
Learning in Multi-Agent SystemsMaro Wiering, Ben Kr�ose, and Frans GroenDepartment of Computer SieneFaulty of Mathematis, Computer Siene, Physis, and AstronomyUniversity of AmsterdamKruislaan 403, NL-1098 SJ, Amsterdam, The Netherlandsfwiering,krose,groeng�wins.uva.nlJanuary 4, 2000AbstratThere is an inreased interest in multi-agent systems (MASs) for omput-ing robust solutions to omplex real world problems. In this paper we analyzedi�erent aspets of multi-agent systems, in partiular multi-agent arhite-tures, multi-agent problems, and optimization algorithms for MASs. Further-more, we present a sheme for mapping multi-agent problems to arhitetureswhih an be used for solving them and a mapping from multi-agent prob-lem features to optimization algorithms. Finally, we review the solutions ofprevious work on many di�erent multi-agent problems.1 IntrodutionMulti-agent systems (MASs). The study of multi-agent systems enables us toome up with robust solutions to omplex problems. In the past many monolithiapproahes have been onstruted to solve suh tasks. As problems have beomemore omplex during the last deades, more modular systems have been developedfor solving them. The study of multi-agent systems (MASs) is beoming an ative�eld of researh in arti�ial intelligene (AI) whih studies how partiular problemsonsisting of multiple omponents an be solved. For this the MAS engineer identi-�es loal omponents in the problem (sometimes a problem has to be broken downinto loal omponents �rst) and then uses agents to onstrut individual solutionsfor eah of the omponents. MASs are systems in whih there is no entral ontrol:individual agents reeive inputs from the environment (or through ommuniationwith other agents) and use these inputs to selet individual ations (outputs, dei-sions). The global (omplex) behavior of MASs depends on the loal behavior ofeah agent (the way it ats) and on the interations between the agents. Many om-plex problems an be naturally desribed as MASs suh as traÆ ontrol, networkrouting, stok supply, pollution detetion, elevator dispathing, forest �re �ghting,and transportation problems. E.g., in traÆ ontrol, traÆ lights and ars are mod-eled as agents and the total throughput of the system is a result of the omplexinterations of the agents and the traÆ environment (infrastruture).Why MASs? The question may arise why we want to onstrut multi-agentsystems instead of single entralized agent systems. There are di�erent reasons forusing MASs:� External. Some problems require MASs. Consider di�erent organizationswhih trade with one another. Eah organization has its own goals and pro-prietary information and wants to keep its own information hidden from other1



organizations so that it will not give authority to any single person to builda representation that integrates them all. Instead the di�erent organizationsneed their own systems (Stone and Veloso, 1997).� Internal. MASs are more modular than single agent systems whih givespartiular advantages: (1) It beomes easier to hange the behavior of singleagents or to add new agents to the system (salability); (2) MASs providea onvenient way to integrate distributed omputing algorithms to speed upomputing solutions for the di�erent agents; (3) MASs are more robust, es-peially if there are redundant agents available. If an agent in a MAS breaksdown, the other agents an still ontinue working so that the system degradesgraefully and the problem an still be solved. This is very di�erent from aentral ontroller breaking down | when this happens there is not anotherway for seleting ontrol ations for the agents so that the whole system annotoperate anymore.Learning in MASs. The �rst possibility to onstrut a MAS is to designa MAS arhiteture and to program the interation protools and behavior of allagents in the system. The behavior of an agent is usually aptured by a deisionmodule (poliy) whih uses the inputs of the agent to hoose an ation. As prob-lems get more omplex, programming the orret ation for eah possible input isa demanding and time-onsuming task. Even if we are able to program the behav-ior of an agent in a partiular environment, this behavior may fail entirely whenthe environment hanges. Therefore a more onvenient way to onstrut MASsis to make use of mahine learning (ML) tehniques whih are able to adapt anagent's behavior automatially and have the aim to optimize the agent's behaviorin the environment. Training an agent is done by having the agent interat withthe environment and using feedbak (reward) from the environment to adjust theagent's behavior. If the environment hanges, so will the agent's behavior. Sineprogramming agents is a hard task, we will fous on the use of ML tehniques orother optimization methods to automatially searh for an (optimal) behavior of anagent.Outline. In this artile we will �rst onsider di�erent multi-agent systems andwill desribe their most important features and arhitetures in setion 2. Then insetion 3, we will desribe a set of algorithms and methods whih an be used tooptimize a system. In setion 4, we will onsider a set of multi-agent problems anddesribe work whih has been done to solve them. In setion 5, we will draw someonlusions.2 Multi-agent systems (MASs)Multi-agent systems an be used to naturally solve a wide variety of problems. Animportant topi in MASs is the oordination of the behaviors of di�erent agents.Although in single agent systems, an agent pursues its own goal, there may notbe suh a thing as a single goal for MASs. MASs an also onsist of di�erentself-interested rational agents whih learn behaviors whih ful�l only their owngoals. Sine the MAS designer wants to optimize the behavior of the global system,we have to evaluate its global performane. When the agents pursue a ommongoal, e.g. in network routing, the performane of the global system an easily beevaluated. Otherwise the performane of the global system is dependent on theperformanes of all single agents, and the global goal would onsist of all goalsof the individual agents (whih may not always be ompletely attainable). Oftenthese agents interat and an help or hinder eah other when they pursue theirgoals. Therefore, to optimize the global system, agents should ooperate whih is2



made possible in di�erent ways. E.g., we an use ommuniation between agents sothat they an negotiate about their goals and ations and then exeute joint plans,or we an use management agenies or soial laws whih determine whih behaviorsshould and whih ones should not be used.2.1 Desription of agentsAlthough we do not want to provide a theory of ageny here (we refer to (Wooldridge,1999) for this), we will shortly desribe how an agent interats with its environment.An agent uses real or virtual sensors to obtain information from its environment,and uses atuators for exeuting ations. Its input onsists of information of the en-vironment, but may also inlude information obtained through ommuniation withother agents. By using a deision poliy, the agent maps inputs to ations. The goalof an agent is usually provided in the form of an evaluation or reward funtion. Atpartiular time steps the agent may be evaluated and the given amount of rewarddetermines how far the agent is suessful in reahing its goal. The higher the longterm reward intake, the better the agent performs. See �gure 1 whih depits atwo-agent system.
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Figure 1: A MAS in whih two agents interat simultaneously with an environmentand have the possibility to ommuniate with eah other.All agents interat simultaneously with the environment. After all agents haveseleted their ation, the environment is hanged (to a new state) and the agentsreeive a reward (evaluation signal) based on their loal reward funtion whih mapsthe arrival in the new state to a salar reward value. The goal of eah agent is toahieve the highest possible sum of rewards (utility) and in this way eah agentis self-interested. To ahieve this goal, agents adapt their poliy based on theirexperienes and try to �nd that poliy in the spae of all possible poliies whihleads to the maximal future reward sum given some state. As agents optimizetheir individual poliy, we would like to see that the performane of the wholeMAS improves as well. This is not always the ase, however. Sometimes goals ofdi�erent agents are dependent on eah other so that if one agent pursues its owngoal it hinders another agent reahing its goal. Therefore agent's behaviors shouldbe oordinated so that system performane (or the soial welfare: the sum of allagent's performanes) is optimized when agent behaviors are optimized.3



2.2 MAS arhiteturesAn important task for a system engineer when onstruting a MAS is to designan arhiteture whih determines how agents are organized. E.g., the organizationdetermines whether and how agents an ommuniate and is essential for oordi-nating agent behaviors. We would like to set up an arhiteture whih allows forooperation between groups of agents. We will desribe a number of MAS arhi-tetures, and examine their omplexities and whether they are stati or dynamiarhitetures.� We de�ne the omplexity of an arhiteture as the total size of the searh(poliy) spae.� An arhiteture is stati if it remains invariant during the learning proess.An arhiteture is dynami if some omponents of it hange during the adap-tation proess.The multi-agent arhitetures an be separated aording to the problem theydeal with. First of all, arhitetures may deal with the problem of breaking down avery large and omplex entral ontroller into parts and assigning tasks and goalsto individual agents. Seond, arhitetures may deal with handling the problem ofpartial observability of the global state and with the separation of problem-solvinginformation over agents. Here, ombining information from multiple soures mayredue the unertainty in the deision making of single agents. Finally, arhiteturesmay deal with the oordination of multiple agents. To deal with multiple problemsat the same time arhitetures may be ombined.2.2.1 Centralized ontrolWe an use a single group poliy whih maps a desription of the environmentalstate to a set of agent ations. This an be onsidered as a single agent system,sine the entral poliy is not broken down into loal omponents. E.g., in a networkrouting problem we ould have a superagent whih reeives information about theglobal state of the network and selets for eah node to whih neighbor it shouldsend its urrently proessed pakage. Although suh a poliy may guarantee �ndingoptimal ooperative poliies of all agents, the number of environmental states andthe produt ation spae of the superagent is usually muh too large to be stored.Furthermore, ation seletion will in general ost a lot of time. Finally, the systemis not robust: if the entral ontroller breaks down, the performane of all agentsollapses.Matari (1997) uses entralized poliies for two robot agents in a box-pushingtask. In her system, the agents reeive the sensory information of the other agent(by ommuniation) and take turns in seleting the ations for both of them. Theomplexity of this system an be measured as the number of allowable poliieswhih equals: ANSN , where A is the number of ations, S is the number of inputstates, and N is the number of agents. The arhiteture is stati. It deals with theproblems of partial observability and an be used to oordinate agents.2.2.2 Poliy sharingIn order to make the poliy spae muh smaller, we an use poliy sharing. In poliysharing, eah agent uses the same poliy for seleting an ation, although behaviorsbetween these homogeneous agents di�er sine they reeive di�erent inputs. Thisapproah is pursued in (Sa lustowiz et al., 1998; Wiering et al., 1998) for learningsoer strategies. Furthermore, the ant olony system (Dorigo, 1992; Dorigo and4



