
Multi-Agent Reinfor
ement Learning for TraÆ
 Light ControlMar
o Wiering mar
o�
s.uu.nlUniversity of Utre
ht, Department of Computer S
ien
e, Postbox 80 089, 3508 TB Utre
ht, The NetherlandsAbstra
tThis paper des
ribes using multi-agent rein-for
ement learning (RL) algorithms for learn-ing traÆ
 light 
ontrollers to minimize theoverall waiting time of 
ars in a 
ity. The RLsystems learn value fun
tions estimating ex-pe
ted waiting times for 
ars given di�erentsettings of traÆ
 lights. Sele
ted settings oftraÆ
 lights result from 
ombining the pre-di
ted waiting times of all 
ars involved. Weinvestigate RL systems using di�erent kindsof global 
ommuni
ated information betweentraÆ
 light agents. We also show how thevalue fun
tions 
an be used by the drivingpoli
ies of 
ars to sele
t optimal routes to des-tination addresses. The experimental resultsshow that the RL algorithms 
an outperformnon-adaptable traÆ
 light 
ontrollers, andthat optimizing driving poli
ies is very useful.1. Introdu
tionIn traÆ
 
ontrol, we are interested in enhan
ing so-
ial welfare for road-users su
h as minimizing travelingtime or maximizing safety. An important traÆ
 
on-trol problem is optimizing multiple 
ooperating traf-�
 light 
ontrollers so that the total waiting time of
ars before traÆ
 lights is minimized. Sin
e optimizingtraÆ
 light 
ontrollers by hand is a 
omplex and te-dious task, we study how reinfor
ement learning (RL)algorithms 
an be used for this goal.Learning in multi-agent systems. The traÆ
 light
ontrol problem 
onsists of multiple traÆ
 nodes (in-terse
tions) 
ontaining a set of traÆ
 lights 
onne
tedto ea
h other by an infrastru
ture. When we modeltraÆ
 lights and 
ars as agents, we want to optimallydeal with the behavior of ea
h agent and with their in-tera
tions. For optimizing the behavior of ea
h agentin the multi-agent system (MAS) we 
an employ rein-for
ement learning (RL) algorithms su
h as Q-learning(Watkins, 1989). This is not 
ompletely new: Tan(1993) used multi-agent Q-learning (MAQ-L) for a

predator-prey problem. Littman and Boyan (1993)used MAQ-L for network routing and showed thatmulti-agent RL provides useful tools for su
h 
omplexproblems. Matari
 (1994) used RL to train a group ofrobots to 
olle
t pu
ks. S
haerf, Shoman, and Tennen-holtz (1995) used a multi-agent RL system for learningload balan
ing. Crites and Barto (1996) used MAQ-Lfor training elevator dispat
hers in a simulated envi-ronment and obtained better 
ontrollers than a set of�xed 
ontrollers used in pra
ti
e.Model-based RL for MAS. Most former ap-proa
hes based on RL to optimize MASs used model-free (dire
t) RL su
h as Q-learning (Watkins, 1989)and TD(�)-methods (Sutton, 1988) to optimize sin-gle agent behaviors. Previous 
omparison studies haveshown advantages in using model-based RL (MBRL)(see Atkeson & Santamaria, 1997; Moore & Atke-son, 1993; Wiering, 1999). In model-based (indi-re
t) RL, a transition model is estimated and dynami
programming-like methods are used to 
ompute thevalue fun
tion mapping agent states to expe
ted longterm reward. This 
an speed up learning time dramat-i
ally. We will use MBRL to learn to estimate waitingtimes of 
ars given parti
ular input states.Co-learning. We also study how we 
an use the sameRL systems and learned value fun
tions to optimizethe paths whi
h 
ars take to arrive at their destinationaddress. Sin
e the value fun
tions are then exploitedby two types of agents (
ars and traÆ
 lights) andare adapted based on de
isions of all agents, agents
ooperatively learn the shared value fun
tions. We willuse the term 
o-learning for this joint learning strategy.Co-learning 
an be used if all agents share the goal ofusing poli
ies whi
h minimize the same value fun
tion.Outline of this paper. Se
tion 2 des
ribes the traf-�
 light simulator. Se
tion 3 des
ribes several MBRLmethods employing di�erent kinds of 
ommuni
ationto optimize the traÆ
 light 
ontrollers and also de-s
ribes how they 
an be used for 
o-learning drivingpoli
ies. Se
tion 4 des
ribes the experimental set-upand shows experimental results. Se
tion 5 dis
ussesthe �ndings and Se
tion 6 
on
ludes.



