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tThere is an in
reased interest in multi-agent systems (MASs) for 
omput-ing robust solutions to 
omplex real world problems. In this paper we analyzedi�erent aspe
ts of multi-agent systems, in parti
ular multi-agent ar
hite
-tures, multi-agent problems, and optimization algorithms for MASs. Further-more, we present a s
heme for mapping multi-agent problems to ar
hite
tureswhi
h 
an be used for solving them and a mapping from multi-agent prob-lem features to optimization algorithms. Finally, we review the solutions ofprevious work on many di�erent multi-agent problems.1 Introdu
tionMulti-agent systems (MASs). The study of multi-agent systems enables us to
ome up with robust solutions to 
omplex problems. In the past many monolithi
approa
hes have been 
onstru
ted to solve su
h tasks. As problems have be
omemore 
omplex during the last de
ades, more modular systems have been developedfor solving them. The study of multi-agent systems (MASs) is be
oming an a
tive�eld of resear
h in arti�
ial intelligen
e (AI) whi
h studies how parti
ular problems
onsisting of multiple 
omponents 
an be solved. For this the MAS engineer identi-�es lo
al 
omponents in the problem (sometimes a problem has to be broken downinto lo
al 
omponents �rst) and then uses agents to 
onstru
t individual solutionsfor ea
h of the 
omponents. MASs are systems in whi
h there is no 
entral 
ontrol:individual agents re
eive inputs from the environment (or through 
ommuni
ationwith other agents) and use these inputs to sele
t individual a
tions (outputs, de
i-sions). The global (
omplex) behavior of MASs depends on the lo
al behavior ofea
h agent (the way it a
ts) and on the intera
tions between the agents. Many 
om-plex problems 
an be naturally des
ribed as MASs su
h as traÆ
 
ontrol, networkrouting, sto
k supply, pollution dete
tion, elevator dispat
hing, forest �re �ghting,and transportation problems. E.g., in traÆ
 
ontrol, traÆ
 lights and 
ars are mod-eled as agents and the total throughput of the system is a result of the 
omplexintera
tions of the agents and the traÆ
 environment (infrastru
ture).Why MASs? The question may arise why we want to 
onstru
t multi-agentsystems instead of single 
entralized agent systems. There are di�erent reasons forusing MASs:� External. Some problems require MASs. Consider di�erent organizationswhi
h trade with one another. Ea
h organization has its own goals and pro-prietary information and wants to keep its own information hidden from other1



organizations so that it will not give authority to any single person to builda representation that integrates them all. Instead the di�erent organizationsneed their own systems (Stone and Veloso, 1997).� Internal. MASs are more modular than single agent systems whi
h givesparti
ular advantages: (1) It be
omes easier to 
hange the behavior of singleagents or to add new agents to the system (s
alability); (2) MASs providea 
onvenient way to integrate distributed 
omputing algorithms to speed up
omputing solutions for the di�erent agents; (3) MASs are more robust, es-pe
ially if there are redundant agents available. If an agent in a MAS breaksdown, the other agents 
an still 
ontinue working so that the system degradesgra
efully and the problem 
an still be solved. This is very di�erent from a
entral 
ontroller breaking down | when this happens there is not anotherway for sele
ting 
ontrol a
tions for the agents so that the whole system 
annotoperate anymore.Learning in MASs. The �rst possibility to 
onstru
t a MAS is to designa MAS ar
hite
ture and to program the intera
tion proto
ols and behavior of allagents in the system. The behavior of an agent is usually 
aptured by a de
isionmodule (poli
y) whi
h uses the inputs of the agent to 
hoose an a
tion. As prob-lems get more 
omplex, programming the 
orre
t a
tion for ea
h possible input isa demanding and time-
onsuming task. Even if we are able to program the behav-ior of an agent in a parti
ular environment, this behavior may fail entirely whenthe environment 
hanges. Therefore a more 
onvenient way to 
onstru
t MASsis to make use of ma
hine learning (ML) te
hniques whi
h are able to adapt anagent's behavior automati
ally and have the aim to optimize the agent's behaviorin the environment. Training an agent is done by having the agent intera
t withthe environment and using feedba
k (reward) from the environment to adjust theagent's behavior. If the environment 
hanges, so will the agent's behavior. Sin
eprogramming agents is a hard task, we will fo
us on the use of ML te
hniques orother optimization methods to automati
ally sear
h for an (optimal) behavior of anagent.Outline. In this arti
le we will �rst 
onsider di�erent multi-agent systems andwill des
ribe their most important features and ar
hite
tures in se
tion 2. Then inse
tion 3, we will des
ribe a set of algorithms and methods whi
h 
an be used tooptimize a system. In se
tion 4, we will 
onsider a set of multi-agent problems anddes
ribe work whi
h has been done to solve them. In se
tion 5, we will draw some
on
lusions.2 Multi-agent systems (MASs)Multi-agent systems 
an be used to naturally solve a wide variety of problems. Animportant topi
 in MASs is the 
oordination of the behaviors of di�erent agents.Although in single agent systems, an agent pursues its own goal, there may notbe su
h a thing as a single goal for MASs. MASs 
an also 
onsist of di�erentself-interested rational agents whi
h learn behaviors whi
h ful�l only their owngoals. Sin
e the MAS designer wants to optimize the behavior of the global system,we have to evaluate its global performan
e. When the agents pursue a 
ommongoal, e.g. in network routing, the performan
e of the global system 
an easily beevaluated. Otherwise the performan
e of the global system is dependent on theperforman
es of all single agents, and the global goal would 
onsist of all goalsof the individual agents (whi
h may not always be 
ompletely attainable). Oftenthese agents intera
t and 
an help or hinder ea
h other when they pursue theirgoals. Therefore, to optimize the global system, agents should 
ooperate whi
h is2



made possible in di�erent ways. E.g., we 
an use 
ommuni
ation between agents sothat they 
an negotiate about their goals and a
tions and then exe
ute joint plans,or we 
an use management agen
ies or so
ial laws whi
h determine whi
h behaviorsshould and whi
h ones should not be used.2.1 Des
ription of agentsAlthough we do not want to provide a theory of agen
y here (we refer to (Wooldridge,1999) for this), we will shortly des
ribe how an agent intera
ts with its environment.An agent uses real or virtual sensors to obtain information from its environment,and uses a
tuators for exe
uting a
tions. Its input 
onsists of information of the en-vironment, but may also in
lude information obtained through 
ommuni
ation withother agents. By using a de
ision poli
y, the agent maps inputs to a
tions. The goalof an agent is usually provided in the form of an evaluation or reward fun
tion. Atparti
ular time steps the agent may be evaluated and the given amount of rewarddetermines how far the agent is su

essful in rea
hing its goal. The higher the longterm reward intake, the better the agent performs. See �gure 1 whi
h depi
ts atwo-agent system.
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Figure 1: A MAS in whi
h two agents intera
t simultaneously with an environmentand have the possibility to 
ommuni
ate with ea
h other.All agents intera
t simultaneously with the environment. After all agents havesele
ted their a
tion, the environment is 
hanged (to a new state) and the agentsre
eive a reward (evaluation signal) based on their lo
al reward fun
tion whi
h mapsthe arrival in the new state to a s
alar reward value. The goal of ea
h agent is toa
hieve the highest possible sum of rewards (utility) and in this way ea
h agentis self-interested. To a
hieve this goal, agents adapt their poli
y based on theirexperien
es and try to �nd that poli
y in the spa
e of all possible poli
ies whi
hleads to the maximal future reward sum given some state. As agents optimizetheir individual poli
y, we would like to see that the performan
e of the wholeMAS improves as well. This is not always the 
ase, however. Sometimes goals ofdi�erent agents are dependent on ea
h other so that if one agent pursues its owngoal it hinders another agent rea
hing its goal. Therefore agent's behaviors shouldbe 
oordinated so that system performan
e (or the so
ial welfare: the sum of allagent's performan
es) is optimized when agent behaviors are optimized.3



2.2 MAS ar
hite
turesAn important task for a system engineer when 
onstru
ting a MAS is to designan ar
hite
ture whi
h determines how agents are organized. E.g., the organizationdetermines whether and how agents 
an 
ommuni
ate and is essential for 
oordi-nating agent behaviors. We would like to set up an ar
hite
ture whi
h allows for
ooperation between groups of agents. We will des
ribe a number of MAS ar
hi-te
tures, and examine their 
omplexities and whether they are stati
 or dynami
ar
hite
tures.� We de�ne the 
omplexity of an ar
hite
ture as the total size of the sear
h(poli
y) spa
e.� An ar
hite
ture is stati
 if it remains invariant during the learning pro
ess.An ar
hite
ture is dynami
 if some 
omponents of it 
hange during the adap-tation pro
ess.The multi-agent ar
hite
tures 
an be separated a

ording to the problem theydeal with. First of all, ar
hite
tures may deal with the problem of breaking down avery large and 
omplex 
entral 
ontroller into parts and assigning tasks and goalsto individual agents. Se
ond, ar
hite
tures may deal with handling the problem ofpartial observability of the global state and with the separation of problem-solvinginformation over agents. Here, 
ombining information from multiple sour
es mayredu
e the un
ertainty in the de
ision making of single agents. Finally, ar
hite
turesmay deal with the 
oordination of multiple agents. To deal with multiple problemsat the same time ar
hite
tures may be 
ombined.2.2.1 Centralized 
ontrolWe 
an use a single group poli
y whi
h maps a des
ription of the environmentalstate to a set of agent a
tions. This 
an be 
onsidered as a single agent system,sin
e the 
entral poli
y is not broken down into lo
al 
omponents. E.g., in a networkrouting problem we 
ould have a superagent whi
h re
eives information about theglobal state of the network and sele
ts for ea
h node to whi
h neighbor it shouldsend its 
urrently pro
essed pa
kage. Although su
h a poli
y may guarantee �ndingoptimal 
ooperative poli
ies of all agents, the number of environmental states andthe produ
t a
tion spa
e of the superagent is usually mu
h too large to be stored.Furthermore, a
tion sele
tion will in general 
ost a lot of time. Finally, the systemis not robust: if the 
entral 
ontroller breaks down, the performan
e of all agents
ollapses.Matari
 (1997) uses 
entralized poli
ies for two robot agents in a box-pushingtask. In her system, the agents re
eive the sensory information of the other agent(by 
ommuni
ation) and take turns in sele
ting the a
tions for both of them. The
omplexity of this system 
an be measured as the number of allowable poli
ieswhi
h equals: ANSN , where A is the number of a
tions, S is the number of inputstates, and N is the number of agents. The ar
hite
ture is stati
. It deals with theproblems of partial observability and 
an be used to 
oordinate agents.2.2.2 Poli
y sharingIn order to make the poli
y spa
e mu
h smaller, we 
an use poli
y sharing. In poli
ysharing, ea
h agent uses the same poli
y for sele
ting an a
tion, although behaviorsbetween these homogeneous agents di�er sin
e they re
eive di�erent inputs. Thisapproa
h is pursued in (Sa lustowi
z et al., 1998; Wiering et al., 1998) for learningso