Di Caro, 1999) uses a global pheremone trail whih is shared by all agents (ants)for deision making. The advantage of poliy sharing is that training them an bevery fast, but a disadvantage is that it does not allow for task speialization or self-interested agents (agents an only pursue a ommon goal). The omplexity of thissystem equals: AS , a huge redution ompared to the entralized system if thereare many agents. The arhiteture is stati. Poliy sharing is good for breakingdown the large entralized ontroller so that the arhiteture does not su�er fromspae limitations anymore. For some appliations total poliy sharing is unwanted,and we may only want to use shared poliies for subgroups of agents.2.2.3 Loal agentsWe an also redue the size of the poliy spae by breaking a entral ontrollerdown into loal non-diretly interating agents. Thus, we an onstrut a systemwhere eah agent has to learn its own poliy and the whole system is evaluatedby examining the group behavior. E.g., in a network routing problem, at eahtime-step eah node may use its individual poliy to deide to whih neighboringnode it will send its urrently proessed pakage given the destination address ofthe pakage. A disadvantage of using totally unoupled systems is that it maybe hard for the system to �nd optimal ooperative behaviors, sine agents usuallyhave a very loal view and agent behaviors are not diretly oordinated. Sinedependenies between tasks of agents are not modeled expliitly, a degradationof performane may result if a loal agent system has to solve tasks with manydependenies. For suh problems we ould supply the agents with ommuniationfailities to oordinate their behaviors. Another possibility is to let agents learnmodels of other agent's behavior so that agents themselves an reason about andoverome possible onits. Finally, an important topi is whih reward funtion touse. E.g. agents an use global or loal reward funtions or funtions so that thereward intake of the agent and its neighbors is optimized (Shneider et al., 1999).Using a system with loal learning agents is used by (Crites and Barto, 1996) forlearning to ontrol elevators and by (Littman and Boyan, 1993) for network routing.The omplexity of this system is: NAS , sine we have N poliies of size AS .1 Thearhiteture is stati. The loal agent arhiteture also onentrates itself on theproblem of breaking down the large entralized ontroller so that the arhiteturedoes not su�er from severe spae limitations.2.2.4 Task shedulesWhen multiple tasks have to be exeuted by a number of agents, we an use taskshedules to divide the tasks over the agents. The shedules tell the orderings ofthe operations performed by eah of the agents. Eah agent an have speializedskills and the goal of the engineer or learning algorithm is to divide a task intosequenes of subtasks for individual agents. E.g., in a job-shop sheduling problem,a shedule may order the tasks eah mahine (agent) has to arry out in order tomake the total proessing time of all jobs as short as possible. One disadvantage ofthese preomputed shedules is that they are often not reative to dynami hangesof the environment, sine they are usually preomputed. Therefore if some agentbreaks down, a ompletely new solution has to be omputed unless there are waysfor assigning its subtask to other agents. Shedules may be useful when tasks anbe broken down into parts for whih speial skills are desired. The omplexity ofthis system is: NAS + T (N) where the seond term T (N) refers to the number1Although there are more possible team poliies (ANS), we neglet poliy-dependenies andassume agents an improve their poliies regardless of other poliies. Therefore, when making asingle poliy hange at eah time-step we only have to onsider one out of NAS possibilities.5



of possible orderings of the tasks. The arhiteture is dynami, sine for di�erentglobal world states, di�erent task shedules may have to be generated. A taskshedule arhiteture onentrates itself on the problem of breaking down the entralontroller and on assigning tasks to agents and thus oordinating them.2.2.5 Hierarhial systemsInstead of breaking down the problem entirely into agents whih do not share globalinformation or interat diretly, we an also use a hierarhial design of the systemto ensure ooperation in the system. E.g., we ould think of a supervisor (man-agement ageny) whih determines whih behaviors are allowed for agents (soialonventions) and whih agents have to ooperate to solve some task. In generalthe supervisor will have a more global view and it an ensure better ooperationby oordinating agent behaviors. The supervisor ombines agent poliies in a top-down way in whih supervisors an use the urrent global world state to hoosewhih agents ooperatively solve some subtask of the task (and thus may share re-ward funtions). We ould also have di�erent agent roles (poliies) and learn globalstrategies for ombining these roles (Tambe, 1997). The di�erene with a entralontroller is that hierarhial systems an ombine a small number of agents intoa poliy instead of ombining them all. A disadvantage of suh a system is that itmay be less robust, sine management agents may break down and ause havo inthe total behavior of the system.Another way of using hierarhial systems is to use oalition strutures (CSs)between agent poliies (Sandholm, 1996). Coalition strutures determine whihagents work together to solve a partiular task and how they do that. The formationof oalition strutures ould be the result of a negotiation between agent so thatthey ooperate to handle some task. CSs an also be used to math poliies ofagents so that eah time that some CS is used, two spei� adaptable poliies areombined whih have (already learned) to ooperate. Note that in this systemexpliit ommuniation between agents would also be possible. The omplexity ofthe system is about: NMAS+K(MN)C, where M is the number of poliies allowedfor eah agent, K is the number of oalitions and C is the number of agents whih anbe ombined inside a single oalition. Note that if M and C are 1, the system wouldessentially be the same as using loal agents. The arhiteture is dynami, sineat di�erent moments di�erent agents may have to work together. The hierarhialsystem provides us with a solution to the problem of how to oordinate di�erentagents.2.2.6 Global world modelsAgents may also share a global world model whih they use for their deision makingand whih they an alter themselves. In this way the global world model provides away to ommuniate (abstrat) information between agents. This helps to overomelimited pereption of some agents. E.g., if some agent has deteted an event ofinterest, this is ommuniated to the global world model, and other agents mayrespond to this information. Global world models are used in e.g. robot soer(Stone et al., 1999). Here, sensory information over time is gathered to makethe global world model as aurate as possible. This methods is also pursued in(Ye. and Tsotsos, 1997) to searh with a team of robots for an objet in a 3Denvironment. It resembles poliy sharing somewhat, although with global worldmodels only state information is shared | deision poliies an be learned loally.The method requires the abilities to math agent's loal views to the global worldmodel and to adapt the world model aordingly. The omplexity of this systemdepends a lot on how agents selet ations. If we onsider an agent whih uses6



the state of the global world model to selet ations, and all agents abstrat theirloal views to a state in the global world model, the omplexity is NIS + NANI .Here, I refers to the number of abstrat states for eah agent. The term NIS refersto the number of possible abstrations from states to abstrat states. It is learthat for very large or ontinuous state spaes, this should be done using funtionapproximators. The term NANI refers to the number of poliies for all agents whenNI states are available in the (abstrated) global world model. The arhitetureis stati, although the global world model may be dynami, e.g. it an involvedi�erent numbers of possible states over time. Global world models deal with theproblem of partial observability of the global state.2.2.7 Communiating agentsWhen agents have to ooperate, it may be very useful that agents an diretlyommuniate with eah other to give information about their plans so that futurebehaviors of the agents are better oordinated. This an be done by using lan-guage protools suh as KQML (Finin et al., 1992) or �nite state automata (FSA)whih ause eah agent's desription of the world to be augmented with abstratinformation reeived by the ommuniation with other agents. Thus, ommunia-tion provides a way to expand the limited input of an agent so that it \knows"about the existene of other agents. Agents may even ommuniate reurrently sothat they an math their independent ations so that an ation of an agent anbe onditioned on other agent's ations (Gmytrasiewiz and Durfee, 1992). Thisrepetitive ommuniation should stop, however, and therefore it should be limitedto a spei� number of steps. Other ways of ommuniation are to use blakboardsontaining messages of agents transmitted to the whole system (Carver et al., 1991).In this way, the agents ommuniate immediately to all other agents whih has thedrawbak that ommuniation bandwidth is enlarged. Problems with inreasedommuniation is that input spaes are enlarged and distributed implementationmay beome less eÆient if ommuniation bandwidth is large. Although ommu-niation provides good ways for letting agents ooperate, it is still a hard task foran engineer to speify whih protools agents should use and therefore algorithmswhih are able to learn ommuniation protools would be quite interesting. Someresearh in this diretion is desribed in (Steels, 1997; Balh and Arkin, 1994; Mur-iano and Millan, 1989). Finally agents may negotiate on joint plans and in thisway maximize their individual utilities (Zlotkin and Rosenshein, 1996). Matari(1997) disusses ommuniation in a multiple-robot setting to deal with hiddenstate and redit assignment. The task is a box-pushing task with two six-leggedrobots. The robots are equipped with a radio ommuniation mehanism and haveto oordinate their e�orts to be able to push the box to a light soure. Eah robotommuniates its state-information to the other agents and learns a funtion map-ping the ombined pereptual state to the best ation for itself and the other agent.The robots take turns in ontrolling the box and in this way, the behaviors of therobots were mathed e�etively. By using the ombined pereptual state and tak-ing turns, the redit assignment problem was solved, whereas by ommuniating thesensory data the hidden state problem was made less worse. Sine she essentiallyused a entral ontroller, the approah ould not be used for systems onsisting ofmany agents. When we allow full ommuniation, the omplexity of the systemis NAINS + NI(N�1)S , where I is the number of di�erent messages an agent mayget from another agent. The �rst term reets the number of poliies when thestate spae is enlarged (to INS) due to ommuniation. The seond term refersto the number of ommuniation poliies (for eah agent state, one out of I mes-sages an be sent to eah of the N � 1 other agents). We an note that for verylarge or ontinuous state spaes, funtion approximators should be used to store the7