Figure 1. The traÆ
 
ontrol problem. The goal is to learntraÆ
 light poli
ies whi
h minimize the overall time 
arsneed to go to their destination address. The 
omplete net-work 
ontaining all 6 interse
tions is 
alled the 
ity. En-trees to and exits from the 
ity are given by the open side-roads. At ea
h interse
tion, there are 8 traÆ
 lights opera-tional. Before ea
h traÆ
 light there is a spe
i�
 road-lanedis
retized into a number of possible pla
es for 
ars.2. TraÆ
 SimulatorA traÆ
 light 
ontrol problem is given by a networkwhere edges represent roads and nodes represent inter-se
tions where traÆ
 lights are operational. There are
ars 
oming from outside the system and these followa poli
y to drive over the roads (while waiting for redtraÆ
 lights) until they have arrived at their destina-tion address (see Figure 1).TraÆ
 light model. At ea
h traÆ
 node (interse
-tion), there are 8 traÆ
 lights operational: 4 for go-ing straight ahead or to the right, and 4 for going tothe left. We prevent a

idents by not allowing traÆ
light states whi
h make 
ollisions between 
ars possi-ble. Possible settings for traÆ
 lights are: two traf-�
 lights from opposing dire
tions allow 
ars to gostraight ahead or to turn right (2 possibilities), twotraÆ
 lights at the same dire
tion of the interse
tionallow the 
ars from there to go straight ahead, turnright or turn left (4 possibilities). This makes a totalof 6 possible de
isions (a
tions) for ea
h traÆ
 node.1Behavior of 
ars. Before ea
h di�erent traÆ
 light,there is a spe
i�
 road-lane dis
retized into a num-ber of pla
es. At ea
h time-step, new 
ars are gen-erated with a parti
ular destination address and en-ter the network (
ity) at the last pla
e of one of theside-entran
e road-lanes. We assume for now that 
ars1We have not allowed the possibility that 
ars fromroad-lanes of opposing dire
tions turn left at the same time.

follow a random poli
y to arrive at the destination ad-dress along one of the shortest paths, although as wewill see later, 
ars 
ould also be adaptive and learn spe-
i�
 driving poli
ies to minimize their traveling time.After new 
ars have been added, traÆ
 light de
isionsare made and ea
h 
ar moves to the subsequent pla
eif this is possible | if it is uno

upied or the 
ar's pre-de
essor is moved as well. Cars standing in front of ared traÆ
 light are not moved.All road-lanes have a limited 
apa
ity for storing 
ars(we used a maximum of 20 
ars). Therefore, it mayhappen that 
ars standing before a green traÆ
 light
annot 
ontinue, sin
e the next road-lane is over-
rowded (and its �rst 
ar 
annot drive). Our simulatoris a dis
rete event simulator | we do not take a

eler-ation/de
eleration times into a

ount nor do we modeldi�erent 
ar velo
ities. We are mostly interested in the
o-operational behavior of traÆ
 nodes and 
ars.How to solve this problem? TraÆ
 light 
ontrolproblems are often solved by optimizing the times ea
hlight is on green and red. These 
ontrollers are oftenmade more advan
ed by using sensors to infer that atsome point in time no traÆ
 has arrived at a traÆ
light so that the light 
an be set to red. Althoughoptimizing waiting times may work well, it remainsa hard problem and de
isions do not take the exa
tenvironmental state into a

ount, possibly leading tosub-optimal 
ontrollers. That is why RL systems maybe advantageous. These systems 
an learn to set atraÆ
 light given a parti
ular environmental input.3. Reinfor
ement Learning for TraÆ
Light ControlIn RL (Kaelbling, Littman & Moore, 1996) we try tooptimize the behavior of an agent by letting it inter-a
t with the environment and learn from its obtainedfeedba
k (reward). An agent is situated in an environ-ment, re
eives (virtual) sensory inputs and uses theseto sele
t an a
tion by its poli
y. This poli
y is opti-mized by learning from the results of applying di�erenta
tion sequen
es given some input. A value fun
tionis used to estimate long term reward intake given thatthe agent observes a parti
ular input (state) and se-le
ts a
tions a

ording to its poli
y. Well-known al-gorithms for learning value fun
tions are Q-learning(Watkins, 1989) and TD(�)-learning (Sutton, 1988).These algorithms update the value fun
tion dire
tlyon the sequen
e of state/a
tion pairs observed dur-ing the intera
tion of the agent with the environment.Model-based RL (Moore & Atkeson, 1993) �rst learnsa transition model whi
h estimates the probabilities ofmaking state-transitions given parti
ular a
tions and