er strategies. Furthermore, the ant 
olony system (Dorigo, 1992; Dorigo and4



Di Caro, 1999) uses a global pheremone trail whi
h is shared by all agents (ants)for de
ision making. The advantage of poli
y sharing is that training them 
an bevery fast, but a disadvantage is that it does not allow for task spe
ialization or self-interested agents (agents 
an only pursue a 
ommon goal). The 
omplexity of thissystem equals: AS , a huge redu
tion 
ompared to the 
entralized system if thereare many agents. The ar
hite
ture is stati
. Poli
y sharing is good for breakingdown the large 
entralized 
ontroller so that the ar
hite
ture does not su�er fromspa
e limitations anymore. For some appli
ations total poli
y sharing is unwanted,and we may only want to use shared poli
ies for subgroups of agents.2.2.3 Lo
al agentsWe 
an also redu
e the size of the poli
y spa
e by breaking a 
entral 
ontrollerdown into lo
al non-dire
tly intera
ting agents. Thus, we 
an 
onstru
t a systemwhere ea
h agent has to learn its own poli
y and the whole system is evaluatedby examining the group behavior. E.g., in a network routing problem, at ea
htime-step ea
h node may use its individual poli
y to de
ide to whi
h neighboringnode it will send its 
urrently pro
essed pa
kage given the destination address ofthe pa
kage. A disadvantage of using totally un
oupled systems is that it maybe hard for the system to �nd optimal 
ooperative behaviors, sin
e agents usuallyhave a very lo
al view and agent behaviors are not dire
tly 
oordinated. Sin
edependen
ies between tasks of agents are not modeled expli
itly, a degradationof performan
e may result if a lo
al agent system has to solve tasks with manydependen
ies. For su
h problems we 
ould supply the agents with 
ommuni
ationfa
ilities to 
oordinate their behaviors. Another possibility is to let agents learnmodels of other agent's behavior so that agents themselves 
an reason about andover
ome possible 
on
i
ts. Finally, an important topi
 is whi
h reward fun
tion touse. E.g. agents 
an use global or lo
al reward fun
tions or fun
tions so that thereward intake of the agent and its neighbors is optimized (S
hneider et al., 1999).Using a system with lo
al learning agents is used by (Crites and Barto, 1996) forlearning to 
ontrol elevators and by (Littman and Boyan, 1993) for network routing.The 
omplexity of this system is: NAS , sin
e we have N poli
ies of size AS .1 Thear
hite
ture is stati
. The lo
al agent ar
hite
ture also 
on
entrates itself on theproblem of breaking down the large 
entralized 
ontroller so that the ar
hite
turedoes not su�er from severe spa
e limitations.2.2.4 Task s
hedulesWhen multiple tasks have to be exe
uted by a number of agents, we 
an use tasks
hedules to divide the tasks over the agents. The s
hedules tell the orderings ofthe operations performed by ea
h of the agents. Ea
h agent 
an have spe
ializedskills and the goal of the engineer or learning algorithm is to divide a task intosequen
es of subtasks for individual agents. E.g., in a job-shop s
heduling problem,a s
hedule may order the tasks ea
h ma
hine (agent) has to 
arry out in order tomake the total pro
essing time of all jobs as short as possible. One disadvantage ofthese pre
omputed s
hedules is that they are often not rea
tive to dynami
 
hangesof the environment, sin
e they are usually pre
omputed. Therefore if some agentbreaks down, a 
ompletely new solution has to be 
omputed unless there are waysfor assigning its subtask to other agents. S
hedules may be useful when tasks 
anbe broken down into parts for whi
h spe
ial skills are desired. The 
omplexity ofthis system is: NAS + T (N) where the se
ond term T (N) refers to the number1Although there are more possible team poli
ies (ANS), we negle
t poli
y-dependen
ies andassume agents 
an improve their poli
ies regardless of other poli
ies. Therefore, when making asingle poli
y 
hange at ea
h time-step we only have to 
onsider one out of NAS possibilities.5



of possible orderings of the tasks. The ar
hite
ture is dynami
, sin
e for di�erentglobal world states, di�erent task s
hedules may have to be generated. A tasks
hedule ar
hite
ture 
on
entrates itself on the problem of breaking down the 
entral
ontroller and on assigning tasks to agents and thus 
oordinating them.2.2.5 Hierar
hi
al systemsInstead of breaking down the problem entirely into agents whi
h do not share globalinformation or intera
t dire
tly, we 
an also use a hierar
hi
al design of the systemto ensure 
ooperation in the system. E.g., we 
ould think of a supervisor (man-agement agen
y) whi
h determines whi
h behaviors are allowed for agents (so
ial
onventions) and whi
h agents have to 
ooperate to solve some task. In generalthe supervisor will have a more global view and it 
an ensure better 
ooperationby 
oordinating agent behaviors. The supervisor 
ombines agent poli
ies in a top-down way in whi
h supervisors 
an use the 
urrent global world state to 
hoosewhi
h agents 
ooperatively solve some subtask of the task (and thus may share re-ward fun
tions). We 
ould also have di�erent agent roles (poli
ies) and learn globalstrategies for 
ombining these roles (Tambe, 1997). The di�eren
e with a 
entral
ontroller is that hierar
hi
al systems 
an 
ombine a small number of agents intoa poli
y instead of 
ombining them all. A disadvantage of su
h a system is that itmay be less robust, sin
e management agents may break down and 
ause havo
 inthe total behavior of the system.Another way of using hierar
hi
al systems is to use 
oalition stru
tures (CSs)between agent poli
ies (Sandholm, 1996). Coalition stru
tures determine whi
hagents work together to solve a parti
ular task and how they do that. The formationof 
oalition stru
tures 
ould be the result of a negotiation between agent so thatthey 
ooperate to handle some task. CSs 
an also be used to mat
h poli
ies ofagents so that ea
h time that some CS is used, two spe
i�
 adaptable poli
ies are
ombined whi
h have (already learned) to 
ooperate. Note that in this systemexpli
it 
ommuni
ation between agents would also be possible. The 
omplexity ofthe system is about: NMAS+K(MN)C, where M is the number of poli
ies allowedfor ea
h agent, K is the number of 
oalitions and C is the number of agents whi
h 
anbe 
ombined inside a single 
oalition. Note that if M and C are 1, the system wouldessentially be the same as using lo
al agents. The ar
hite
ture is dynami
, sin
eat di�erent moments di�erent agents may have to work together. The hierar
hi
alsystem provides us with a solution to the problem of how to 
oordinate di�erentagents.2.2.6 Global world modelsAgents may also share a global world model whi
h they use for their de
ision makingand whi
h they 
an alter themselves. In this way the global world model provides away to 
ommuni
ate (abstra
t) information between agents. This helps to over
omelimited per
eption of some agents. E.g., if some agent has dete
ted an event ofinterest, this is 
ommuni
ated to the global world model, and other agents mayrespond to this information. Global world models are used in e.g. robot so

er(Stone et al., 1999). Here, sensory information over time is gathered to makethe global world model as a

urate as possible. This methods is also pursued in(Ye. and Tsotsos, 1997) to sear
h with a team of robots for an obje
t in a 3Denvironment. It resembles poli
y sharing somewhat, although with global worldmodels only state information is shared | de
ision poli
ies 
an be learned lo
ally.The method requires the abilities to mat
h agent's lo
al views to the global worldmodel and to adapt the world model a

ordingly. The 
omplexity of this systemdepends a lot on how agents sele
t a
tions. If we 
onsider an agent whi
h uses6



the state of the global world model to sele
t a
tions, and all agents abstra
t theirlo
al views to a state in the global world model, the 
omplexity is NIS + NANI .Here, I refers to the number of abstra
t states for ea
h agent. The term NIS refersto the number of possible abstra
tions from states to abstra
t states. It is 
learthat for very large or 
ontinuous state spa
es, this should be done using fun
tionapproximators. The term NANI refers to the number of poli
ies for all agents whenNI states are available in the (abstra
ted) global world model. The ar
hite
tureis stati
, although the global world model may be dynami
, e.g. it 
an involvedi�erent numbers of possible states over time. Global world models deal with theproblem of partial observability of the global state.2.2.7 Communi
ating agentsWhen agents have to 
ooperate, it may be very useful that agents 
an dire
tly
ommuni
ate with ea
h other to give information about their plans so that futurebehaviors of the agents are better 
oordinated. This 
an be done by using lan-guage proto
ols su
h as KQML (Finin et al., 1992) or �nite state automata (FSA)whi
h 
ause ea
h agent's des
ription of the world to be augmented with abstra
tinformation re
eived by the 
ommuni
ation with other agents. Thus, 
ommuni
a-tion provides a way to expand the limited input of an agent so that it \knows"about the existen
e of other agents. Agents may even 
ommuni
ate re
urrently sothat they 
an mat
h their independent a
tions so that an a
tion of an agent 
anbe 
onditioned on other agent's a
tions (Gmytrasiewi
z and Durfee, 1992). Thisrepetitive 
ommuni
ation should stop, however, and therefore it should be limitedto a spe
i�
 number of steps. Other ways of 
ommuni
ation are to use bla
kboards
ontaining messages of agents transmitted to the whole system (Carver et al., 1991).In this way, the agents 
ommuni
ate immediately to all other agents whi
h has thedrawba
k that 
ommuni
ation bandwidth is enlarged. Problems with in
reased
ommuni
ation is that input spa
es are enlarged and distributed implementationmay be
ome less eÆ
ient if 
ommuni
ation bandwidth is large. Although 
ommu-ni
ation provides good ways for letting agents 
ooperate, it is still a hard task foran engineer to spe
ify whi
h proto
ols agents should use and therefore algorithmswhi
h are able to learn 
ommuni
ation proto
ols would be quite interesting. Someresear
h in this dire
tion is des
ribed in (Steels, 1997; Bal
h and Arkin, 1994; Mur-
iano and Millan, 1989). Finally agents may negotiate on joint plans and in thisway maximize their individual utilities (Zlotkin and Rosens
hein, 1996). Matari
(1997) dis
usses 
ommuni
ation in a multiple-robot setting to deal with hiddenstate and 
redit assignment. The task is a box-pushing task with two six-leggedrobots. The robots are equipped with a radio 
ommuni
ation me
hanism and haveto 
oordinate their e�orts to be able to push the box to a light sour
e. Ea
h robot
ommuni
ates its state-information to the other agents and learns a fun
tion map-ping the 
ombined per
eptual state to the best a
tion for itself and the other agent.The robots take turns in 
ontrolling the box and in this way, the behaviors of therobots were mat
hed e�e
tively. By using the 
ombined per
eptual state and tak-ing turns, the 
redit assignment problem was solved, whereas by 
ommuni
ating thesensory data the hidden state problem was made less worse. Sin
e she essentiallyused a 
entral 
ontroller, the approa
h 
ould not be used for systems 
onsisting ofmany agents. When we allow full 
ommuni
ation, the 
omplexity of the systemis NAINS + NI(N�1)S , where I is the number of di�erent messages an agent mayget from another agent. The �rst term re
e
ts the number of poli
ies when thestate spa
e is enlarged (to INS) due to 
ommuni
ation. The se
ond term refersto the number of 
ommuni
ation poli
ies (for ea
h agent state, one out of I mes-sages 
an be sent to ea
h of the N � 1 other agents). We 
an note that for verylarge or 
ontinuous state spa
es, fun
tion approximators should be used to store the7




ommuni
ation fun
tion and full 
ommuni
ation should be broken down into lo
al
ommuni
ating groups. The ar
hite
ture is in prin
iple stati
, although di�erentintera
tion proto
ols 
ould be designed to make the system dynami
. Communi
a-tion 
an be used to deal with the problem of 
oordinating di�erent agents or fordealing with partial observability of the global state and separated problem solvinginformation. E.g. a bla
kboard full with messages 
ould be seen as some form ofglobal world model.2.3 Chara
teristi
s of multi-agent problemsThere are many problems whi
h are naturally des
ribed by multi-agent systems. Inthis se
tion we will list a set of problems and 
reate a 
lassi�
ation s
heme basedon features inherent in these problems. Important questions whi
h are of interestwhen labeling multi-agent problems are:� Is the problem environment stati
 or dynami
? The traditional job-shop s
hedule problem is an example of a stati
 problem sin
e all jobs, ma-
hines and ways of pro
essing ea
h job are usually assumed to be �xed. In
ontrast a network routing problem 
an be highly dynami
 sin
e traÆ
 load
an in
rease or de
rease signi�
antly during the operation of the system re-sulting in a non-stationary environment.� Do agents 
ommuni
ate as part of the task? In some problems, su
has robot so