ommuniation funtion and full ommuniation should be broken down into loalommuniating groups. The arhiteture is in priniple stati, although di�erentinteration protools ould be designed to make the system dynami. Communia-tion an be used to deal with the problem of oordinating di�erent agents or fordealing with partial observability of the global state and separated problem solvinginformation. E.g. a blakboard full with messages ould be seen as some form ofglobal world model.2.3 Charateristis of multi-agent problemsThere are many problems whih are naturally desribed by multi-agent systems. Inthis setion we will list a set of problems and reate a lassi�ation sheme basedon features inherent in these problems. Important questions whih are of interestwhen labeling multi-agent problems are:� Is the problem environment stati or dynami? The traditional job-shop shedule problem is an example of a stati problem sine all jobs, ma-hines and ways of proessing eah job are usually assumed to be �xed. Inontrast a network routing problem an be highly dynami sine traÆ loadan inrease or derease signi�antly during the operation of the system re-sulting in a non-stationary environment.� Do agents ommuniate as part of the task? In some problems, suhas robot soer (RoboCup soer), agents are allowed to ommuniate. Forsome other problems, ommuniation ould be possible, but is not neessarilyposed in the problem's desription. If ommuniation is used, the engineeris requested to set up ommuniation protools whih an make the problemappear harder. Communiation an also su�er from maliious ommuniationats of opponents. E.g. onsider an intelligent opponent making use of thesame ommuniation method with the intentions to distort agent ommunia-tion. Espeially for surveillane and seurity robots, ommuniation methodsshould be reliable whih ould be done by using identi�ation protools ofsenders.� Is the state representation for an agent ontinuous or disrete? Theagent reeives inputs through its sensors. Sometimes this information an bedisrete suh as in network routing problems, for whih we make the statespae of eah agent disrete by just onsidering as loal input the destinationplae of eah pakage (eventually augmented by information whih indiateswhether neighboring nodes are busy or not). For some vehile routing prob-lems we are given a set of destination addresses to whih pakages should bedelivered. Given a set of vehiles and distanes between destination addresses,we ould just ompute an ordered list of plaes where eah agent has to go to.In this way the state spae representation is disrete, sine we only onsiderdisrete orderings of destination addresses. This will not work well for highlydynami problems, however, in whih the urrent environmental state hangesa lot and hanges in the arhiteture have to be done online. E.g., for dy-nami stok supply problems eah agent may require sensors (e.g. amera's)to obtain loal input information whih desribes the state of the environ-ment suh as possible obstales, positions of pakages whih are waiting to bedelivered, and positions of the other agents. This provides us usually with ahigh-dimensional ontinuous feature (input) spae. In this ase, we may wantto disretize the spae �rst so that we are able to use eÆient planning meth-ods working with disretized spaes. Disretizing a ontinuous spae is stillan interesting topi of researh (see e.g. Thrun (1998) for a robot appliation8



onstruting a disrete map of a building and Yamauhi et al. (1998) for amulti-agent map-building appliation).� Do the agents share a ommon goal? For many omplex problems theagents naturally ooperate in order to optimize the solution. Then we speakof a global evaluation or reward funtion whih is shared (positively orre-lated) by all agents. Suh agents are alled ooperative agents. When dealingwith multi-agent systems, we ould also have the ase where di�erent agentshave di�erent tasks to perform and use their own reward funtions. In suhases agents' reward funtions may be negatively orrelated (zero-sum games)and the goal beomes to beat an opponent. Suh agents then have ompetinggoals and are alled ompetitive agents. Other problems may not have purelynegatively or positively orrelated reward funtions and are in the realm ofgame theoretial problems suh as the prisoner's dilemma, bargaining prob-lems or others. For suh problems agents may help or hinder eah other whenthey try to optimize their own behavior, and several problems may arise suhas non-ooperating poliies and the tragedy of the ommons (TOC) (Hardin,1968; Turner, 1993) where agents mutually over-exploit the resoures of thesystem whih may �nally harm all of them. For these latter problems weneed to �nd a mutual set of poliies whih ooperate as good as possible.This an be done in di�erent ways suh as using ommuniation or the useof management agenies (Turner, 1993). We all suh agents ompromising,self-interested agents. Thus the goal may be a ommon one, a ompetingone, or a ompromise one. Espeially for the latter goal agents have to beoordinated.� Is the problem ompletely or partially observable for the system?For partiular problems suh as a job-shop shedule we use a model whihontains all relevant data. Suh problems are ompletely observable. Otherproblems may be partially observable, suh as stok supply problems whereeah agent does in general not have aess to a desription of the ompleteworking oor sine that would require expensive sensory equipment and makethe loal input spae muh too large.� Stati agents/ Dynami agents. In some problems, agents, suh as traÆlights or nodes in network routing problems, have a �xed determined plaein the environment. Stati agents an therefore never ollide. In other prob-lems, agents are moving physial objets whih an explore the environmentand usually need sensors to observe their loal environment for navigationpurposes.� Are agents independently hanging the state of the environment? Inmany problems, we an use the proposed ation of eah agent individually toompute the new state of the environment. E.g., in a network routing problemthe traÆ owing out of a partiular node is independent of other ationsseleted by other agents. However, in some problems this is not the ase.E.g., examine two robots whih have to arry some heavy objet together.If one agent makes some ation whih is not orrelated to another agent'sation, the objet whih they are arrying may drop on the ground. Anotherexample of non-independene is when agents ollide sine they want to oupythe same physial position in the environment.Figure 2 shows how di�erent problems an be haraterized aording to theabove distintions. 9
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Figure 2: A lassi�ation sheme for multi-agent problems.2.4 Mathing problems to arhiteturesPartiular problems an be handled easier when partiular arhitetures are used.In �gure 3 we show how problems an be mathed to arhitetures. Some of thesemathes have also been desribed in previous work.The entralized ontroller is almost never advised. Only for sheduling problemsit ould be used, e.g. ombined with loal searh algorithms or negotiation basedalgorithms for trading alloated resoures. E.g. the M-ontrat used by Andersonand Sandholm (1998) an make arbritary omplex swap moves and therefore atslike a entral ontroller reating a single shedule.Poliy sharing has been shown helpful for simulated soer (Sa lustowiz et al.,1998; Wiering et al., 1998) and for predator prey problems (Tan, 1993). Herehomogeneous agent may pro�t by ombining their experienes so that eah timestep more experienes are generated for updating the poliy, resulting in fasterlearning and better �nal poliies. In RoboCup, partial poliy sharing is also usedin the form of agent roles suh as defenders (Tambe, 1997) whih an be sharedby multiple agents. Poliy sharing annot be used for problems requiring di�erentskills of agents. E.g. in network routing, di�erent nodes (agents) map the sameinput (destination of a message) to di�erent ations (next nodes).Task shedules are useful for diÆult problems where time requirements and/or10
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Figure 3: Mathing problems to arhitetures. Here an 'X' indiates that a partiulararhiteture is suitable for solving a partiular problem.speialized skills play a role. E.g. in transportation problems, a rane an onlystart working if a transport wagon has delivered ontainers. On its turn, one apile of ontainers is standing, some rane has to start plaing them on the yard. Inforest �re �ghting, task shedules an be used to plan future sequenes of subtasks.Loal agents have been shown fruitful for partiular problems suh as net-work routing. Furthermore they an be used to deal with self-interested web- orinformation-agents. These loal agents an learn a model of their private world anduse this to make their deisions. For eletroni trading, the loal agents an beombined with ommuniation to negotiate with other agents. In Vidal and Durfee(1998), a modeling approah is desribed for trading agents, where agents an learndi�erent models of the other agents, varying in the amount of detail and knowledgeabout other agent's behaviors.Hierarhial systems are useful when agent behaviors have to be oordinated.These systems an easily ombine poliies so that ooperation an be enhaned.E.g. it an be used for explorative detetion so that agents will not generate thesame paths for doing observations. Instead their poliies are dependent on eahother by putting them in a hierarhial system. For robot soer, team strategiesan be represented by hierarhial systems in whih eah agent adopts a partiularpoliy if some team strategy is seleted. E.g. in Tambe et al. (1999) this is done11



by having di�erent agent roles (poliies).Partiular problems where navigation of agents play an important role an ef-�iently make use of global world models. These global world models are sharedby all agents whih are able to read global state information from the models andupdate the model aording to their individual experienes. E.g. in olletive mapbuilding (Yamauhi et al., 1998), the task requires building a global world model.Also in robot soer, a global world model may play an important role to deal withdelayed sensory information, unertainty in observations and goal-direted naviga-tion purposes. The global world model does not say anything about how agentpoliies are used. If global world models are used this means that the agents usestate information through the global world models to selet an ation instead ofdiretly using the sensory observation. Therefore global world models ould also beombined with ommuniation or other arhitetures.Finally, ommuniation an be useful for all problems whih require oordinationor trading. Sine ommuniation an play an important role for many di�erentproblems, more researh should be spend on developing general ommuniationprotools or on evolving ommuniation languages from interation between agents.Steels (1997) desribes an approah to evolve a language between two robot agents.It would also be interesting to ompare hierarhial systems to ommuniation foroordinating agents in di�erent problems.3 Optimization algorithmsIn this setion we will summarize di�erent algorithms whih are useful for optimizingMASs. Optimizing a MAS requires that all agents optimize their own behavior(mirolearning). This is usually done by evaluating a deision poliy (solution),hanging the poliy in some way, and evaluating the new solution again (keepingthe best poliy found so far). Optimization methods an be population-based ornot. E.g., reinforement learning (RL) uses a single stohasti poliy (the ativepoliy) for eah agent to selet an ation at some time-step and tries to improvethis ative poliy based on the generated experiene. Geneti algorithms on theother hand keep a population of poliies, evaluate them all and then make a newpopulation based on the previously evaluated population.Optimizing a MAS requires mirolearning and marolearning. Mirolearning isused to optimize the poliies of agents given their reward funtion, the inputs theyreeive from the environment and the ations they an selet. Marolearning is usedto optimize the global system behavior and is used to optimize aspets of the systemwhih are outside the limited sope of single agents. E.g. we ould think of opti-mizing a MAS arhiteture, automatially seleting reward funtions, or seletingagents whih an ommuniate with eah other as possibilities for marolearning.Thus, mirolearning is done on the agent-level and marolearning is done on thegroup- or system-level.Mirolearning. In a MAS mirolearning refers to the optimization of eahsingle agent's behavior. If all agents use mirolearning, we would like to see thebehavior of the global system to improve as well. However, this is not alwaysthe ase. Agents at in their own interests, they only optimize their own reward(evaluation, objetive) funtion and by improving their own sum of rewards, thesystem as a whole may degrade in performane. As mentioned before, a goodexample of this is the tragedy of the ommons (TOC), where self interested rationalagents ause a ollapse of the system as a whole.Marolearning. To improve the global system behavior, marolearning an beused. Marolearning may optimize oalition (ooperation) strutures by hangingthe arhiteture. It may also learn soial onventions so that some behaviors are12