ompute average rewards asso
iated to these transi-tions. Then it uses dynami
 programming-like meth-ods (Bellman, 1961; Barto, Bradtke & Singh, 1995;Moore & Atkeson, 1993) to 
ompute the value fun
-tion. MBRL 
an signi�
antly speed up learning (Atke-son & Santamaria, 1997; Moore & Atkeson, 1993;Wiering, 1999), although it requires a dis
rete repre-sentation of the input spa
e and more storage spa
e.Estimating 
umulative waiting time. Ea
h 
y-
le, 
ars 
an wait 1 time-step before a traÆ
 light, orthey 
an drive to the next pla
e. Parti
ular 
ars arestanding in the queue (a row of 
ars standing beforea traÆ
 light without a gap between them), and theirmovement is dependent on their prede
essors and traf-�
 light setting. If 
ars are not standing in the queue,they always move one pla
e further. If the light isgreen, the �rst 
ar in the queue immediately 
rossesthe interse
tion and starts on the last pla
e of the road-lane for the next traÆ
 light. After one or more time-steps, it ends up at some pla
e in a new queue at thenext traÆ
 light or it es
apes the 
ity. The goal is tominimize the 
umulative waiting time of all 
ars be-fore all traÆ
 lights met before exiting the 
ity. Todo this, ea
h 
ar learns to estimate its waiting timewhen the light is green or red and all 
ar predi
tionsare 
ombined to make the de
ision of a traÆ
 node.Global des
ription of the system. Ea
h 
ar is ata spe
i�
 traÆ
-light (tl 2 [1::48℄), a position in thequeue (pla
e 2 [1::20℄), and has a parti
ular destina-tion address (des 2 [1::10℄). Sin
e there are 960 pos-sible pla
es in the network whi
h may be o

upied bya 
ar, there are at least 2960 possible traÆ
 situations.Sin
e ea
h 
ar has a spe
i�
 destination address, thereare even more system states. A system state should bemapped to a
tions of all 6 traÆ
 nodes, making a to-tal of 66 possible global a
tions in our network. Thus,learning a 
entral 
ontroller mapping system states toa
tions is infeasible. To deal with so many states anda
tions, we independently 
ontrol traÆ
 nodes | ea
h
ontroller re
eives as input the 
ars (traÆ
 light, pla
e,and destination)2 standing for one of its 8 traÆ
 lightsand sele
ts one of its 6 a
tions.Making a traÆ
 node de
ision. Suppose all 
arswould exa
tly know their waiting time until they arriveat the destination address given that their traÆ
 lightis 
urrently set to red or green. Then, ea
h 
ar has again for having its light set to green. This gain equalsthe di�eren
e between its waiting time when the light2We assume that in the near future it is possible for
ars to 
ommuni
ate with intelligent traÆ
 light 
ontrollerswhi
h enables them to send pla
e and destination informa-tion in a real world appli
ation.

is red and when it is green. If there are a number of
ars standing before di�erent traÆ
 lights at a traÆ
node, we 
an 
hoose the de
ision whi
h maximizes thesummed gains of all 
ars whi
h pro�t from the de
i-sion. This de
ision would then be (lo
ally) optimal.Car-based value fun
tions. For this goal, we willuse 
ar-based value fun
tions stored in lookup tables.The 
ar-based value fun
tions estimate the total (dis-
ounted) expe
ted waiting time before all traÆ
 lightsfor ea
h 
ar until it arrives at the destination ad-dress given its 
urrent traÆ
 light, pla
e, and thede
ision of the light (red or green). We will writeQ([tl; pla
e; des℄; a
tion) to denote this value. We willwrite V ([tl; pla
e; des℄) to denote the average waitingtime (without knowing the traÆ
 light de
ision) for a
ar at (tl; pla
e) until it has rea
hed its destination ad-dress. Note that we use the destination address of the
ar, whi
h may help to estimate its waiting time morea