er (RoboCup so

er), agents are allowed to 
ommuni
ate. Forsome other problems, 
ommuni
ation 
ould be possible, but is not ne
essarilyposed in the problem's des
ription. If 
ommuni
ation is used, the engineeris requested to set up 
ommuni
ation proto
ols whi
h 
an make the problemappear harder. Communi
ation 
an also su�er from mali
ious 
ommuni
ationa
ts of opponents. E.g. 
onsider an intelligent opponent making use of thesame 
ommuni
ation method with the intentions to distort agent 
ommuni
a-tion. Espe
ially for surveillan
e and se
urity robots, 
ommuni
ation methodsshould be reliable whi
h 
ould be done by using identi�
ation proto
ols ofsenders.� Is the state representation for an agent 
ontinuous or dis
rete? Theagent re
eives inputs through its sensors. Sometimes this information 
an bedis
rete su
h as in network routing problems, for whi
h we make the statespa
e of ea
h agent dis
rete by just 
onsidering as lo
al input the destinationpla
e of ea
h pa
kage (eventually augmented by information whi
h indi
ateswhether neighboring nodes are busy or not). For some vehi
le routing prob-lems we are given a set of destination addresses to whi
h pa
kages should bedelivered. Given a set of vehi
les and distan
es between destination addresses,we 
ould just 
ompute an ordered list of pla
es where ea
h agent has to go to.In this way the state spa
e representation is dis
rete, sin
e we only 
onsiderdis
rete orderings of destination addresses. This will not work well for highlydynami
 problems, however, in whi
h the 
urrent environmental state 
hangesa lot and 
hanges in the ar
hite
ture have to be done online. E.g., for dy-nami
 sto
k supply problems ea
h agent may require sensors (e.g. 
amera's)to obtain lo
al input information whi
h des
ribes the state of the environ-ment su
h as possible obsta
les, positions of pa
kages whi
h are waiting to bedelivered, and positions of the other agents. This provides us usually with ahigh-dimensional 
ontinuous feature (input) spa
e. In this 
ase, we may wantto dis
retize the spa
e �rst so that we are able to use eÆ
ient planning meth-ods working with dis
retized spa
es. Dis
retizing a 
ontinuous spa
e is stillan interesting topi
 of resear
h (see e.g. Thrun (1998) for a robot appli
ation8




onstru
ting a dis
rete map of a building and Yamau
hi et al. (1998) for amulti-agent map-building appli
ation).� Do the agents share a 
ommon goal? For many 
omplex problems theagents naturally 
ooperate in order to optimize the solution. Then we speakof a global evaluation or reward fun
tion whi
h is shared (positively 
orre-lated) by all agents. Su
h agents are 
alled 
ooperative agents. When dealingwith multi-agent systems, we 
ould also have the 
ase where di�erent agentshave di�erent tasks to perform and use their own reward fun
tions. In su
h
ases agents' reward fun
tions may be negatively 
orrelated (zero-sum games)and the goal be
omes to beat an opponent. Su
h agents then have 
ompetinggoals and are 
alled 
ompetitive agents. Other problems may not have purelynegatively or positively 
orrelated reward fun
tions and are in the realm ofgame theoreti
al problems su
h as the prisoner's dilemma, bargaining prob-lems or others. For su
h problems agents may help or hinder ea
h other whenthey try to optimize their own behavior, and several problems may arise su
has non-
ooperating poli
ies and the tragedy of the 
ommons (TOC) (Hardin,1968; Turner, 1993) where agents mutually over-exploit the resour
es of thesystem whi
h may �nally harm all of them. For these latter problems weneed to �nd a mutual set of poli
ies whi
h 
ooperate as good as possible.This 
an be done in di�erent ways su
h as using 
ommuni
ation or the useof management agen
ies (Turner, 1993). We 
all su
h agents 
ompromising,self-interested agents. Thus the goal may be a 
ommon one, a 
ompetingone, or a 
ompromise one. Espe
ially for the latter goal agents have to be
oordinated.� Is the problem 
ompletely or partially observable for the system?For parti
ular problems su
h as a job-shop s
hedule we use a model whi
h
ontains all relevant data. Su
h problems are 
ompletely observable. Otherproblems may be partially observable, su
h as sto
k supply problems whereea
h agent does in general not have a

ess to a des
ription of the 
ompleteworking 
oor sin
e that would require expensive sensory equipment and makethe lo
al input spa
e mu
h too large.� Stati
 agents/ Dynami
 agents. In some problems, agents, su
h as traÆ
lights or nodes in network routing problems, have a �xed determined pla
ein the environment. Stati
 agents 
an therefore never 
ollide. In other prob-lems, agents are moving physi
al obje
ts whi
h 
an explore the environmentand usually need sensors to observe their lo
al environment for navigationpurposes.� Are agents independently 
hanging the state of the environment? Inmany problems, we 
an use the proposed a
tion of ea
h agent individually to
ompute the new state of the environment. E.g., in a network routing problemthe traÆ
 
owing out of a parti
ular node is independent of other a
tionssele
ted by other agents. However, in some problems this is not the 
ase.E.g., examine two robots whi
h have to 
arry some heavy obje
t together.If one agent makes some a
tion whi
h is not 
orrelated to another agent'sa
tion, the obje
t whi
h they are 
arrying may drop on the ground. Anotherexample of non-independen
e is when agents 
ollide sin
e they want to o

upythe same physi
al position in the environment.Figure 2 shows how di�erent problems 
an be 
hara
terized a

ording to theabove distin
tions. 9
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Figure 2: A 
lassi�
ation s
heme for multi-agent problems.2.4 Mat
hing problems to ar
hite
turesParti
ular problems 
an be handled easier when parti
ular ar
hite
tures are used.In �gure 3 we show how problems 
an be mat
hed to ar
hite
tures. Some of thesemat
hes have also been des
ribed in previous work.The 
entralized 
ontroller is almost never advised. Only for s
heduling problemsit 
ould be used, e.g. 
ombined with lo
al sear
h algorithms or negotiation basedalgorithms for trading allo
ated resour
es. E.g. the M-
ontra
t used by Andersonand Sandholm (1998) 
an make arbritary 
omplex swap moves and therefore a
tslike a 
entral 
ontroller 
reating a single s
hedule.Poli
y sharing has been shown helpful for simulated so

er (Sa lustowi
z et al.,1998; Wiering et al., 1998) and for predator prey problems (Tan, 1993). Herehomogeneous agent may pro�t by 
ombining their experien
es so that ea
h timestep more experien
es are generated for updating the poli
y, resulting in fasterlearning and better �nal poli
ies. In RoboCup, partial poli
y sharing is also usedin the form of agent roles su
h as defenders (Tambe, 1997) whi
h 
an be sharedby multiple agents. Poli
y sharing 
annot be used for problems requiring di�erentskills of agents. E.g. in network routing, di�erent nodes (agents) map the sameinput (destination of a message) to di�erent a
tions (next nodes).Task s
hedules are useful for diÆ
ult problems where time requirements and/or10



Network Routing

Stock Supply

Explorative
Detection

  

         
Transportation

Centralized
Control

Policy
Sharing

Task
Schedules

Local CommunicationGlobal
World
Models

Hierarchical
SystemsAgents

X

X

Robotic
Soccer

Predator/
Prey

Underwater
Exploration

Traffic
Control

Collective
Map Building

Electronic
Trading

Job Shop
Scheduling

X

X

X

X

X

X

X

X

X

X

X

X

X

X

 X

X

X

X

X

X

 X

X

 X

X

X

X

X

X

X X

X X

X X

Problems

Fighting
Forest Fire

Data Discovery      
on the Web

Figure 3: Mat
hing problems to ar
hite
tures. Here an 'X' indi
ates that a parti
ularar
hite
ture is suitable for solving a parti
ular problem.spe
ialized skills play a role. E.g. in transportation problems, a 
rane 
an onlystart working if a transport wagon has delivered 
ontainers. On its turn, on
e apile of 
ontainers is standing, some 
rane has to start pla
ing them on the yard. Inforest �re �ghting, task s
hedules 
an be used to plan future sequen
es of subtasks.Lo
al agents have been shown fruitful for parti
ular problems su
h as net-work routing. Furthermore they 
an be used to deal with self-interested web- orinformation-agents. These lo
al agents 
an learn a model of their private world anduse this to make their de
isions. For ele
troni
 trading, the lo
al agents 
an be
ombined with 
ommuni
ation to negotiate with other agents. In Vidal and Durfee(1998), a modeling approa
h is des
ribed for trading agents, where agents 
an learndi�erent models of the other agents, varying in the amount of detail and knowledgeabout other agent's behaviors.Hierar
hi
al systems are useful when agent behaviors have to be 
oordinated.These systems 
an easily 
ombine poli
ies so that 
ooperation 
an be enhan
ed.E.g. it 
an be used for explorative dete
tion so that agents will not generate thesame paths for doing observations. Instead their poli
ies are dependent on ea
hother by putting them in a hierar
hi
al system. For robot so

er, team strategies
an be represented by hierar
hi
al systems in whi
h ea
h agent adopts a parti
ularpoli
y if some team strategy is sele
ted. E.g. in Tambe et al. (1999) this is done11



by having di�erent agent roles (poli
ies).Parti
ular problems where navigation of agents play an important role 
an ef-�
iently make use of global world models. These global world models are sharedby all agents whi
h are able to read global state information from the models andupdate the model a

ording to their individual experien
es. E.g. in 
olle
tive mapbuilding (Yamau
hi et al., 1998), the task requires building a global world model.Also in robot so

er, a global world model may play an important role to deal withdelayed sensory information, un
ertainty in observations and goal-dire
ted naviga-tion purposes. The global world model does not say anything about how agentpoli
ies are used. If global world models are used this means that the agents usestate information through the global world models to sele
t an a
tion instead ofdire
tly using the sensory observation. Therefore global world models 
ould also be
ombined with 
ommuni
ation or other ar
hite
tures.Finally, 
ommuni
ation 
an be useful for all problems whi
h require 
oordinationor trading. Sin
e 
ommuni
ation 
an play an important role for many di�erentproblems, more resear
h should be spend on developing general 
ommuni
ationproto
ols or on evolving 
ommuni
ation languages from intera
tion between agents.Steels (1997) des
ribes an approa
h to evolve a language between two robot agents.It would also be interesting to 
ompare hierar
hi
al systems to 
ommuni
ation for
oordinating agents in di�erent problems.3 Optimization algorithmsIn this se
tion we will summarize di�erent algorithms whi
h are useful for optimizingMASs. Optimizing a MAS requires that all agents optimize their own behavior(mi
rolearning). This is usually done by evaluating a de
ision poli
y (solution),
hanging the poli
y in some way, and evaluating the new solution again (keepingthe best poli
y found so far). Optimization methods 
an be population-based ornot. E.g., reinfor
ement learning (RL) uses a single sto
hasti
 poli
y (the a
tivepoli
y) for ea
h agent to sele
t an a
tion at some time-step and tries to improvethis a
tive poli
y based on the generated experien
e. Geneti
 algorithms on theother hand keep a population of poli
ies, evaluate them all and then make a newpopulation based on the previously evaluated population.Optimizing a MAS requires mi
rolearning and ma
rolearning. Mi
rolearning isused to optimize the poli
ies of agents given their reward fun
tion, the inputs theyre
eive from the environment and the a
tions they 
an sele
t. Ma
rolearning is usedto optimize the global system behavior and is used to optimize aspe
ts of the systemwhi
h are outside the limited s
ope of single agents. E.g. we 
ould think of opti-mizing a MAS ar
hite
ture, automati
ally sele
ting reward fun
tions, or sele
tingagents whi
h 
an 
ommuni
ate with ea
h other as possibilities for ma
rolearning.Thus, mi
rolearning is done on the agent-level and ma
rolearning is done on thegroup- or system-level.Mi
rolearning. In a MAS mi
rolearning refers to the optimization of ea
hsingle agent's behavior. If all agents use mi
rolearning, we would like to see thebehavior of the global system to improve as well. However, this is not alwaysthe 
ase. Agents a
t in their own interests, they only optimize their own reward(evaluation, obje
tive) fun
tion and by improving their own sum of rewards, thesystem as a whole may degrade in performan
e. As mentioned before, a goodexample of this is the tragedy of the 
ommons (TOC), where self interested rationalagents 
ause a 
ollapse of the system as a whole.Ma
rolearning. To improve the global system behavior, ma
rolearning 
an beused. Ma
rolearning may optimize 
oalition (
ooperation) stru
tures by 
hangingthe ar
hite
ture. It may also learn so
ial 
onventions so that some behaviors are12