onsidered forbidden and agent's are not allowed to settle to them. Furthermore,marolearning may hange single agent reward funtions so that when an agentoptimizes its own rewards, this is for the global good. In most urrent systems,marolearning is not used sine the arhiteture, loal reward funtions et. areonsidered to be �xed. Still (Wolpert et al., 1999b) make use of it in their olletiveintelligene (COIN) framework, and it may have an important funtion for theoptimization of the whole system. E.g., one important task for marolearning isoalition formation. Given a set of tasks whih have to be arried out by a numberof agents, agents an form oalitions to solve partiular groups of tasks together.Sine there are an exponential number of ways that tasks an be mapped to agents,this requires an optimization module. Finally, in some problems the system has todisover how many agents should be used to solve a partiular task (e.g. in forest�re �ghting). This also requires some marolearning to map environmental statesto the number of agents (and whih agents in ase of heterogeneous agents).In the following we will onsider di�erent optimization algorithms and mentionhow they an be used as mirolearning and marolearning algorithms.3.1 Reinforement learningReinforement learning (RL) algorithms (Sutton, 1988; Watkins, 1989; Bertsekasand Tsitsiklis, 1996; Kaelbling et al., 1996) share the goal to optimize the behavior ofan agent by learning from the feedbak information aquired during the interationwith the environment. Traditionally RL has been used to optimize the behavior ofsingle agent systems. By interating with the environment, poliies are strengthened(reinfored) when they lead to higher long term rewards of the agent. By exploringdi�erent poliies, the agent may e�etively learn whih poliy leads to the largestreward sums. Suessful single agent RL appliations are Samuel's heker playingprogram (1959) and Tesauro's TD-Gammon (1992), a program whih trained aneural network to play bakgammon at human expert level from self-play.The problem environment. The problem environment is usually modeled asa Markov deision problem (MDP) ontaining a state spae, a set of possible ationsfor the agent, a transition rule whih determines the new state of the environmentgiven the urrent state and the seleted ation of the agent, and a reward funtionwhih determines how muh reward the agent reeives when making a partiulartransition to a new environmental state (Bellman, 1961). MDPs may be extendedto multi-agent MDPs (MMDPs) (Boutilier, 1998) by augmenting the transitionfuntion and reward funtion so that they deal with a set of ations instead ofsingle ations.Reinforement learning as mirolearning. RL an be applied to optimizethe behavior of an agent in a MAS. The agent reeives inputs from the environ-ment and possibly from other agents and hooses an ation. Then the environmenthanges and the agent reeives feedbak from its reward funtion whih tells howmuh reward it obtains for the last environmental transition. The agent uses thisfeedbak to learn a value funtion whih estimates the long term rewards the agentwill reeive when it is in a partiular state (represented by its environmental inputsand its internal state). Algorithms for learning this value funtion are Q-learning(Watkins, 1989; Watkins and Dayan, 1992), TD(�)-learning (Sutton, 1988), andmodel-based RL (Moore and Atkeson, 1993; Presott, 1994; Barto et al., 1995;Wiering, 1999).Storing the value funtion. When the state spae is small, the agent anstore the value funtion in a lookup table, whih lists all possible states and theirvalues. However, for high dimensional or ontinuous state spaes, funtion approx-imators should be used suh as neural networks (Rumelhart et al., 1986; Tesauro,1992), neural gas (Fritzke, 1994; Sa lustowiz et al., 1997), CMACs (Albus, 1975;13



Sutton, 1996; Wiering et al., 1998) or deision trees (Chapman and Kaelbling, 1991;MCallum, 1995). Another big advantage of using funtion approximators is thatthey allow for generalization so that not all states have to be visited and the poliyspae is redued.Marolearning with RL. RL an also be used to alter the global systemwhih provides it a way to oordinate agents. E.g. RL an be used to �nd oali-tion strutures determining whih agents work together to solve some tasks andwhih poliies they have to use for this ooperation. Furthermore, it an be usedto learn ommuniation mehanisms between agents suh as ommuniation pro-tools (a language). Another way of using RL as marolearning algorithm is tolet it learn evaluation funtions for ombinatorial optimization problems. Often,the performanes of algorithms searhing for solutions an be improved by slightmodi�ations of the evaluation funtion, sine this an make the landsape less at,thereby biasing the algorithms to searh in partiular useful diretions. Boyan andMoore (1997) used RL to learn preditions with linear networks to improve suhombinatorial optimization searh.Appliations of RL to MASs. A number of RL systems whih have beendeveloped to solve partiular problems are mentioned here shortly.� Using Q-learning for mirolearning. Crites and Barto (1996) used Q-learning to train a MAS to ontrol elevator dispathers. A simulated buildingontains four elevators and eah elevator is ontrolled by its own loal poliy.Using Q-learning they were able to train neural networks to learn a good valuefuntion mapping environmental inputs to elevator ations. Their systemoutperformed a number of onventional elevator dispathers. The arhitetureused loal agents and there was no marolearning involved.Littman and Boyan used Q-learning to learn to route pakages on a network.Eah network node (agent) used a poliy to deide to whih neighbor a pro-essed pakage with a partiular destination address should be sent. Thesystem used loal agents and there was no marolearning involved.� The Ant Colony System. The ant olony system (ACS) (Dorigo, 1992;Dorigo et al., 1996; Dorigo and Gambardella, 1997; Dorigo and Di Caro,1999) uses ants (agents) to reate solutions to problems whih are used toupdate the global shared poliy. E.g., for the Traveling Salesman problem(TSP), eah ant makes a tour while updating the pheremone trail so that thebest found tours get reinfored most. The ACS has already been shown to�nd good solutions to the TSP (Dorigo et al., 1996), the quadrati assignmentproblem (QAP) (Gambardella et al., 1997), and has also been used to �ndrouting poliies on the Internet (Di Caro and Dorigo, 1998a; Di Caro andDorigo, 1998b) outperforming many other algorithms. Note that this algo-rithm an be used for mirolearning or marolearning. It uses a parallel searhof the solution spae and lever exploration methods to be able to enhaneexploration possibilities for new solutions.� Colletive Intelligene (COIN). COIN (Wolpert et al., 1999b) is devotedto the question of how to set up a RL system whih an optimize the olletivebehavior when the system is put in use. Therefore it tries to �nd loal rewardfuntions for agents whih when optimized lead to an optimization of thegroup behavior. In this way COIN is interested in reverse engineering: givena problem instane how do we set up the loal reward funtions? COIN's ideais to onstrut a wonderful life utility funtion. An agent does not get theglobal reward (the reward the whole team gets), sine this has the problemof agent redit assignment (Versino and Gambardella, 1997) whih says thatit is hard to evaluate the ontribution of eah single agent. The loal reward14



funtion is also not used, sine it may result in ompetitive agents. Instead anagent reeives the global reward minus the global reward whih would havebeen obtained if the agent did not do anything at all (or a default ation).In this way its own ontribution to the global reward is measured. COIN hasalready been suessfully tested on El Farol's Bar problem (Wolpert et al.,1999b) and an Internet routing problem (Wolpert et al., 1999a). COIN alsoaddresses marolearning aspets in (Wolpert et al., 1999b).3.2 Evolutionary omputationEvolutionary omputation (EC) is inspired on natural evolutionary models in orderto �nd solutions to ontrol, funtion optimization, and ombinatorial optimizationproblems. Examples of EC algorithms are geneti algorithms (Holland, 1975; Gold-berg, 1989), evolutionary strategies (Rehenberg, 1971; Rehenberg, 1989), genetiprogramming (Koza, 1992), SANE (Moriarty and Miikkulainen, 1996), and PIPE(Sa lustowiz and Shmidhuber, 1997). These population-based optimization algo-rithms make use of a population of agents whih allows for a parallel searh of thesolution spae. Eah time-step, the urrent population (generation) is evaluatedafter whih the best individuals get the largest probability for propagating theirgenes (parts of their poliy or solution) to the next population. This propagationis usually done by rossover (two solutions are ombined to form a new solution)or mutation (some part of the solution is randomly hanged). By seleting the bestindividuals and throwing out the worst, the population will onsist more and moreof good individuals of whih �nally the best is kept as the solution. When appliedto navigation, EC is usually ombined with a set of behaviors for an agent suh aswall-following, random walk, homing et. This makes the task of learning to ontrolan agent muh easier.EC for mirolearning. These algorithms an be used as mirolearning meth-ods for optimizing agents in MASs by presenting eah agent a population of poliieswhih are adapted and from whih the agent �nally has to pik the best one. Eahtime step eah agent of the MAS selets one of the members (poliies) in their ownpopulation, and the whole system is evaluated. Then the �tness of eah member inthe system is updated aording to the behavior of the omplete system. A prob-lem of this is that the evaluation of a population member (poliy) inside an agentdepends heavily on the poliies seleted by other agents, so that the agent reditassignment problem (ACAP) (Versino and Gambardella, 1997) is diÆult to solve.Ways to irumvent this is to use a member inside multiple, di�erent agent-teams toobtain multiple team-evaluations. Then these team-evaluations an be averaged toobtain an evaluation of the individual. This is e�etively done by the SANE systemdesribed in (Moriarty and Miikkulainen, 1996) whih learns a neural network tosolve RL problems suh as learning to play Othello (Moriarty and Miikkulainen,1995) or to learn ooperative lane seletion poliies for ars driving on the highway(Moriarty and Langley, 1998). The latter multi-agent appliation showed promis-ing results for optimizing traÆ ow using mahine learning tehniques. The SANEsystem ombines di�erent neurons (individuals) inside a set of neural nets and eval-uates the neural nets. The neurons whih are part of the best performing neuralnetworks are kept and used to reate a population of new individuals.Using marolearning. Another solution to the agent redit assignment prob-lem is to use marolearning instead of mirolearning. Instead of learning an indi-vidual ontroller for eah agent, we an also have a team of ontrollers as a singleindividual in a population and thus we store and evolve a population of teams.In this way, omplete teams are evaluated whih results in a muh more aurateevaluation signal. Note, however, that a system in whih the whole global system isoptimized at the same time resembles a single agent arhiteture. Hene, it has the15



