spiking cir-
cuits and LSTM (Technical Report UU-CS-2003-
007). Institute of Information and Computing Sci-
ences, Utrecht University.

Maass, W., Natschläger, T., & Markram, H. (2002).
Real-time computing without stable states: a new
framework for neural computation based on pertur-
bations. Neural Computation, 14, 2531–2560.

Malheiro, R., Paiva, R. P., Mendes, A. J., Mendes,
T., & Cardoso, A. (2004). Classification of recorded
classical music using neural networks. Centro de
Informática e Sistemas da Universidade de Coimbra.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J.
(1986). Learning internal representations by er-
ror propagation. In Parallel distributed processing,
vol. 1, 318–362. MIT Press.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S.
(1997). Boosting the margin: a new explanation for
the effectiveness of voting methods. Proceedings of
the fourteenth International Conference on Machine
Learning (pp. 322–330). Morgan Kaufmann.

Vreeken, J. (2004). On real-world temporal pattern
recognition using liquid state machines. Unpub-
lished master’s thesis, Institute of Information and
Computing Sciences, Utrecht University.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., &
Lang, K. (1988). Phoneme recognition using time-
delay neural networks. Proceedings of the IEEE In-
ternational Conference on Acoustic, Speech and Sig-
nal Processing (pp. 107–110).

Williams, R., & Zipser, D. (1989). A learning algo-
rithm for continually running fully recurrent neural
networks. Neural Computation, 1, 270–280.

Wolpert, D. (1992). Stacked generalization. Neural
Networks, 5, 241–259.