onsidered forbidden and agent's are not allowed to settle to them. Furthermore,ma
rolearning may 
hange single agent reward fun
tions so that when an agentoptimizes its own rewards, this is for the global good. In most 
urrent systems,ma
rolearning is not used sin
e the ar
hite
ture, lo
al reward fun
tions et
. are
onsidered to be �xed. Still (Wolpert et al., 1999b) make use of it in their 
olle
tiveintelligen
e (COIN) framework, and it may have an important fun
tion for theoptimization of the whole system. E.g., one important task for ma
rolearning is
oalition formation. Given a set of tasks whi
h have to be 
arried out by a numberof agents, agents 
an form 
oalitions to solve parti
ular groups of tasks together.Sin
e there are an exponential number of ways that tasks 
an be mapped to agents,this requires an optimization module. Finally, in some problems the system has todis
over how many agents should be used to solve a parti
ular task (e.g. in forest�re �ghting). This also requires some ma
rolearning to map environmental statesto the number of agents (and whi
h agents in 
ase of heterogeneous agents).In the following we will 
onsider di�erent optimization algorithms and mentionhow they 
an be used as mi
rolearning and ma
rolearning algorithms.3.1 Reinfor
ement learningReinfor
ement learning (RL) algorithms (Sutton, 1988; Watkins, 1989; Bertsekasand Tsitsiklis, 1996; Kaelbling et al., 1996) share the goal to optimize the behavior ofan agent by learning from the feedba
k information a
quired during the intera
tionwith the environment. Traditionally RL has been used to optimize the behavior ofsingle agent systems. By intera
ting with the environment, poli
ies are strengthened(reinfor
ed) when they lead to higher long term rewards of the agent. By exploringdi�erent poli
ies, the agent may e�e
tively learn whi
h poli
y leads to the largestreward sums. Su

essful single agent RL appli
ations are Samuel's 
he
ker playingprogram (1959) and Tesauro's TD-Gammon (1992), a program whi
h trained aneural network to play ba
kgammon at human expert level from self-play.The problem environment. The problem environment is usually modeled asa Markov de
ision problem (MDP) 
ontaining a state spa
e, a set of possible a
tionsfor the agent, a transition rule whi
h determines the new state of the environmentgiven the 
urrent state and the sele
ted a
tion of the agent, and a reward fun
tionwhi
h determines how mu
h reward the agent re
eives when making a parti
ulartransition to a new environmental state (Bellman, 1961). MDPs may be extendedto multi-agent MDPs (MMDPs) (Boutilier, 1998) by augmenting the transitionfun
tion and reward fun
tion so that they deal with a set of a
tions instead ofsingle a
tions.Reinfor
ement learning as mi
rolearning. RL 
an be applied to optimizethe behavior of an agent in a MAS. The agent re
eives inputs from the environ-ment and possibly from other agents and 
hooses an a
tion. Then the environment
hanges and the agent re
eives feedba
k from its reward fun
tion whi
h tells howmu
h reward it obtains for the last environmental transition. The agent uses thisfeedba
k to learn a value fun
tion whi
h estimates the long term rewards the agentwill re
eive when it is in a parti
ular state (represented by its environmental inputsand its internal state). Algorithms for learning this value fun
tion are Q-learning(Watkins, 1989; Watkins and Dayan, 1992), TD(�)-learning (Sutton, 1988), andmodel-based RL (Moore and Atkeson, 1993; Pres
ott, 1994; Barto et al., 1995;Wiering, 1999).Storing the value fun
tion. When the state spa
e is small, the agent 
anstore the value fun
tion in a lookup table, whi
h lists all possible states and theirvalues. However, for high dimensional or 
ontinuous state spa
es, fun
tion approx-imators should be used su
h as neural networks (Rumelhart et al., 1986; Tesauro,1992), neural gas (Fritzke, 1994; Sa lustowi
z et al., 1997), CMACs (Albus, 1975;13



Sutton, 1996; Wiering et al., 1998) or de
ision trees (Chapman and Kaelbling, 1991;M
Callum, 1995). Another big advantage of using fun
tion approximators is thatthey allow for generalization so that not all states have to be visited and the poli
yspa
e is redu
ed.Ma
rolearning with RL. RL 
an also be used to alter the global systemwhi
h provides it a way to 
oordinate agents. E.g. RL 
an be used to �nd 
oali-tion stru
tures determining whi
h agents work together to solve some tasks andwhi
h poli
ies they have to use for this 
ooperation. Furthermore, it 
an be usedto learn 
ommuni
ation me
hanisms between agents su
h as 
ommuni
ation pro-to
ols (a language). Another way of using RL as ma
rolearning algorithm is tolet it learn evaluation fun
tions for 
ombinatorial optimization problems. Often,the performan
es of algorithms sear
hing for solutions 
an be improved by slightmodi�
ations of the evaluation fun
tion, sin
e this 
an make the lands
ape less 
at,thereby biasing the algorithms to sear
h in parti
ular useful dire
tions. Boyan andMoore (1997) used RL to learn predi
tions with linear networks to improve su
h
ombinatorial optimization sear
h.Appli
ations of RL to MASs. A number of RL systems whi
h have beendeveloped to solve parti
ular problems are mentioned here shortly.� Using Q-learning for mi
rolearning. Crites and Barto (1996) used Q-learning to train a MAS to 
ontrol elevator dispat
hers. A simulated building
ontains four elevators and ea
h elevator is 
ontrolled by its own lo
al poli
y.Using Q-learning they were able to train neural networks to learn a good valuefun
tion mapping environmental inputs to elevator a
tions. Their systemoutperformed a number of 
onventional elevator dispat
hers. The ar
hite
tureused lo
al agents and there was no ma
rolearning involved.Littman and Boyan used Q-learning to learn to route pa
kages on a network.Ea
h network node (agent) used a poli
y to de
ide to whi
h neighbor a pro-
essed pa
kage with a parti
ular destination address should be sent. Thesystem used lo
al agents and there was no ma
rolearning involved.� The Ant Colony System. The ant 
olony system (ACS) (Dorigo, 1992;Dorigo et al., 1996; Dorigo and Gambardella, 1997; Dorigo and Di Caro,1999) uses ants (agents) to 
reate solutions to problems whi
h are used toupdate the global shared poli
y. E.g., for the Traveling Salesman problem(TSP), ea
h ant makes a tour while updating the pheremone trail so that thebest found tours get reinfor
ed most. The ACS has already been shown to�nd good solutions to the TSP (Dorigo et al., 1996), the quadrati
 assignmentproblem (QAP) (Gambardella et al., 1997), and has also been used to �ndrouting poli
ies on the Internet (Di Caro and Dorigo, 1998a; Di Caro andDorigo, 1998b) outperforming many other algorithms. Note that this algo-rithm 
an be used for mi
rolearning or ma
rolearning. It uses a parallel sear
hof the solution spa
e and 
lever exploration methods to be able to enhan
eexploration possibilities for new solutions.� Colle
tive Intelligen
e (COIN). COIN (Wolpert et al., 1999b) is devotedto the question of how to set up a RL system whi
h 
an optimize the 
olle
tivebehavior when the system is put in use. Therefore it tries to �nd lo
al rewardfun
tions for agents whi
h when optimized lead to an optimization of thegroup behavior. In this way COIN is interested in reverse engineering: givena problem instan
e how do we set up the lo
al reward fun
tions? COIN's ideais to 
onstru
t a wonderful life utility fun
tion. An agent does not get theglobal reward (the reward the whole team gets), sin
e this has the problemof agent 
redit assignment (Versino and Gambardella, 1997) whi
h says thatit is hard to evaluate the 
ontribution of ea
h single agent. The lo
al reward14



fun
tion is also not used, sin
e it may result in 
ompetitive agents. Instead anagent re
eives the global reward minus the global reward whi
h would havebeen obtained if the agent did not do anything at all (or a default a
tion).In this way its own 
ontribution to the global reward is measured. COIN hasalready been su

essfully tested on El Farol's Bar problem (Wolpert et al.,1999b) and an Internet routing problem (Wolpert et al., 1999a). COIN alsoaddresses ma
rolearning aspe
ts in (Wolpert et al., 1999b).3.2 Evolutionary 
omputationEvolutionary 
omputation (EC) is inspired on natural evolutionary models in orderto �nd solutions to 
ontrol, fun
tion optimization, and 
ombinatorial optimizationproblems. Examples of EC algorithms are geneti
 algorithms (Holland, 1975; Gold-berg, 1989), evolutionary strategies (Re
henberg, 1971; Re
henberg, 1989), geneti
programming (Koza, 1992), SANE (Moriarty and Miikkulainen, 1996), and PIPE(Sa lustowi
z and S
hmidhuber, 1997). These population-based optimization algo-rithms make use of a population of agents whi
h allows for a parallel sear
h of thesolution spa
e. Ea
h time-step, the 
urrent population (generation) is evaluatedafter whi
h the best individuals get the largest probability for propagating theirgenes (parts of their poli
y or solution) to the next population. This propagationis usually done by 
rossover (two solutions are 
ombined to form a new solution)or mutation (some part of the solution is randomly 
hanged). By sele
ting the bestindividuals and throwing out the worst, the population will 
onsist more and moreof good individuals of whi
h �nally the best is kept as the solution. When appliedto navigation, EC is usually 
ombined with a set of behaviors for an agent su
h aswall-following, random walk, homing et
. This makes the task of learning to 
ontrolan agent mu
h easier.EC for mi
rolearning. These algorithms 
an be used as mi
rolearning meth-ods for optimizing agents in MASs by presenting ea
h agent a population of poli
ieswhi
h are adapted and from whi
h the agent �nally has to pi
k the best one. Ea
htime step ea
h agent of the MAS sele
ts one of the members (poli
ies) in their ownpopulation, and the whole system is evaluated. Then the �tness of ea
h member inthe system is updated a

ording to the behavior of the 
omplete system. A prob-lem of this is that the evaluation of a population member (poli
y) inside an agentdepends heavily on the poli
ies sele
ted by other agents, so that the agent 
reditassignment problem (ACAP) (Versino and Gambardella, 1997) is diÆ
ult to solve.Ways to 
ir
umvent this is to use a member inside multiple, di�erent agent-teams toobtain multiple team-evaluations. Then these team-evaluations 
an be averaged toobtain an evaluation of the individual. This is e�e
tively done by the SANE systemdes
ribed in (Moriarty and Miikkulainen, 1996) whi
h learns a neural network tosolve RL problems su
h as learning to play Othello (Moriarty and Miikkulainen,1995) or to learn 
ooperative lane sele
tion poli
ies for 
ars driving on the highway(Moriarty and Langley, 1998). The latter multi-agent appli
ation showed promis-ing results for optimizing traÆ
 