problem that eah individual has to ontain the poliies of eah agent, and there-fore the searh spae an beome prohibitively large (we searh for a population ofpoliies inside a population of populations, whih is very omplex). Just like RL,EC an also be used to evolve oalition strutures, reward funtions, et.3.3 Loal iterative searhThere also exist a number of single agent algorithms for solving funtion optimiza-tion or ombinatorial optimization problems. Examples of these methods are Tabusearh (Taillard, 1990; Glover and Laguna, 1997), multiple restarts with loal hill-limbing (Colorni et al., 1993), and simulated annealing (Aarts and Korst, 1988).Tabu searh (TS) works as follows (see (Glover and Laguna, 1997) for a morethorough review). A random poliy (solution) is generated after whih TS triesout all possible poliy-hanges (by assigning a di�erent ation to one of the states).After this, the best poliy-hange is exeuted and a new solution is generated. Inthis way the method is a steepest-desent method. In order not to yle betweensolutions, a list of forbidden poliy-hanges (the Tabu list) is kept. Eah time apoliy-hange is exeuted, it is plaed inside the Tabu list and annot be exeutedagain for a number of time steps. The Tabu list has a spei� length and thus newforbidden poliy-hanges replae other poliy hanges when the list is full. Whenthe system observes it is in a (loal) minimum, the solution is stored and the systemesapes the loal minimum by exeuting a series of random poliy hanges. Tabusearh has been shown to be very e�etive in solving diÆult problems suh asthe quadrati assignment problem (QAP) (Colorni et al., 1993), vehile routingproblems (Badeau et al., 1997), and job-shop sheduling problems (Taillard, 1994),all problems whih an be modeled as multi-agent problems.Colorni et al.'s Algodesk (Colorni et al., 1993) ompares the performanes of 8di�erent optimization methods suh as simulated annealing, Tabu searh, genetialgorithms, multiple restarts on a set of quadrati assignment problems. They foundthat using Tabu searh and simulated annealing leads to the best results.Loal searh as mirolearning. Using loal searh may not be an eÆient wayfor mirolearning. When we want to optimize a ontroller, the poliy maps manyinputs to many ations. If we make one alteration to suh poliies and evaluatethe poliy, it may not reah the goal, sine usually suh poliies are deterministiand beome easily trapped in yles. One way to irumvent that problem is touse stohasti poliies whih are tested or to use omplete behaviors as ations.Still, there are as many as jAjjSj poliies (with jAj as the number of ations, andjSj the number of states) so that searhing through this spae an take a long timewith loal searh methods whih only make single poliy hanges at a time and donot adjust other ation values aording to the interation with the environment.Littman (1994) used branh and bound methods to optimize an agent in a partiallyobservable environment and obtained good results, although for suh environmentsthe number of inputs an be quite small. For solving Markov deision problems itmay be more reliable to use RL. Loal searh an be used in MASs by hanging oneindividual poliy at a time, whih leads to quite aurate evaluation signals sinewe evaluate our single hange (maybe using Monte Carlo experiments for stohastienvironments), but this requires a long time. We an also hange multiple agentssynhronously and keep the resulting MAS if its behavior is better than the previousone (whih may not work well if the environment is stohasti). For some multi-agent problems ontaining few states, loal searh may be useful, espeially forsheduling problems in fatories whih are usually stati, fully observable, and forwhih solutions an be quikly evaluated. For diÆult ontrol problems with manyinput states, it may be very slow, however.Loal searh as marolearning. Loal searh methods an also be used to16



�nd good oalition strutures mapping tasks to agents and ensuring that partiularagents ooperatively solve their tasks. It an generate a CS, test it by using somealgorithm as mirolearning method, hange the CS by hanging the assignment oftasks to agents, and evaluate it again. This also resembles how oalition struturesan be onstruted in game theory (Sandholm, 1996).3.4 Game theoryIn ases where self-interested agents optimize their own reward funtions, interationproblems between agents arise. E.g., when agents do not have entirely positive ornegative orrelated reward funtions, agents may help or hinder eah other pursuingtheir own goals and the need to ooperate between agents may arise. In multi-agentsystems, the agents an be provided with an interation protool, but eah agentwill still hoose its own strategy. The main question is what soial outomes followgiven a protool whih guarantees that eah agent's desired loal strategy is bestfor that agent - and thus the agent will use it (Sandholm, 1999).Game theory is interesting for studying the dynamis resulting from havingagents interat with the same environment, for designing interation protools, andprovides us with optimization algorithms in the form of autions, markets, andvoting shemes. The simplest environments are single step deision problems wherethe reward whih eah agent obtains is given by a payo� matrix. The payo� matrixreturns the rewards eah agent (player) reeives given its ation and the ations ofall other players. In the simplest ase, the environment is given only by the ationsof other players.Prisoner's Dilemma. A famous example is the prisoner's dilemma (PD) whereagents an deide upon a single ation: to ooperate (C) or defet (D) with the otheragent. The payo� matrix is shown in �gure 4. Sine defeting is a dominant strategy(whatever the other agent does, the best hoie is to defet), a rational agent wouldhoose to defet, resulting in a non-ooperating game. The largest payo� an beobtained if both agents hoose to ooperate (whih is a a Pareto optimal solution| a solution in whih players annot hange their ation to reeive higher rewardwithout other players reeiving less reward), and hene omes the dilemma. Forsuh problems, agents an be put repeatedly for the same hoie, and ooperationmay emerge from this interation. By studying repeated games (�titious play),given the previous history of hoies of both players, the question is how should theagent behave to maximize its future umulative payo�? Although the defet-defetsituation is a Nash-equilibrium (given the other players' strategies, no agent willbene�t from hanging strategies), in iterative games (games whih are repeatedlyplayed) the players an explore di�erent possibilities and learn to ooperate and inthis way optimize their umulative payo�s.
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Game theory and mirolearning. Game theory an use two di�erent agents:(1) the rational agent whih ontains suÆient problem solving knowledge and plan-ning methods to solve a problem, and (2) the reinforement learner whih learnsfrom its interation with other agents. The reinforement learner an optimize itsbehavior in iterated plays (repeated games) with other players in whih the agentan learn from the history of moves. E.g., Sandholm (1995) studied how Q-learningan be used to learn the ooperating poliy for the Iterated PD (IPD). For thishe used lookup tables and reurrent neural networks whih were enabled to basetheir deision poliy on the history of previous moves. He found that both systemsan learn to ooperate (C-C) with Tit-for-Tat (Axelrod, 1984), an algorithm whihstarts by ooperating and then uses the previous hoie of the opponent as its ur-rent move. If the two RL systems play against eah other di�erent interations arise,however, suh as alternating C-C and C-D moves. Fogel (1993) uses evolutionaryomputation to evolve behaviors of agents in the IPD. Brafman and Tennenholtz(1996) study how a RL teaher an learn to teah a student to ooperate in theIPD. They �nd that a non-adaptive Tit-for-Tat teaher works well and that a RLteaher an be used, but does not always lead to reliable outomes. Furthermorethey study how a ooperative organization an be stable against parasites whihmay for example work on the same work-oor, but refuse to bring ommon toolsbak to their original position. To make the organization stable, penalty agentsare onstruted whih defet against parasites so that a rational parasite will pro�tmore by ooperating as well.Coordination. For partiular games, oordination is needed. E.g., assume thegame is a risk-dominant game given by the payo� matrix shown in �gure 5(A).
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Figure 5: (A) The payo� matrix for the risk-dominant game. (B) The payo� matrixfor the oordination game.Here there are two Nash-equilibria: L-L and R-R. Clearly, the Pareto optimalsolution is to play L-L, but sine hoosing L an result in a large loss, R is a risk-dominant strategy. Hene, oordination is needed to onverge to L-L. An exampleof oordination is to use ommuniation, e.g., both agents may ommuniate beforemaking their moves that they will hoose L. In omplex problems, ommuniationmay also be useful to oordinate the ativities of di�erent agents. E.g. in soer, wemay want to learn a pass-play strategy in whih one agent plays the ball to anotheragent, runs forward, and reeives the ball bak. This an be done by ommuniatingthe planned ations from one agent to another one. Another game is shown in �gure5(B) in whih there are two Nash-equilibria. The problem is whih one to hose.Note that this games resembles driving behavior: ars an drive on the left or onthe right side of the street. A way to solve this problem is to use soial onventions(suh as people should drive on the right side) whih prune away hoies (behaviors)of the agents.Tragedy of the ommons. Another game theoretial problem is the TOC.Here, agents share the same resoure and follow their own reward funtion. By18



inreasing their exploitation of the resoure, agents reeive higher rewards, and thismakes it a rational hoie. However, if all agents keep on inreasingly exploitingthe bounded resoure, problems may arise. Take as examples over�shing whihhas aused the enormous �sh population to shrink onsiderably or environmentalpollution. In MASs the TOC an happen in many di�erent ways. Take as exampleautonomous underwater vehiles (AUVs) whih an use radars to sense their envi-ronments. If AUVs use their sensors more, they an get a better piture of theirenvironment. The problem is that the use of radars in water auses interferenebetween radar signals, resulting in more unertainty in the returned information(Turner and Turner, 1998). Methods to deal with suh problems use ommunia-tion, mutual-oerion mutually agreed upon, privatization of resoures, soial laws,or management agenies to keep the resoures from starving out (Turner, 1993).Negotiation for task deomposition. An important sub�eld of game theorywhih deviates from the matrix-games is negotiation between self-interested agents(Sandholm, 1996; Sandholm, 1999; Zlotkin and Rosenshein, 1996). Negotiationmay be used as a mehanism for assigning tasks to agents, for alloating resoures,and for eletroni trading. For this, algorithms from eonomial theory suh asbargaining and aution theory may be used. Bargaining refers to seller/buyer sit-uations in whih one agent sells an item to another agent and gets paid for this.Aution theory refers to selling items to a set of buyers so that the buyer whiho�ers most gets the item. A problem whih an be solved by bargaining and nego-tiations is a transportation problem modeled as a vehile routing problem. Thereare a number of depots whih store goods and a number of ustomers whih haveordered a number of goods. Transportation vehiles are used to deliver the goodsto the onsumers after whih they return to the depot. The goal of the system isto minimize the total distane traveled by all vehiles with the onstraint that thevehiles have suÆient apaity to arry all goods to the onsumers. In (Sandholm,1996) negotiation mehanism are desribed to solve this problem. Here, agent nego-tiate in order to form oalition strutures determining whih agents should deliver towhih onsumers. During this negotiation, agents may pay other agents for solvingsome task of theirs. In this way, the sum of osts for all agents an be minimized,sine agents only handle tasks for other agents if they pro�t, and agents never paymore to other agents than what would have been their own ost for exeuting thetask. Andersson and Sandholm (1998) disuss using di�erent ontrats whih anbe used for transferring one task among agents (O-ontrats), transferring morethan 1 task from one agent to another one (C-ontrats), having 2 agents swaptasks (S-ontrats), or having multiple tasks hanged among multiple agents (M-ontrats). The trade stops one no more ontrats are made and the agents anstart solving their own tasks. They found out that if the ratio agents to tasks isgreat O-ontrats work best and if this ratio is small C-ontrats work best.The way suh a system looks for CSs resembles Tabu searh. Tabu searhtries out all swap-moves (ontrats) and keeps the best one. The di�erene is thatSandholm (1999) allows for self-interested agents and deals with this by using moneytransfer while making ontrats. Furthermore, ontrats ome to agents all the time(but not all at the same time), and therefore timing beomes essential for agents:they may want to postpone a ontrat to see whether other, better ontrats areoming, but annot wait too long. In this way the system ould be muh moreompliated than just using simple swap-moves in a ooperative system.Negotiation for multi-agent plans. Zlotkin and Rosenshein (1996) studynegotiation as a means to determine multi-agent plans. The question they pose ishow interation rules an be designed (mehanism design) so that agents agree onmutually bene�ial behavior. Eah agent has a goal (set of goal states) whih itwants to reah and assigns a spei� reward (worth) to ahieving its goal. Further-more eah agent an exeute a plan to ahieve its goal with a spei� ost. Agents19



may also arry out joint plans, whih may lead to the goals of all agents beingsatis�ed. Rational agents will only arry out a plan if the reward of reahing the�nal state is larger than the ost of the plan. In general they want to maximizetheir utility (their reward of the goal minus the ost of the plan). If we onsider twoagent systems, agents an deide to pursue their goals by an individual plan, theyan ooperate in a joint plan or they an do nothing (sine the osts of eah plan islarger than its reward). In some ases, joint plans (even partial joint plans whihdo not lead to any goal), are preferable over individual plans. In suh ases, thejoint plan is arried out and aording to the rewards of goals, agents an divide thework. Even if goals are not both satis�able (they ontradit eah other), agent maygain by arrying out a joint plan. E.g., onsider a blok-world problem in whih thegoal states of two agents are ontraditing, but both goal states have in ommonthat a proportion of the same work has to be done to satisfy them. In this ase,the agents an start by ooperatively arrying out the plan whih has lower totalost than if an agent would do the work alone, and then they toss a oin to deidewhih goal will be satis�ed. In this way both agents pro�t on average. To ope withsuh di�erent situations, agents may hoose between pure plans (without a prob-abilisti omponent), mixed joint plans (with a probabilisti omponent to dividework aording to goal rewards), semi-ooperative deals (agents arry out a subtaskand pro�t mutually), and multi plan deals whih implement post-ip ooperationin whih a oin is ipped and the outome deides whether agents ooperativelyexeute a joint plan whih leads to the goal for agent 1 or the goal of agent 2.Vikrey aution. When we want to maximize soial welfare (the sum of theutilities of all agents) when dealing with multiple agents, it is important that truth-telling of the agents is a dominant strategy. E.g., in some interation shemes anagent may prefer to lie in order to get paid a higher amount for doing some taskor to do less work for solving some task. If agents start lying, the best ontratsould be disregarded, leading to a worse soial welfare. Therefore, mehanismshave been designed whih promote truth-telling as a dominant strategy. One ofthe mehanisms in aution-theory is the Vikrey (seond prie, sealed-bid) aution(see Sandholm (1999) for a list of other autions), in whih agents make a bid forsome objet, and the agent whih had o�ered the largest payment, gets the objetfor the prie of the seond bid. Here, truth-telling of the real monetary value ofthe objet is a dominant strategy in single-shot private value autions with riskneutral bidders, a truthful autioneer, and no possibility of olluding. The mainargument is that if an agent would say that she values the objet less, the priewould be the same for getting the objet, whereas the agent may also loose thebidding, thus not gaining the pro�t of the di�erene between its worth of the objetand the seond largest bid. If the agent would say a higher amount, the agentmay win the ompetition and pay a larger amount than its worth of the objet.Thus, the best is to tell the truth. Problems with the Vikrey aution are thatbuyers may make oalitions (all an ooperate in mentioning a low value so thatthe winner would have to pay less), or the ontrator (the market) may lie: sine theseond bid is unknown, the ontrator ould say that its prie equaled the winningbid. These subjets are important when dealing with self-interested agents andeletroni marketing (Sandholm, 1996). Another mehanism for truth-telling is theVikrey-Clarke-Gloves Tax (see Appendix A).3.5 Mapping problem types to algorithmsRL and EC are algorithms whih an be used e�etively for mirolearning, e.g. forlearning to ontrol an agent. They ould also be used for marolearning as we haveseen. On the other hand, game theory and loal iterative algorithms are more usefulfor marolearning. They an be used to �nd oalition strutures, task alloations,20



and shedules.There are partiular di�erenes between algorithms suh as Tabu searh (TS)and adaptive algorithms suh as RL. An important di�erene is that TS omputesand evaluates a omplete solution (e.g., a job-shop shedule) and tries to �nd abetter solution by trying a set of hanges to the solution, evaluating the resultingsolutions and keeping the best one. Usually, TS works very well if evaluating a so-lution an be very fast and preise, what is the ase for standard problems like thetraveling salesman problem, but whih is not the ase for very stohasti problemssuh as network routing problems. In ontrast, RL algorithms inrementally im-prove their solutions by using feedbak information aquired during the interationwith the environment. Using this feedbak, they make small hanges to a (stohas-ti) poliy. Sine these methods rely on stohasti deision poliies and evaluate thepoliy in many di�erent situations for whih it should work well, they are disturbedless by the stohastiity inside the problem environment.We would also like to know when to apply a partiular optimization algorithm.For this we made a mapping from problem features to optimization algorithms.
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spaes,2 sine in this ase negotiations between agents an be quite troublesome(although pries for trading ould be ontinuous, in general settings pries are sliedinto disrete values, see e.g. Vidal and Durfee, 1998). Finally, game theory annotbe used for navigating dynami agents, sine it does not provide tools for this. Itdoes provide useful tools for designing and analyzing ommuniation, and ouldalso be used for dynami environments sine all agents onstantly remain inside theenvironment.Although we have not mentioned it before, partial observability of the envi-ronment may also be an interesting feature for hoosing between RL and EC. Al-though (Moriarty et al., 1999) disuss a omparison between an EC method toQ-learning, and show that Q-learning does not work for non-Markovian problems,TD(1) approahes based on Monte Carlo simulations ome muh loser in spiritto EC algorithms and do not su�er that muh when evaluating a poliy (Wieringand Shmidhuber, 1997). The most interesting di�erene therefore may be thatEC algorithms usually solve the strutural and temporal redit assignment at thesame time, e.g. by evolving a reurrent neural network. The question then remainswhether similar things annot be done using RL.4 MAS problemsIn this setion we will review a set of problems and researh work to solve them.4.1 Network routingNetwork routing problems onsist of a set of nodes onneted in a network by trans-mission edges. At eah time-step a set of pakages are transmitted to the nodes,and these are transported over the network until they reah their destination ad-dress. The goal is to send pakages to those neighboring nodes whih will minimizethe overall traveling time. For deision making, the destination address of thepakage and information whih desribes how busy neighboring nodes are may beused. A problem whih resembles network routing is traÆ ontrol where we haveto swith traÆ lights in order to minimize the average waiting time for the ars.Algorithms for solving network routing problems are the ant-system (Di Caro andDorigo, 1998a; Di Caro and Dorigo, 1998b), Q-routing (Littman and Boyan, 1993),preditive Q-routing (Choi and Yeung, 1995) and TPOT-RL (Stone and Veloso,1999).4.2 Stok supplyIn stok supply problems, we have a set of vehiles whih drive around in an envi-ronment and have the goal to feth objets and transport these to their destinationaddress. Note that the big di�erene with network routing problems exists in thefat that in stok supply problems the vehiles are physial objets driving around inan environment whih makes navigation and path-planning issues important prob-lems. There are stati stok supply problems suh as delivering fuel from a fueldeposit to a set of fuel stations with the goal to minimize the overall traveling dis-tane and these an be modeled by vehile routing problems where we list the set ofaddresses to whih fuel has to be sent, and evaluate whether all onstraints are ful-�lled (suh as tank-vehile i an arry suÆient fuel to supply tank stations x1, x4,and x6). For suh problems the ACS, EC, or TS an be used. There are also verydynami problems suh as stok supply in a supermarket where requested itemsshould be taken of the shelves and a ontinuous stream of items an be requested.2Although we always have the option to disretize the spae �rst.22