ow using ma
hine learning te
hniques. The SANEsystem 
ombines di�erent neurons (individuals) inside a set of neural nets and eval-uates the neural nets. The neurons whi
h are part of the best performing neuralnetworks are kept and used to 
reate a population of new individuals.Using ma
rolearning. Another solution to the agent 
redit assignment prob-lem is to use ma
rolearning instead of mi
rolearning. Instead of learning an indi-vidual 
ontroller for ea
h agent, we 
an also have a team of 
ontrollers as a singleindividual in a population and thus we store and evolve a population of teams.In this way, 
omplete teams are evaluated whi
h results in a mu
h more a

urateevaluation signal. Note, however, that a system in whi
h the whole global system isoptimized at the same time resembles a single agent ar
hite
ture. Hen
e, it has the15



problem that ea
h individual has to 
ontain the poli
ies of ea
h agent, and there-fore the sear
h spa
e 
an be
ome prohibitively large (we sear
h for a population ofpoli
ies inside a population of populations, whi
h is very 
omplex). Just like RL,EC 
an also be used to evolve 
oalition stru
tures, reward fun
tions, et
.3.3 Lo
al iterative sear
hThere also exist a number of single agent algorithms for solving fun
tion optimiza-tion or 
ombinatorial optimization problems. Examples of these methods are Tabusear
h (Taillard, 1990; Glover and Laguna, 1997), multiple restarts with lo
al hill-
limbing (Colorni et al., 1993), and simulated annealing (Aarts and Korst, 1988).Tabu sear
h (TS) works as follows (see (Glover and Laguna, 1997) for a morethorough review). A random poli
y (solution) is generated after whi
h TS triesout all possible poli
y-
hanges (by assigning a di�erent a
tion to one of the states).After this, the best poli
y-
hange is exe
uted and a new solution is generated. Inthis way the method is a steepest-des
ent method. In order not to 
y
le betweensolutions, a list of forbidden poli
y-
hanges (the Tabu list) is kept. Ea
h time apoli
y-
hange is exe
uted, it is pla
ed inside the Tabu list and 
annot be exe
utedagain for a number of time steps. The Tabu list has a spe
i�
 length and thus newforbidden poli
y-
hanges repla
e other poli
y 
hanges when the list is full. Whenthe system observes it is in a (lo
al) minimum, the solution is stored and the systemes
apes the lo
al minimum by exe
uting a series of random poli
y 
hanges. Tabusear
h has been shown to be very e�e
tive in solving diÆ
ult problems su
h asthe quadrati
 assignment problem (QAP) (Colorni et al., 1993), vehi
le routingproblems (Badeau et al., 1997), and job-shop s
heduling problems (Taillard, 1994),all problems whi
h 
an be modeled as multi-agent problems.Colorni et al.'s Algodesk (Colorni et al., 1993) 
ompares the performan
es of 8di�erent optimization methods su
h as simulated annealing, Tabu sear
h, geneti
algorithms, multiple restarts on a set of quadrati
 assignment problems. They foundthat using Tabu sear
h and simulated annealing leads to the best results.Lo
al sear
h as mi
rolearning. Using lo
al sear
h may not be an eÆ
ient wayfor mi
rolearning. When we want to optimize a 
ontroller, the poli
y maps manyinputs to many a
tions. If we make one alteration to su
h poli
ies and evaluatethe poli
y, it may not rea
h the goal, sin
e usually su
h poli
ies are deterministi
and be
ome easily trapped in 
y
les. One way to 
ir
umvent that problem is touse sto
hasti
 poli
ies whi
h are tested or to use 
omplete behaviors as a
tions.Still, there are as many as jAjjSj poli
ies (with jAj as the number of a
tions, andjSj the number of states) so that sear
hing through this spa
e 
an take a long timewith lo
al sear
h methods whi
h only make single poli
y 
hanges at a time and donot adjust other a
tion values a

ording to the intera
tion with the environment.Littman (1994) used bran
h and bound methods to optimize an agent in a partiallyobservable environment and obtained good results, although for su
h environmentsthe number of inputs 
an be quite small. For solving Markov de
ision problems itmay be more reliable to use RL. Lo
al sear
h 
an be used in MASs by 
hanging oneindividual poli
y at a time, whi
h leads to quite a

urate evaluation signals sin
ewe evaluate our single 
hange (maybe using Monte Carlo experiments for sto
hasti
environments), but this requires a long time. We 
an also 
hange multiple agentssyn
hronously and keep the resulting MAS if its behavior is better than the previousone (whi
h may not work well if the environment is sto
hasti
). For some multi-agent problems 
ontaining few states, lo
al sear
h may be useful, espe
ially fors
heduling problems in fa
tories whi
h are usually stati
, fully observable, and forwhi
h solutions 
an be qui
kly evaluated. For diÆ
ult 
ontrol problems with manyinput states, it may be very slow, however.Lo
al sear
h as ma
rolearning. Lo
al sear
h methods 
an also be used to16



�nd good 
oalition stru
tures mapping tasks to agents and ensuring that parti
ularagents 
ooperatively solve their tasks. It 
an generate a CS, test it by using somealgorithm as mi
rolearning method, 
hange the CS by 
hanging the assignment oftasks to agents, and evaluate it again. This also resembles how 
oalition stru
tures
an be 
onstru
ted in game theory (Sandholm, 1996).3.4 Game theoryIn 
ases where self-interested agents optimize their own reward fun
tions, intera
tionproblems between agents arise. E.g., when agents do not have entirely positive ornegative 
orrelated reward fun
tions, agents may help or hinder ea
h other pursuingtheir own goals and the need to 
ooperate between agents may arise. In multi-agentsystems, the agents 
an be provided with an intera
tion proto
ol, but ea
h agentwill still 
hoose its own strategy. The main question is what so
ial out
omes followgiven a proto
ol whi
h guarantees that ea
h agent's desired lo
al strategy is bestfor that agent - and thus the agent will use it (Sandholm, 1999).Game theory is interesting for studying the dynami
s resulting from havingagents intera
t with the same environment, for designing intera
tion proto
ols, andprovides us with optimization algorithms in the form of au
tions, markets, andvoting s
hemes. The simplest environments are single step de
ision problems wherethe reward whi
h ea
h agent obtains is given by a payo� matrix. The payo� matrixreturns the rewards ea
h agent (player) re
eives given its a
tion and the a
tions ofall other players. In the simplest 
ase, the environment is given only by the a
tionsof other players.Prisoner's Dilemma. A famous example is the prisoner's dilemma (PD) whereagents 
an de
ide upon a single a
tion: to 
ooperate (C) or defe
t (D) with the otheragent. The payo� matrix is shown in �gure 4. Sin
e defe
ting is a dominant strategy(whatever the other agent does, the best 
hoi
e is to defe
t), a rational agent would
hoose to defe
t, resulting in a non-
ooperating game. The largest payo� 
an beobtained if both agents 
hoose to 
ooperate (whi
h is a a Pareto optimal solution| a solution in whi
h players 
annot 
hange their a
tion to re
eive higher rewardwithout other players re
eiving less reward), and hen
e 
omes the dilemma. Forsu
h problems, agents 
an be put repeatedly for the same 
hoi
e, and 
ooperationmay emerge from this intera
tion. By studying repeated games (�
titious play),given the previous history of 
hoi
es of both players, the question is how should theagent behave to maximize its future 
umulative payo�? Although the defe
t-defe
tsituation is a Nash-equilibrium (given the other players' strategies, no agent willbene�t from 
hanging strategies), in iterative games (games whi
h are repeatedlyplayed) the players 
an explore di�erent possibilities and learn to 
ooperate and inthis way optimize their 
umulative payo�s.
C

C D

D

(3,3) (0,5)

(5,0) (1,1)Figure 4: The payo� matrix for the prisoner's dilemma. The matrix should be readas follows: if agent 1 makes de
ision C and agent 2 de
ides D, then agent 1 re
eivesreward 0 and agent 2 a reward of 5. 17



Game theory and mi
rolearning. Game theory 
an use two di�erent agents:(1) the rational agent whi
h 
ontains suÆ
ient problem solving knowledge and plan-ning methods to solve a problem, and (2) the reinfor
ement learner whi
h learnsfrom its intera
tion with other agents. The reinfor
ement learner 
an optimize itsbehavior in iterated plays (repeated games) with other players in whi
h the agent
an learn from the history of moves. E.g., Sandholm (1995) studied how Q-learning
an be used to learn the 
ooperating poli
y for the Iterated PD (IPD). For thishe used lookup tables and re
urrent neural networks whi
h were enabled to basetheir de
ision poli
y on the history of previous moves. He found that both systems
an learn to 
ooperate (C-C) with Tit-for-Tat (Axelrod, 1984), an algorithm whi
hstarts by 
ooperating and then uses the previous 
hoi
e of the opponent as its 
ur-rent move. If the two RL systems play against ea
h other di�erent intera
tions arise,however, su
h as alternating C-C and C-D moves. Fogel (1993) uses evolutionary
omputation to evolve behaviors of agents in the IPD. Brafman and Tennenholtz(1996) study how a RL tea
her 
an learn to tea
h a student to 
ooperate in theIPD. They �nd that a non-adaptive Tit-for-Tat tea
her works well and that a RLtea
her 
an be used, but does not always lead to reliable out
omes. Furthermorethey study how a 
ooperative organization 
an be stable against parasites whi
hmay for example work on the same work-
oor, but refuse to bring 
ommon toolsba
k to their original position. To make the organization stable, penalty agentsare 
onstru
ted whi
h defe
t against parasites so that a rational parasite will pro�tmore by 
ooperating as well.Coordination. For parti
ular games, 
oordination is needed. E.g., assume thegame is a risk-dominant game given by the payo� matrix shown in �gure 5(A).
L R

L
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 (-100,0)

(0,-100)

(2,2)

(1,1)
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L
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(0,0)

(0,0)(-5,-5)
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Figure 5: (A) The payo� matrix for the risk-dominant game. (B) The payo� matrixfor the 
oordination game.Here there are two Nash-equilibria: L-L and R-R. Clearly, the Pareto optimalsolution is to play L-L, but sin
e 
hoosing L 
an result in a large loss, R is a risk-dominant strategy. Hen
e, 
oordination is needed to 
onverge to L-L. An exampleof 
oordination is to use 
ommuni
ation, e.g., both agents may 
ommuni
ate beforemaking their moves that they will 
hoose L. In 
omplex problems, 
ommuni
ationmay also be useful to 
oordinate the a
tivities of di�erent agents. E.g. in so

er, wemay want to learn a pass-play strategy in whi
h one agent plays the ball to anotheragent, runs forward, and re
eives the ball ba
k. This 
an be done by 
ommuni
atingthe planned a
tions from one agent to another one. Another game is shown in �gure5(B) in whi
h there are two Nash-equilibria. The problem is whi
h one to 
hose.Note that this games resembles driving behavior: 
ars 
an drive on the left or onthe right side of the street. A way to solve this problem is to use so
ial 
onventions(su
h as people should drive on the right side) whi
h prune away 
hoi
es (behaviors)of the agents.Tragedy of the 
ommons. Another game theoreti
al problem is the TOC.Here, agents share the same resour
e and follow their own reward fun
tion. By18