For suh problems we may prefer to use RL to learn reative poliies whih animmediately reat to hanges to the state of the environment. Another example ofa stok supply problem is elevator dispathing where the goal is to bring a set ofpassengers in an elevator building to their destination addresses using multiple ele-vators. An RL algorithm for solving this problem is desribed in (Crites and Barto,1996). Shneider et al. (1999) desribe di�erent RL methods using di�erent rewardrules for distributed ontrol of a simulated power grid. The goal is to diret powerfrom a set of produers through a number of distributors to a set of onsumers(ities). The omparison between four di�erent loal learning rules (using globalreward, loal reward, loal reward and rewards of neighboring nodes, and loal re-ward and value funtions of neighboring nodes) shows that learning a loal valuefuntion whih is not only based on the loal reward but also on value funtions ofneighboring nodes is the most promising variant.4.3 Explorative detetion problemsIn explorative detetion problems (distributed measurement) the goal is to generatea set of trajetories in order to maximize the probability that an event of interestwill be deteted. Examples are forest �re detetion (Kourtz, 1994) where the goalis to generate a set of airplane trajetories over a 2-dimensional disretized map ofa forest with probabilities that in eah region a forest �re may have started. Otherproblems are pollution detetion (detet a pollution belt in the air), land-minedetetion and food foraging.Massios and Voorbraak (1999) desribe an appliation of deision theoreti plan-ning for surveillane robots. The goal is to minimize the ost of partiular eventssuh as an undeteted �re or ooding in a room of a building. For this, the agenthas to �nd out in whih order to visit rooms. Although the present appliationinvolves a single agent it ould easily be generalized to a multi-agent problem.Ye and Tsotsos (1997) onsider a olletive searh task for a team of robots.In a 3D environment, some target objet is hidden and the goal of the team isto ooperatively explore the environment in order to detet the objet as soonas possible. Finding trajetories whih maximize the probability of deteting theobjet is a NP-hard problem. Their proposed method works with a probability gridrepresenting the probability that eah of the disrete ells ontains the target. Bynavigating through the environment and sensing the spae with ameras (whihare not aurate enough to be able to always detet the objet when it is in thesurroundings), the probability grid is updated and this inuenes the searh. Itis also important to oordinate the agents, sine it may happen that all agentsbelieve that the target objet is in some area and will luster in the same workingspae. Therefore a term for spreading the agents over the environment is used whileplanning agent movements.4.4 Transportation problemsTransportation problems are ommon real world problems. Examples are harborontainer problems (Gambardella et al., 1998) where we have a dok where ontain-ers are loaded and unloaded from ships with their spei� destination addresses anda big yard (depot) is used for stoking ontainers whih should be shipped to somedestination. There are a set of ranes whih an be used for loading and unloadingships and for building ontainer piles on the ontainer yard and a set of transporttrains whih arry the ontainers between the quay and the ontainer yard wherethey have to be loaded/unloaded. The goal is to �nd eÆient shedules for theranes storing the ontainers in the yard, for loading and unloading the ships, andfor the trains transporting ontainers between the yard and quay so that the ost23



of the whole operation is minimized. Partiular problems whih have to be solvedare the following: ontainers whih leave quikly should not be stored under a largeset of ontainers whih should then be moved on the yard to di�erent plaes whihwould ost a lot of time. Other problems involve deadlok situations in whih tworanes are assigned to the same area of the yard. Another transportation problemis the train ontainer problem where trains are used to arry ontainers to theirdestination addresses and for whih ontainers have to be transported on railwaystations to hange trains.4.5 TraÆ light ontrolIn traÆ light ontrol, we have an environment onsisting of an infrastruture, ars,and traÆ lights. The ars drive over the roads and have a partiular destinationaddress. TraÆ lights are modeled as agents whih an swith between red andgreen signals. The goal of the system is to minimize the overall waiting time infront of the traÆ lights whih also minimizes traveling times. Thorpe and An-derson (1996) use SARSA (Sutton, 1996) with replaing eligibility traes (Singhand Sutton, 1996) to learn traÆ ontrollers on a simulated traÆ ontrol problemonsisting of a network of 4 � 4 traÆ light ontrollers modeled in a grid. Theymodeled average speed, queueing and aeleration/ deeleration of ars. They op-timized the traÆ ontroller on a single intersetion after whih they opied it tothe other intersetions (so they use poliy sharing). Results showed that using theirbest state representation (whih indiated whih partitions of eah road segmentontained ars) they were able to outperform an algorithm whih used �xed waitingtimes or an algorithm whih allowed the largest queue to go �rst. This latter algo-rithm su�ers from swithing lights too often on rowded traÆ nodes whih osts alot of time, sine ars need to deelerate and aelerate again and again.Taale et al. (1998) ompare using evolutionary algorithms (a (�; �) evolutionstrategy) to evolve a traÆ light ontroller for a single simulated intersetion tousing the traditional traÆ light ontroller used in the Netherlands (the RWS C-ontroller). They found omparable results for both systems.4.6 Multi-mahine shedulingIn multi-mahine sheduling, jobs have to be assigned to mahines so that ertainperformane demands like time and ost e�etiveness are optimized. Brauer andWeiss (1997) disuss a RL approah using loal agents to optimize the global behav-ior of the system. They onsider two types of time onstraints: the time that onemahine needs for ompleting its prodution step and the time needed for trans-ferring one job from one mahine to a suessor (the mahines are represented bya network in whih eah job goes through a mahine at all levels). By learningan estimation of the remaining time for transferring one job from one mahine toeah suessor mahine, the suessor mahine an be hosen leading to the low-est expeted ost. Their algorithm outperformed a random assignment poliy anda method whih assigns a job to the mahine with the lowest ost for a one-steplookahead step. It an also re-adapt itself to hanges in the environment, e.g. whena mahine breaks down.4.7 Quadrati assignment problemThe quadrati assignment problem (QAP) provides (like many other NP-ompleteproblems) a suitable model for many real-world problems suh as: ampus planning,typewriter keyboard design, hospital layout, minimizing average job ompletion inmahine sheduling and others (Colorni et al., 1993). In a QAP there is a ow24



matrix and a ost matrix, e.g. the average number of times the diretor visits theseretary and the distane between their rooms. The goal is to plae all objets insuh a way to minimize the produt of the ow and ost matries. A number ofalgorithms an be used to solve the QAP suh as Tabu searh, simulated anneal-ing, geneti algorithms, immune networks, sampling and lustering, the ant olonysystem and others. These algorithms an be used to �nd good solutions to diÆultQAP problems as shown in (Colorni et al., 1993; Gambardella et al., 1997).4.8 Robot soerIn robot soer, the goal is to �nd team soer strategies. Eah agent follows apartiular ation seletion poliy and the goal is to optimize that poliy so that theteam will win against other teams with the largest possible sore di�erene. This isa hallenging problem ombining a dynami environment, ooperation, ompetitionand ommuniation. Soer reently reeived muh attention by various multi-agentresearhers (Sahota, 1993; Asada et al., 1994; Littman, 1994a; Stone and Veloso,1996; Matsubara et al., 1996). Most early researh foused on physial oordina-tion of soer playing robots (Sahota, 1993; Asada et al., 1994). There also havebeen attempts at learning low-level ooperation tasks suh as pass play (Stone andVeloso, 1996; Matsubara et al., 1996). Littman (1994) desribes a 5� 4 grid worldwith two single opponent players. Luke et al. (1997) desribe an approah to learn-ing soer team strategies in more omplex environments. Some novel researh onlearning soer strategies is desribed in (Sa lustowiz et al., 1998; Wiering et al.,1998). Stone et al. (1999) desribe their soer team \CMUnited-98" whih be-ame the Roboup-98 simulator league hampion. CMUnited-98 keeps an aurateglobal world model representing the positions, veloities of all moving objets andthe on�denes of these parameters. Then it uses the global world model for loaldeision making. For this skills are onstruted suh as: Kiking, Dribbling, BallIntereption, Goal-tending, and Defending. These skills take the predited worldmodel and predited e�ets of future ations into aount to determine the optimalprimitive ation. Furthermore, mahine learning tehniques are used for hoosingthe ation of the agent possessing the ball. Finally, CMUnited uses lever strategipositioning of the team players using a proedure maximizing a mathematial ex-pression onsisting of attration (to the ball and goal) and repulsion (from passiveteammates and opponents) terms.4.9 Forest �re �ghtingIn forest �re �ghting, the goal is to ontrol forest �res with a set of agents. Theforest �re is modeled and we an ontrol a set of bulldozers to ut �relines. These�relines have to ensure that the propagation of the forest �re stops. The goal isto learn optimal strategies for eah bulldozer whih uses loal information in orderto reate �relines. In (Wiering and Dorigo, 1998) a method is desribed whih hasthe aim to solve this problem. It relies on using funtion approximators to solvethe loal navigation problem and uses RL and ooperative searh to learn a poliywhih dynamially onstruts optimal �relines given the urrent state of the forest�re.4.10 Cooperative robot tasksIn roboti domains, using multiple robots to speed up a task like objet gather-ing (Matari, 1994) or to make pushing a heavy box possible (Matari, 1997) isa natural extension to single agent problem solving methods. With robot teams,new features beome possible suh as ommuniation, arrying heavy objets with25