in
reasing their exploitation of the resour
e, agents re
eive higher rewards, and thismakes it a rational 
hoi
e. However, if all agents keep on in
reasingly exploitingthe bounded resour
e, problems may arise. Take as examples over�shing whi
hhas 
aused the enormous �sh population to shrink 
onsiderably or environmentalpollution. In MASs the TOC 
an happen in many di�erent ways. Take as exampleautonomous underwater vehi
les (AUVs) whi
h 
an use radars to sense their envi-ronments. If AUVs use their sensors more, they 
an get a better pi
ture of theirenvironment. The problem is that the use of radars in water 
auses interferen
ebetween radar signals, resulting in more un
ertainty in the returned information(Turner and Turner, 1998). Methods to deal with su
h problems use 
ommuni
a-tion, mutual-
oer
ion mutually agreed upon, privatization of resour
es, so
ial laws,or management agen
ies to keep the resour
es from starving out (Turner, 1993).Negotiation for task de
omposition. An important sub�eld of game theorywhi
h deviates from the matrix-games is negotiation between self-interested agents(Sandholm, 1996; Sandholm, 1999; Zlotkin and Rosens
hein, 1996). Negotiationmay be used as a me
hanism for assigning tasks to agents, for allo
ating resour
es,and for ele
troni
 trading. For this, algorithms from e
onomi
al theory su
h asbargaining and au
tion theory may be used. Bargaining refers to seller/buyer sit-uations in whi
h one agent sells an item to another agent and gets paid for this.Au
tion theory refers to selling items to a set of buyers so that the buyer whi
ho�ers most gets the item. A problem whi
h 
an be solved by bargaining and nego-tiations is a transportation problem modeled as a vehi
le routing problem. Thereare a number of depots whi
h store goods and a number of 
ustomers whi
h haveordered a number of goods. Transportation vehi
les are used to deliver the goodsto the 
onsumers after whi
h they return to the depot. The goal of the system isto minimize the total distan
e traveled by all vehi
les with the 
onstraint that thevehi
les have suÆ
ient 
apa
ity to 
arry all goods to the 
onsumers. In (Sandholm,1996) negotiation me
hanism are des
ribed to solve this problem. Here, agent nego-tiate in order to form 
oalition stru
tures determining whi
h agents should deliver towhi
h 
onsumers. During this negotiation, agents may pay other agents for solvingsome task of theirs. In this way, the sum of 
osts for all agents 
an be minimized,sin
e agents only handle tasks for other agents if they pro�t, and agents never paymore to other agents than what would have been their own 
ost for exe
uting thetask. Andersson and Sandholm (1998) dis
uss using di�erent 
ontra
ts whi
h 
anbe used for transferring one task among agents (O-
ontra
ts), transferring morethan 1 task from one agent to another one (C-
ontra
ts), having 2 agents swaptasks (S-
ontra
ts), or having multiple tasks 
hanged among multiple agents (M-
ontra
ts). The trade stops on
e no more 
ontra
ts are made and the agents 
anstart solving their own tasks. They found out that if the ratio agents to tasks isgreat O-
ontra
ts work best and if this ratio is small C-
ontra
ts work best.The way su
h a system looks for CSs resembles Tabu sear
h. Tabu sear
htries out all swap-moves (
ontra
ts) and keeps the best one. The di�eren
e is thatSandholm (1999) allows for self-interested agents and deals with this by using moneytransfer while making 
ontra
ts. Furthermore, 
ontra
ts 
ome to agents all the time(but not all at the same time), and therefore timing be
omes essential for agents:they may want to postpone a 
ontra
t to see whether other, better 
ontra
ts are
oming, but 
annot wait too long. In this way the system 
ould be mu
h more
ompli
ated than just using simple swap-moves in a 
ooperative system.Negotiation for multi-agent plans. Zlotkin and Rosens
hein (1996) studynegotiation as a means to determine multi-agent plans. The question they pose ishow intera
tion rules 
an be designed (me
hanism design) so that agents agree onmutually bene�
ial behavior. Ea
h agent has a goal (set of goal states) whi
h itwants to rea
h and assigns a spe
i�
 reward (worth) to a
hieving its goal. Further-more ea
h agent 
an exe
ute a plan to a
hieve its goal with a spe
i�
 
ost. Agents19



may also 
arry out joint plans, whi
h may lead to the goals of all agents beingsatis�ed. Rational agents will only 
arry out a plan if the reward of rea
hing the�nal state is larger than the 
ost of the plan. In general they want to maximizetheir utility (their reward of the goal minus the 
ost of the plan). If we 
onsider twoagent systems, agents 
an de
ide to pursue their goals by an individual plan, they
an 
ooperate in a joint plan or they 
an do nothing (sin
e the 
osts of ea
h plan islarger than its reward). In some 
ases, joint plans (even partial joint plans whi
hdo not lead to any goal), are preferable over individual plans. In su
h 
ases, thejoint plan is 
arried out and a

ording to the rewards of goals, agents 
an divide thework. Even if goals are not both satis�able (they 
ontradi
t ea
h other), agent maygain by 
arrying out a joint plan. E.g., 
onsider a blo
k-world problem in whi
h thegoal states of two agents are 
ontradi
ting, but both goal states have in 
ommonthat a proportion of the same work has to be done to satisfy them. In this 
ase,the agents 
an start by 
ooperatively 
arrying out the plan whi
h has lower total
ost than if an agent would do the work alone, and then they toss a 
oin to de
idewhi
h goal will be satis�ed. In this way both agents pro�t on average. To 
ope withsu
h di�erent situations, agents may 
hoose between pure plans (without a prob-abilisti
 
omponent), mixed joint plans (with a probabilisti
 
omponent to dividework a

ording to goal rewards), semi-
ooperative deals (agents 
arry out a subtaskand pro�t mutually), and multi plan deals whi
h implement post-
ip 
ooperationin whi
h a 
oin is 
ipped and the out
ome de
ides whether agents 
ooperativelyexe
ute a joint plan whi
h leads to the goal for agent 1 or the goal of agent 2.Vi
krey au
tion. When we want to maximize so
ial welfare (the sum of theutilities of all agents) when dealing with multiple agents, it is important that truth-telling of the agents is a dominant strategy. E.g., in some intera
tion s
hemes anagent may prefer to lie in order to get paid a higher amount for doing some taskor to do less work for solving some task. If agents start lying, the best 
ontra
ts
ould be disregarded, leading to a worse so
ial welfare. Therefore, me
hanismshave been designed whi
h promote truth-telling as a dominant strategy. One ofthe me
hanisms in au
tion-theory is the Vi
krey (se
ond pri
e, sealed-bid) au
tion(see Sandholm (1999) for a list of other au
tions), in whi
h agents make a bid forsome obje
t, and the agent whi
h had o�ered the largest payment, gets the obje
tfor the pri
e of the se
ond bid. Here, truth-telling of the real monetary value ofthe obje
t is a dominant strategy in single-shot private value au
tions with riskneutral bidders, a truthful au
tioneer, and no possibility of 
olluding. The mainargument is that if an agent would say that she values the obje
t less, the pri
ewould be the same for getting the obje
t, whereas the agent may also loose thebidding, thus not gaining the pro�t of the di�eren
e between its worth of the obje
tand the se
ond largest bid. If the agent would say a higher amount, the agentmay win the 
ompetition and pay a larger amount than its worth of the obje
t.Thus, the best is to tell the truth. Problems with the Vi
krey au
tion are thatbuyers may make 
oalitions (all 
an 
ooperate in mentioning a low value so thatthe winner would have to pay less), or the 
ontra
tor (the market) may lie: sin
e these
ond bid is unknown, the 
ontra
tor 
ould say that its pri
e equaled the winningbid. These subje
ts are important when dealing with self-interested agents andele
troni
 marketing (Sandholm, 1996). Another me
hanism for truth-telling is theVi
krey-Clarke-Gloves Tax (see Appendix A).3.5 Mapping problem types to algorithmsRL and EC are algorithms whi
h 
an be used e�e
tively for mi
rolearning, e.g. forlearning to 
ontrol an agent. They 
ould also be used for ma
rolearning as we haveseen. On the other hand, game theory and lo
al iterative algorithms are more usefulfor ma
rolearning. They 
an be used to �nd 
oalition stru
tures, task allo
ations,20



and s
hedules.There are parti
ular di�eren
es between algorithms su
h as Tabu sear
h (TS)and adaptive algorithms su
h as RL. An important di�eren
e is that TS 
omputesand evaluates a 
omplete solution (e.g., a job-shop s
hedule) and tries to �nd abetter solution by trying a set of 
hanges to the solution, evaluating the resultingsolutions and keeping the best one. Usually, TS works very well if evaluating a so-lution 
an be very fast and pre
ise, what is the 
ase for standard problems like thetraveling salesman problem, but whi
h is not the 
ase for very sto
hasti
 problemssu
h as network routing problems. In 
ontrast, RL algorithms in
rementally im-prove their solutions by using feedba
k information a
quired during the intera
tionwith the environment. Using this feedba
k, they make small 
hanges to a (sto
has-ti
) poli
y. Sin
e these methods rely on sto
hasti
 de
ision poli
ies and evaluate thepoli
y in many di�erent situations for whi
h it should work well, they are disturbedless by the sto
hasti
ity inside the problem environment.We would also like to know when to apply a parti
ular optimization algorithm.For this we made a mapping from problem features to optimization algorithms.
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hing problem features to optimization algorithms. Table entries de-note for whi
h problem features the algorithm is suitable.In �gure 6, we show that RL 
an handle all kinds of environments. Evolution-ary 
omputation 
annot handle highly dynami
 environments well, sin
e when weare evaluating population members inside a population, we require the problemsthe agents are solving to be the same and in non-stationary environments this isnot the 
ase. For slowly 
hanging environments, both methods will su�er fromthe same problems and 
an use the same methods to deal with it. E.g. when theenvironmental 
hange in 
y
li
, both methods 
ould tra
k 
hanges of the environ-ment and a

ordingly swit
h to new poli
ies. Lo
al sear
h su�ers from the sameproblem as EC, sin
e highly dynami
 environments make it diÆ
ult to evaluate aparti
ular 
hange of the poli
y. Although there are no theoreti
al guarantees thatRL 
onverges to stable poli
ies for non-stationary environment, they have the ad-vantage that they rely on a single de
ision poli
y whi
h 
ould in prin
iple use itsown intera
tion with the environment to tra
k the \environmental drift".Furthermore, lo
al sear
h may have diÆ
ulties with 
ommuni
ation, sin
e thereis no standard way of evolving 
ommuni
ation a
ts whi
h may also require fun
tionapproximators. They also have problems with 
ontinuous environments, sin
e inthis 
ase it is hard to make single poli
y 
hanges. Finally, it often assumes thatagents are stati
, sin
e navigating an agent in some environment demands somekind of behaviors or 
ontroller. Game theory 
an not be used for 
ontinuous state21



spa
es,2 sin
e in this 
ase negotiations between agents 
an be quite troublesome(although pri
es for trading 
ould be 
ontinuous, in general settings pri
es are sli
edinto dis
rete values, see e.g. Vidal and Durfee, 1998). Finally, game theory 
annotbe used for navigating dynami
 agents, sin
e it does not provide tools for this. Itdoes provide useful tools for designing and analyzing 
ommuni
ation, and 
ouldalso be used for dynami
 environments sin
e all agents 
onstantly remain inside theenvironment.Although we have not mentioned it before, partial observability of the envi-ronment may also be an interesting feature for 
hoosing between RL and EC. Al-though (Moriarty et al., 1999) dis
uss a 
omparison between an EC method toQ-learning, and show that Q-learning does not work for non-Markovian problems,TD(1) approa
hes based on Monte Carlo simulations 
ome mu
h 
loser in spiritto EC algorithms and do not su�er that mu
h when evaluating a poli
y (Wieringand S
hmidhuber, 1997). The most interesting di�eren
e therefore may be thatEC algorithms usually solve the stru
tural and temporal 
redit assignment at thesame time, e.g. by evolving a re
urrent neural network. The question then remainswhether similar things 
annot be done using RL.4 MAS problemsIn this se
tion we will review a set of problems and resear
h work to solve them.4.1 Network routingNetwork routing problems 
onsist of a set of nodes 
onne
ted in a network by trans-mission edges. At ea
h time-step a set of pa
kages are transmitted to the nodes,and these are transported over the network until they rea
h their destination ad-dress. The goal is to send pa
kages to those neighboring nodes whi
h will minimizethe overall traveling time. For de
ision making, the destination address of thepa
kage and information whi
h des
ribes how busy neighboring nodes are may beused. A problem whi
h resembles network routing is traÆ
 
ontrol where we haveto swit
h traÆ
 lights in order to minimize the average waiting time for the 
ars.Algorithms for solving network routing problems are the ant-system (Di Caro andDorigo, 1998a; Di Caro and Dorigo, 1998b), Q-routing (Littman and Boyan, 1993),predi
tive Q-routing (Choi and Yeung, 1995) and TPOT-RL (Stone and Veloso,1999).4.2 Sto
k supplyIn sto
k supply problems, we have a set of vehi
les whi
h drive around in an envi-ronment and have the goal to fet
h obje
ts and transport these to their destinationaddress. Note that the big di�eren
e with network routing problems exists in thefa
t that in sto
k supply problems the vehi
les are physi
al obje
ts driving around inan environment whi
h makes navigation and path-planning issues important prob-lems. There are stati
 sto
k supply problems su
h as delivering fuel from a fueldeposit to a set of fuel stations with the goal to minimize the overall traveling dis-tan
e and these 
an be modeled by vehi
le routing problems where we list the set ofaddresses to whi
h fuel has to be sent, and evaluate whether all 
onstraints are ful-�lled (su
h as tank-vehi
le i 
an 
arry suÆ
ient fuel to supply tank stations x1, x4,and x6). For su
h problems the ACS, EC, or TS 
an be used. There are also verydynami
 problems su
h as sto
k supply in a supermarket where requested itemsshould be taken of the shelves and a 
ontinuous stream of items 
an be requested.2Although we always have the option to dis
retize the spa
e �rst.22



For su
h problems we may prefer to use RL to learn rea
tive poli
ies whi
h 
animmediately rea
t to 
hanges to the state of the environment. Another example ofa sto
k supply problem is elevator dispat
hing where the goal is to bring a set ofpassengers in an elevator building to their destination addresses using multiple ele-vators. An RL algorithm for solving this problem is des
ribed in (Crites and Barto,1996). S
hneider et al. (1999) des
ribe di�erent RL methods using di�erent rewardrules for distributed 
ontrol of a simulated power grid. The goal is to dire
t powerfrom a set of produ
ers through a number of distributors to a set of 
onsumers(
ities). The 
omparison between four di�erent lo
al learning rules (using globalreward, lo
al reward, lo
al reward and rewards of neighboring nodes, and lo
al re-ward and value fun
tions of neighboring nodes) shows that learning a lo
al valuefun
tion whi
h is not only based on the lo
al reward but also on value fun
tions ofneighboring nodes is the most promising variant.4.3 Explorative dete
tion problemsIn explorative dete
tion problems (distributed measurement) the goal is to generatea set of traje
tories in order to maximize the probability that an event of interestwill be dete
ted. Examples are forest �re dete
tion (Kourtz, 1994) where the goalis to generate a set of airplane traje
tories over a 2-dimensional dis
retized map ofa forest with probabilities that in ea
h region a forest �re may have started. Otherproblems are pollution dete
tion (dete
t a pollution belt in the air), land-minedete
tion and food foraging.Massios and Voorbraak (1999) des
ribe an appli
ation of de
ision theoreti
 plan-ning for surveillan
e robots. The goal is to minimize the 
ost of parti
ular eventssu
h as an undete
ted �re or 
ooding in a room of a building. For this, the agenthas to �nd out in whi
h order to visit rooms. Although the present appli
ationinvolves a single agent it 
ould easily be generalized to a multi-agent problem.Ye and Tsotsos (1997) 
onsider a 
olle
tive sear
h task for a team of robots.In a 3D environment, some target obje
t is hidden and the goal of the team isto 
ooperatively explore the environment in order to dete
t the obje
t as soonas possible. Finding traje
tories whi
h maximize the probability of dete
ting theobje
t is a NP-hard problem. Their proposed method works with a probability gridrepresenting the probability that ea
h of the dis
rete 
ells 
ontains the target. Bynavigating through the environment and sensing the spa
e with 
ameras (whi
hare not a

urate enough to be able to always dete
t the obje
t when it is in thesurroundings), the probability grid is updated and this in
uen
es the sear
h. Itis also important to 
oordinate the agents, sin
e it may happen that all agentsbelieve that the target obje
t is in some area and will 
luster in the same workingspa
e. Therefore a term for spreading the agents over the environment is used whileplanning agent movements.4.4 Transportation problemsTransportation problems are 
ommon real world problems. Examples are harbor
ontainer problems (Gambardella et al., 1998) where we have a do
k where 
ontain-ers are loaded and unloaded from ships with their spe
i�
 destination addresses anda big yard (depot) is used for sto
king 
ontainers whi
h should be shipped to somedestination. There are a set of 
ranes whi
h 
an be used for loading and unloadingships and for building 
ontainer piles on the 
ontainer yard and a set of transporttrains whi
h 
arry the 
ontainers between the quay and the 
ontainer yard wherethey have to be loaded/unloaded. The goal is to �nd eÆ
ient s
hedules for the
ranes storing the 
ontainers in the yard, for loading and unloading the ships, andfor the trains transporting 
ontainers between the yard and quay so that the 
ost23



of the whole operation is minimized. Parti
ular problems whi
h have to be solvedare the following: 
ontainers whi
h leave qui
kly should not be stored under a largeset of 
ontainers whi
h should then be moved on the yard to di�erent pla
es whi
hwould 
ost a lot of time. Other problems involve deadlo
k situations in whi
h two
ranes are assigned to the same area of the yard. Another transportation problemis the train 
ontainer problem where trains are used to 
arry 
ontainers to theirdestination addresses and for whi
h 
ontainers have to be transported on railwaystations to 
hange trains.4.5 TraÆ
 light 
ontrolIn traÆ
 light 
ontrol, we have an environment 
onsisting of an infrastru
ture, 
ars,and traÆ
 lights. The 
ars drive over the roads and have a parti
ular destinationaddress. TraÆ
 lights are modeled as agents whi
h 
an swit
h between red andgreen signals. The goal of the system is to minimize the overall waiting time infront of the traÆ
 lights whi
h also minimizes traveling times. Thorpe and An-derson (1996) use SARSA (Sutton, 1996) with repla
ing eligibility tra
es (Singhand Sutton, 1996) to learn traÆ
 
ontrollers on a simulated traÆ
 
ontrol problem
onsisting of a network of 4 � 4 traÆ
 light 
ontrollers modeled in a grid. Theymodeled average speed, queueing and a

eleration/ de
eleration of 
ars. They op-timized the traÆ
 
ontroller on a single interse
tion after whi
h they 
opied it tothe other interse
tions (so they use poli
y sharing). Results showed that using theirbest state representation (whi
h indi
ated whi
h partitions of ea
h road segment
ontained 
ars) they were able to outperform an algorithm whi
h used �xed waitingtimes or an algorithm whi
h allowed the largest queue to go �rst. This latter algo-rithm su�ers from swit
hing lights too often on 
rowded traÆ
 nodes whi
h 
osts alot of time, sin
e 
ars need to de
elerate and a

elerate again and again.Taale et al. (1998) 
ompare using evolutionary algorithms (a (�; �) evolutionstrategy) to evolve a traÆ
 light 
ontroller for a single simulated interse
tion tousing the traditional traÆ
 light 
ontroller used in the Netherlands (the RWS C-
ontroller). They found 
omparable results for both systems.4.6 Multi-ma
hine s
hedulingIn multi-ma
hine s
heduling, jobs have to be assigned to ma
hines so that 
ertainperforman
e demands like time and 
ost e�e
tiveness are optimized. Brauer andWeiss (1997) dis
uss a RL approa
h using lo
al agents to optimize the global behav-ior of the system. They 
onsider two types of time 
onstraints: the time that onema
hine needs for 
ompleting its produ
tion step and the time needed for trans-ferring one job from one ma
hine to a su

essor (the ma
hines are represented bya network in whi
h ea
h job goes through a ma
hine at all levels). By learningan estimation of the remaining time for transferring one job from one ma
hine toea
h su

essor ma
hine, the su

essor ma
hine 
an be 
hosen leading to the low-est expe
ted 
ost. Their algorithm outperformed a random assignment poli
y anda method whi
h assigns a job to the ma
hine with the lowest 
ost for a one-steplookahead step. It 
an also re-adapt itself to 
hanges in the environment, e.g. whena ma
hine breaks down.4.7 Quadrati
 assignment problemThe quadrati
 assignment problem (QAP) provides (like many other NP-
ompleteproblems) a suitable model for many real-world problems su
h as: 
ampus planning,typewriter keyboard design, hospital layout, minimizing average job 
ompletion inma
hine s
heduling and others (Colorni et al., 1993). In a QAP there is a 
ow24



matrix and a 
ost matrix, e.g. the average number of times the dire
tor visits these
retary and the distan
e between their rooms. The goal is to pla
e all obje
ts insu
h a way to minimize the produ
t of the 
ow and 
ost matri
es. A number ofalgorithms 
an be used to solve the QAP su
h as Tabu sear
h, simulated anneal-ing, geneti
 algorithms, immune networks, sampling and 
lustering, the ant 
olonysystem and others. These algorithms 
an be used to �nd good solutions to diÆ
ultQAP problems as shown in (Colorni et al., 1993; Gambardella et al., 1997).4.8 Robot so

erIn robot so

er, the goal is to �nd team so

er strategies. Ea
h agent follows aparti
ular a
tion sele
tion poli
y and the goal is to optimize that poli
y so that theteam will win against other teams with the largest possible s
ore di�eren
e. This isa 
hallenging problem 
ombining a dynami
 environment, 
ooperation, 
ompetitionand 
ommuni
ation. So

er re
ently re
eived mu
h attention by various multi-agentresear
hers (Sahota, 1993; Asada et al., 1994; Littman, 1994a; Stone and Veloso,1996; Matsubara et al., 1996). Most early resear
h fo
used on physi
al 
oordina-tion of so

er playing robots (Sahota, 1993; Asada et al., 1994). There also havebeen attempts at learning low-level 
ooperation tasks su
h as pass play (Stone andVeloso, 1996; Matsubara et al., 1996). Littman (1994) des
ribes a 5� 4 grid worldwith two single opponent players. Luke et al. (1997) des
ribe an approa
h to learn-ing so

er team strategies in more 
omplex environments. Some novel resear
h onlearning so

er strategies is des
ribed in (Sa lustowi
z et al., 1998; Wiering et al.,1998). Stone et al. (1999) des
ribe their so

er team \CMUnited-98" whi
h be-
ame the Robo
up-98 simulator league 
hampion. CMUnited-98 keeps an a

urateglobal world model representing the positions, velo
ities of all moving obje
ts andthe 
on�den
es of these parameters. Then it uses the global world model for lo
alde
ision making. For this skills are 
onstru
ted su
h as: Ki
king, Dribbling, BallInter
eption, Goal-tending, and Defending. These skills take the predi
ted worldmodel and predi
ted e�e
ts of future a
tions into a