multiple robots, and task speialization. Muriano and Millan (1995) desribe aRL method whih uses prewired behaviors for a team of agents in whih the goalis to learn to signal to other agents where the objets of interest are. E.g., whenthere is a group of objets lustered together, agents may use light soures to pro-vide other agents with the information that they found a spot from whih objetsmay be gathered. Using this signal-based ommuniation, eah agent an learn tobeome a signaling agent or an exploring agent. The results show that the teaman learn to ooperate well. A similar way of ommuniating messages was doneby Matari (1997), where robots had to olletively ollet puks and robots ouldsend messages to eah other whih would inuene where other robots would go to.Balh and Arkin (1994) disuss ommuniation in reative multi-agent robotisystems. The tasks involved are foraging (go and bring objets to the homebase),onsuming (go to objets and onsume them), and grazing (e.g. lawn mowing).They provide the robots with the ability to send state (whih behavior are theyurrently following) or goal information (whih plae may be interesting) amongagents. The results show that for the foraging and onsume task, ommuniationhelps to redue the time needed to �nd or onsume all objets in the environment.For grazing no improvement was found, however. The authors explained that ingrazing, there is already impliit ommuniation sine agents an observe the lawnand infer where other agents are working.4.11 Load balaningIn load balaning we want to map a proess to a parallel mahine. The proesswhih has to be parallelized an be modeled as a network where nodes representsubtasks and edges represent ommuniation between tasks. The goal is to �tthe proess as well as possible on the mahine so that ommuniation overhead isminimized. This is also a NP-omplete problem. Shaerf et al. (1995) disuss anapproah to adaptive load balaning using reinforement learning. The problemthey onsider is a multi-agent multi-resoure stohasti system: there is a set ofagents, a set of resoures with apaities, and probabilisti job sizes. An agentmust selet a single resoure for eah job whih will proess it. If a resoure isworking on multiple jobs at the same time, it spreads its prodution ativity overall jobs. Thus, the goal is to let agents learn to assign the best resoure to eah joband to distribute the jobs in the right way. They use a simple RL sheme, whereeah agent estimates the time eah mahine needs to proess their jobs. By havingall agents learn simultaneously, some agents will prefer to use partiular resoureswhereas others prefer other resoures. In this way the jobs are spread. The resultsshow good performane of the learning system ompared to non-adaptive deisionsystems, and that the learning system an also e�etively handle hanging apaitiesof resoures.4.12 Dynami hannel alloationIn dynami hannel alloation for ellular telephone systems, alls have to bemapped to hannels. Eah hannel an be used for multiple alls, but only if thealls using them are spatially distributed. Singh and Bertsekas (1996) disuss a RLapproah to learning an assignment poliy for inoming alls. The goal is to learndeision poliies whih minimize the number of alls whih are bloked sine nohannel is available for them. They use feature extration, a linear neural networkand TD(0) (Sutton, 1988) learning a value funtion for telephone network on�gu-rations. In this way when a all has to be assigned, all next on�gurations an beevaluated and the one with the lowest estimated number of (future) bloked allsis seleted. The algorithm uses a single ontroller, and the system is therefore not26



really a MAS, although it ould be deentralized as well. The algorithm has beenshown to outperform �xed assignment poliies and the best heuristial assignmentpoliies on a large ellular system with approximately 7049 states.4.13 Game theoretial problemsArthur's El Farol Bar problem (Wolpert et al., 1999b) is a fairly diÆult problemto solve with multiple agents. There is a bar and a set of agents. Eah agent has toselet a night for attending the bar. Sine the bar may be empty or overrowded,the agents have to ooperate to maximize the global payo�. E.g., during a night apayo� is obtained of: xexp(�x=6:0) whih is maximized when x = 6. Therefore ifthere are 168 agents, the optimal solution is to have 6 agents in the bar on 6 nightsand to have the remaining 132 agents in the bar on the last night. Suh problemsneed ooperative agents and good reward funtions to learn this solution. E.g., in(Wolpert et al., 1999b), it is desribed that just learning from the global rewarddoes not work well, but di�erent reward funtions suh as the wonderful life utilitylead to muh better results.4.14 Predator-prey problemsMulti-agent RL has also been used to study predator-pray problems, suh as theproblem desribed in (Ono and Fukumoto, 1997; Stone and Veloso, 1997) where 4predators have to lose in a prey on a grid and their ations are to stand still orto go to eah of the four diretions. The predators need to ooperate whereas theprey has to esape the predators. In (Ono and Fukumoto, 1997) predators use Q-learning and obtain information from the environment using loal visual �elds. Theproblem is that sine there are a total of 5 agents (inluding the prey), the numberof possible inputs grows exponentially with the number of agents. Therefore theauthors use a modular approah in whih di�erent modules are used to detet preyand single predator positions within the loal �elds. In this way, agents an learn toooperate by loating and following other agents. The experiments show that theteam of agents are able to learn ooperative behaviors suh as herding (agents staytogether whih failitates enlosing the prey), and altruisti behaviors (agents staylose to the prey so that other agents are able to either detet the prey or otheragents and in this way the hanes to detet and lose in the prey inrease).Tan (1993) studies how independent agents behave when ompared to oop-erative agents. The ooperative agents an ommuniate their pereptual �elds,poliies and learning episodes to another agent. They have to solve a 2 predator, 2prey task (loating and hitting the prey) in a disrete grid-world. The results showthat ommuniating loal pereptual �elds by a (third) souting agent helps to re-due the number of steps for athing the prey. Poliy sharing and presenting otheragents with episodi memory (the learning trial of another agent) also help. Thus,in these ways ooperating ommuniating agents outperform independent agents.Shmidhuber and Zhao (1996) study three o-evolving agents whih are simul-taneously prey and predator. E.g. Agent A tries to ath agent B, but has toesape from agent C. They use the suess-story algorithm (Shmidhuber, 1996;Shmidhuber et al., 1997), an algorithm whih keeps poliy updates if they resultin long term reward aeleration. The poliy updates are performed by the poliyitself, so that the poliy is self-modifying. The results show that eah agent learnsinteresting pursuit-evasion behaviors.
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5 ConlusionThis paper desribed multi-agent systems (MASs), systems onsisting of multipleindividual agents working in the same environment. Sine these agents share re-soures and may have their own individual goals, onits may arise when we want too-optimize the agents. Therefore an important topi in dealing with MASs is to o-ordinate agents. Coordination an be done using speial multi-agent arhitetures.Di�erent arhitetures of speial interest are global world models, hierarhial sys-tems (management agenies), and expliitly ommuniating agents. Some of theseare already used for multi-agent appliations suh as global world models for robotsoer (Stone et al., 1999). Most reent multi-agent appliations, however, rely onloal agent arhitetures (e.g. Crites and Barto, 1996) or on systems using limitedommuniation possibilities. Sine larger appliations suh as RoboCup resue, thenew RoboCup hallenge requiring many agents to ooperatively deal with disastersituations, will require good oordination skills, muh more researh in developingand testing more advaned arhitetures is required.Optimization algorithms for solving multi-agent problems are another impor-tant topi for MAS researhers and this topi has reeived more attention duringthe last years. In this paper, we made the distintion between mirolearning andmarolearning for optimizing MASs. Mirolearning is used to optimize the behaviorof single agents | a single agent interats with its environment (inluding otheragents) and learns to maximize its long term reward intake. Marolearning is usedto optimize the global behavior of the system and an be used to optimize the arhi-teture, reward funtions, ommuniation protools, or other global deisions suhas hoosing how many agents will be used for solving the problem. We disussedusing reinforement learning (RL), evolutionary omputation (EC), loal iterativesearh, and game theory. RL and EC an be used for mirolearning and marolearn-ing. Just as in single agent RL, there are tradeo�s whether to use RL or EC (see(Moriarty et al., 1999) for a disussion of relative advantages/disadvantages). Inmulti-agent RL, problems are often non-Markovian sine loal agents only pereivepartial state information, and non-stationary. For suh problems both methodsmay pro�t from di�erent, speialized, arhitetures. Therefore experimental om-parisons between both approahes would be helpful to �nd their relative strengths.Loal searh and game theory are useful for oordinating multiple agents usingeither hierarhial systems (loal searh) or ommuniation (game theory). Fur-thermore, game theory is interesting for studying the soial outomes of interatingself-interested agents.We disussed previous researh in solving a set of multi-agent problems. Formost problems, multi-agent RL with loal independent agents have been used. Still,although simple, these approahes have often been shown to be quite e�etive. In fu-ture researh, we would like to see the advantages of going beyond loal agents. Forthis, we ould use ommuniation, hierarhial systems where agents get roles givenglobal strategies, global world models, and task strutures for dividing tasks intosequenes of subtasks. It has already been shown e�etive to expand the state infor-mation of an agent by some more global information. E.g. Stone and Veloso (1999)�nd good solutions to a network routing problem by using information whether aneighboring node is busy or not to deide to whih node a pakage should be sent.In this way, loal deision making an be improved. When we look into the future,we expet that more systems will be onstruted ombining loal information andglobal information in whih the global information may be obtained in di�erentways, e.g. by ommuniation. Another interesting topi is how reward rules anbe set up so that optimizing a single agent's behavior is for the ommon good. Fornow, many interesting multi-agent problems are still waiting to be studied and lotsof exiting work has to be done to onstrut algorithms solving them.28
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