ount to determine the optimalprimitive a
tion. Furthermore, ma
hine learning te
hniques are used for 
hoosingthe a
tion of the agent possessing the ball. Finally, CMUnited uses 
lever strategi
positioning of the team players using a pro
edure maximizing a mathemati
al ex-pression 
onsisting of attra
tion (to the ball and goal) and repulsion (from passiveteammates and opponents) terms.4.9 Forest �re �ghtingIn forest �re �ghting, the goal is to 
ontrol forest �res with a set of agents. Theforest �re is modeled and we 
an 
ontrol a set of bulldozers to 
ut �relines. These�relines have to ensure that the propagation of the forest �re stops. The goal isto learn optimal strategies for ea
h bulldozer whi
h uses lo
al information in orderto 
reate �relines. In (Wiering and Dorigo, 1998) a method is des
ribed whi
h hasthe aim to solve this problem. It relies on using fun
tion approximators to solvethe lo
al navigation problem and uses RL and 
ooperative sear
h to learn a poli
ywhi
h dynami
ally 
onstru
ts optimal �relines given the 
urrent state of the forest�re.4.10 Cooperative robot tasksIn roboti
 domains, using multiple robots to speed up a task like obje
t gather-ing (Matari
, 1994) or to make pushing a heavy box possible (Matari
, 1997) isa natural extension to single agent problem solving methods. With robot teams,new features be
ome possible su
h as 
ommuni
ation, 
arrying heavy obje
ts with25



multiple robots, and task spe
ialization. Mur
iano and Millan (1995) des
ribe aRL method whi
h uses prewired behaviors for a team of agents in whi
h the goalis to learn to signal to other agents where the obje
ts of interest are. E.g., whenthere is a group of obje
ts 
lustered together, agents may use light sour
es to pro-vide other agents with the information that they found a spot from whi
h obje
tsmay be gathered. Using this signal-based 
ommuni
ation, ea
h agent 
an learn tobe
ome a signaling agent or an exploring agent. The results show that the team
an learn to 
ooperate well. A similar way of 
ommuni
ating messages was doneby Matari
 (1997), where robots had to 
olle
tively 
olle
t pu
ks and robots 
ouldsend messages to ea
h other whi
h would in
uen
e where other robots would go to.Bal
h and Arkin (1994) dis
uss 
ommuni
ation in rea
tive multi-agent roboti
systems. The tasks involved are foraging (go and bring obje
ts to the homebase),
onsuming (go to obje
ts and 
onsume them), and grazing (e.g. lawn mowing).They provide the robots with the ability to send state (whi
h behavior are they
urrently following) or goal information (whi
h pla
e may be interesting) amongagents. The results show that for the foraging and 
onsume task, 
ommuni
ationhelps to redu
e the time needed to �nd or 
onsume all obje
ts in the environment.For grazing no improvement was found, however. The authors explained that ingrazing, there is already impli
it 
ommuni
ation sin
e agents 
an observe the lawnand infer where other agents are working.4.11 Load balan
ingIn load balan
ing we want to map a pro
ess to a parallel ma
hine. The pro
esswhi
h has to be parallelized 
an be modeled as a network where nodes representsubtasks and edges represent 
ommuni
ation between tasks. The goal is to �tthe pro
ess as well as possible on the ma
hine so that 
ommuni
ation overhead isminimized. This is also a NP-
omplete problem. S
haerf et al. (1995) dis
uss anapproa
h to adaptive load balan
ing using reinfor
ement learning. The problemthey 
onsider is a multi-agent multi-resour
e sto
hasti
 system: there is a set ofagents, a set of resour
es with 
apa
ities, and probabilisti
 job sizes. An agentmust sele
t a single resour
e for ea
h job whi
h will pro
ess it. If a resour
e isworking on multiple jobs at the same time, it spreads its produ
tion a
tivity overall jobs. Thus, the goal is to let agents learn to assign the best resour
e to ea
h joband to distribute the jobs in the right way. They use a simple RL s
heme, whereea
h agent estimates the time ea
h ma
hine needs to pro
ess their jobs. By havingall agents learn simultaneously, some agents will prefer to use parti
ular resour
eswhereas others prefer other resour
es. In this way the jobs are spread. The resultsshow good performan
e of the learning system 
ompared to non-adaptive de
isionsystems, and that the learning system 
an also e�e
tively handle 
hanging 
apa
itiesof resour
es.4.12 Dynami
 
hannel allo
ationIn dynami
 
hannel allo
ation for 
ellular telephone systems, 
alls have to bemapped to 
hannels. Ea
h 
hannel 
an be used for multiple 
alls, but only if the
alls using them are spatially distributed. Singh and Bertsekas (1996) dis
uss a RLapproa
h to learning an assignment poli
y for in
oming 
alls. The goal is to learnde
ision poli
ies whi
h minimize the number of 
alls whi
h are blo
ked sin
e no
hannel is available for them. They use feature extra
tion, a linear neural networkand TD(0) (Sutton, 1988) learning a value fun
tion for telephone network 
on�gu-rations. In this way when a 
all has to be assigned, all next 
on�gurations 
an beevaluated and the one with the lowest estimated number of (future) blo
ked 
allsis sele
ted. The algorithm uses a single 
ontroller, and the system is therefore not26



really a MAS, although it 
ould be de
entralized as well. The algorithm has beenshown to outperform �xed assignment poli
ies and the best heuristi
al assignmentpoli
ies on a large 
ellular system with approximately 7049 states.4.13 Game theoreti
al problemsArthur's El Farol Bar problem (Wolpert et al., 1999b) is a fairly diÆ
ult problemto solve with multiple agents. There is a bar and a set of agents. Ea
h agent has tosele
t a night for attending the bar. Sin
e the bar may be empty or over
rowded,the agents have to 
ooperate to maximize the global payo�. E.g., during a night apayo� is obtained of: xexp(�x=6:0) whi
h is maximized when x = 6. Therefore ifthere are 168 agents, the optimal solution is to have 6 agents in the bar on 6 nightsand to have the remaining 132 agents in the bar on the last night. Su
h problemsneed 
ooperative agents and good reward fun
tions to learn this solution. E.g., in(Wolpert et al., 1999b), it is des
ribed that just learning from the global rewarddoes not work well, but di�erent reward fun
tions su
h as the wonderful life utilitylead to mu
h better results.4.14 Predator-prey problemsMulti-agent RL has also been used to study predator-pray problems, su
h as theproblem des
ribed in (Ono and Fukumoto, 1997; Stone and Veloso, 1997) where 4predators have to 
lose in a prey on a grid and their a
tions are to stand still orto go to ea
h of the four dire
tions. The predators need to 
ooperate whereas theprey has to es
ape the predators. In (Ono and Fukumoto, 1997) predators use Q-learning and obtain information from the environment using lo
al visual �elds. Theproblem is that sin
e there are a total of 5 agents (in
luding the prey), the numberof possible inputs grows exponentially with the number of agents. Therefore theauthors use a modular approa
h in whi
h di�erent modules are used to dete
t preyand single predator positions within the lo
al �elds. In this way, agents 
an learn to
ooperate by lo
ating and following other agents. The experiments show that theteam of agents are able to learn 
ooperative behaviors su
h as herding (agents staytogether whi
h fa
ilitates en
losing the prey), and altruisti
 behaviors (agents stay
lose to the prey so that other agents are able to either dete
t the prey or otheragents and in this way the 
han
es to dete
t and 
lose in the prey in
rease).Tan (1993) studies how independent agents behave when 
ompared to 
oop-erative agents. The 
ooperative agents 
an 
ommuni
ate their per
eptual �elds,poli
ies and learning episodes to another agent. They have to solve a 2 predator, 2prey task (lo
ating and hitting the prey) in a dis
rete grid-world. The results showthat 
ommuni
ating lo
al per
eptual �elds by a (third) s
outing agent helps to re-du
e the number of steps for 
at
hing the prey. Poli
y sharing and presenting otheragents with episodi
 memory (the learning trial of another agent) also help. Thus,in these ways 
ooperating 
ommuni
ating agents outperform independent agents.S
hmidhuber and Zhao (1996) study three 
o-evolving agents whi
h are simul-taneously prey and predator. E.g. Agent A tries to 
at
h agent B, but has toes
ape from agent C. They use the su

ess-story algorithm (S
hmidhuber, 1996;S
hmidhuber et al., 1997), an algorithm whi
h keeps poli
y updates if they resultin long term reward a

eleration. The poli
y updates are performed by the poli
yitself, so that the poli
y is self-modifying. The results show that ea
h agent learnsinteresting pursuit-evasion behaviors.
27



5 Con
lusionThis paper des
ribed multi-agent systems (MASs), systems 
onsisting of multipleindividual agents working in the same environment. Sin
e these agents share re-sour
es and may have their own individual goals, 
on
i
ts may arise when we want to
o-optimize the agents. Therefore an important topi
 in dealing with MASs is to 
o-ordinate agents. Coordination 
an be done using spe
ial multi-agent ar
hite
tures.Di�erent ar
hite
tures of spe
ial interest are global world models, hierar
hi
al sys-tems (management agen
ies), and expli
itly 
ommuni
ating agents. Some of theseare already used for multi-agent appli
ations su
h as global world models for robotso

er (Stone et al., 1999). Most re
ent multi-agent appli
ations, however, rely onlo
al agent ar
hite
tures (e.g. Crites and Barto, 1996) or on systems using limited
ommuni
ation possibilities. Sin
e larger appli
ations su
h as RoboCup res
ue, thenew RoboCup 
hallenge requiring many agents to 
ooperatively deal with disastersituations, will require good 
oordination skills, mu
h more resear
h in developingand testing more advan
ed ar
hite
tures is required.Optimization algorithms for solving multi-agent problems are another impor-tant topi
 for MAS resear
hers and this topi
 has re
eived more attention duringthe last years. In this paper, we made the distin
tion between mi
rolearning andma
rolearning for optimizing MASs. Mi
rolearning is used to optimize the behaviorof single agents | a single agent intera
ts with its environment (in
luding otheragents) and learns to maximize its long term reward intake. Ma
rolearning is usedto optimize the global behavior of the system and 
an be used to optimize the ar
hi-te
ture, reward fun
tions, 
ommuni
ation proto
ols, or other global de
isions su
has 
hoosing how many agents will be used for solving the problem. We dis
ussedusing reinfor
ement learning (RL), evolutionary 
omputation (EC), lo
al iterativesear
h, and game theory. RL and EC 
an be used for mi
rolearning and ma
rolearn-ing. Just as in single agent RL, there are tradeo�s whether to use RL or EC (see(Moriarty et al., 1999) for a dis
ussion of relative advantages/disadvantages). Inmulti-agent RL, problems are often non-Markovian sin
e lo
al agents only per
eivepartial state information, and non-stationary. For su
h problems both methodsmay pro�t from di�erent, spe
ialized, ar
hite
tures. Therefore experimental 
om-parisons between both approa
hes would be helpful to �nd their relative strengths.Lo
al sear
h and game theory are useful for 
oordinating multiple agents usingeither hierar
hi
al systems (lo
al sear
h) or 
ommuni
ation (game theory). Fur-thermore, game theory is interesting for studying the so
ial out
omes of intera
tingself-interested agents.We dis
ussed previous resear
h in solving a set of multi-agent problems. Formost problems, multi-agent RL with lo
al independent agents have been used. Still,although simple, these approa
hes have often been shown to be quite e�e
tive. In fu-ture resear
h, we would like to see the advantages of going beyond lo
al agents. Forthis, we 
ould use 
ommuni
ation, hierar
hi
al systems where agents get roles givenglobal strategies, global world models, and task stru
tures for dividing tasks intosequen
es of subtasks. It has already been shown e�e
tive to expand the state infor-mation of an agent by some more global information. E.g. Stone and Veloso (1999)�nd good solutions to a network routing problem by using information whether aneighboring node is busy or not to de
ide to whi
h node a pa
kage should be sent.In this way, lo
al de
ision making 
an be improved. When we look into the future,we expe
t that more systems will be 
onstru
ted 
ombining lo
al information andglobal information in whi
h the global information may be obtained in di�erentways, e.g. by 
ommuni
ation. Another interesting topi
 is how reward rules 
anbe set up so that optimizing a single agent's behavior is for the 
ommon good. Fornow, many interesting multi-agent problems are still waiting to be studied and lotsof ex
iting work has to be done to 
onstru
t algorithms solving them.28
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