urately. The Q- and V-fun
tions are distributivelystored in the traÆ
 light 
ontrollers whi
h 
ommuni-
ate with 
ars and other traÆ
 lights. To learn the Q-and V-fun
tions, traÆ
 nodes may request V-values ofother traÆ
 nodes.Given the 
urrent traÆ
 situation, we make a 
hoi
efor ea
h traÆ
 node node as follows. The gain-variableWnode(A) 
omputes the advantage (gain) of the de-
ision of the traÆ
 node, A, whi
h sets two spe
i�
traÆ
 lights to green:Table 1. Sele
ting a traÆ
 node de
ision by summing indi-vidual gains.(1) For all A, one of the 6 de
isions:(1.a) Wnode(A) = 0(1.b) For all traÆ
 lights tl set to green by A(1.b.1) For all 
ars in the queue at the traÆ
 light tl,with their destination and pla
e(1.b.1.a) Wnode(A) = Wnode(A)+Q([tl; pla
e; des℄; red)�Q([tl; pla
e; des℄; green)(2) Sele
t the de
ision A of the traÆ
 node with maximalWnode(A)If a 
ar is not waiting in the queue (i.e. the 
ar 
anstill drive onwards until it meets the queue), we do notlet it vote for the total waiting time, sin
e the 
urrentde
ision of the traÆ
 light does not a�e
t the 
urrenttransition of the 
ar.Although the Q-values are real numbers, we have usedintegers for representing the variablesWnode(A), whi
hallows for exploring the results of de
isions whi
h seemalmost as good as the 
urrently best de
ision. Parti
-ular systems, however, su�ered from this integer rep-resentation so that we had to use real numbers fortheir gain variable (we will later denote the use of realnumbers by a system as systemr).



Communi
ating global information. UsingMBRL we have di�erent design 
hoi
es for using 
ur-rent information about the state of other traÆ
 lightsfor 
omputing waiting times. This kind of global in-formation 
ould be 
ommuni
ated between traÆ
 lightagents. If we would know how many 
ars are stand-ing at ea
h next possible traÆ
 light, we 
an improvethe probabilisti
 estimates of the pla
e where the �rst
ar will enter the next queue. Thus, we 
ould predi
twaiting times more a

urately by instantiating global(
ommuni
ated) information. We will dis
uss threesystems; the �rst, TC-1 (TraÆ
 Controller 1), doesnot use su
h 
ommuni
ation and only uses lo
al infor-mation for 
omputing waiting times of 
ars,TC-2 onlyuses global information for 
omputing waiting timesfor the �rst 
ar and lo
al information for the other
ars, and TC-3 uses global information for 
omputingwaiting times for all 
ars.The transition and reward fun
tions. For 
om-puting the Q- and V -fun
tions we use state tran-sition probabilities and a reward fun
tion. Thestate transition fun
tion is given by a lookuptable 
onsisting of the following probabilities:P ([tl; pla
e; des℄; L; [new tl; new pla
e℄) where L de-notes whether the light for tl is red or green. Notethat the destination address des stays the same andthat most 
ar-states only have two possible transitions.Therefore the transition fun
tion does not 
ontain ahuge number of entries. If a 
ar 
rosses a traÆ
 node,we 
ompute its state transition probability to the newtraÆ
 light, and new pla
e as that pla
e where it is (ata 
ertain moment) for the �rst time standing in thenew queue (1 � new pla
e � 20). Finally, we 
om-pute probabilities P (Lj[tl; pla
e; destination℄) whi
hgive the probability that the light is red or green for a
ar waiting at (tl; pla
e) with a parti
ular destination.These probabilities are needed to 
ompute the aver-age waiting time V ([tl; pla
e; destination℄). Finally,we use a reward fun
tion as follows: if a 
ar stays atthe same pla
e, then R([tl; pla
e℄; [tl; pla
e℄) = 1. Oth-erwise R = 0 (the 
ar 
an advan
e).TC-1: Computing the V- and Q-fun
tions. Forour �rst system, TC-1, we 
ompute the Q-fun
tion as:Q([tl; p; d℄; L) = X(tl0;p0)P ([tl; p; d℄; L; [tl0; p0℄)(R([tl; p℄; [tl0; p0℄) + 
V ([tl0; p0; d℄)) (1)Where 
 is the dis
ount fa
tor (0 < 
 < 1) whi
h en-sures that Q-values are bounded. Thus, the expe
teddis
ounted waiting time of a 
ar given L equals the
urrent waiting probability (whi
h is 1 for a red light)plus the average waiting time from the next possible


ar-states.3 We 
ompute the V-fun
tion using the Q-fun
tion and the probabilities that the light is greenor red for a 
ar as follows:V (℄tl; p; d℄) =XL P (Lj[tl; p; d℄)Q([tl; p; d℄; L)After ea
h simulation step we update the transitionprobabilities and 
ompute the V-values and Q-valuesby Real Time Dynami
 Programming (Barto, Bradtke& Singh, 1995) using a single value-fun
tion iteration.TC-2. The �rst 
ommuni
ating system uses thenumber of 
ars standing at the next possible traf-�
 lights (where the �rst 
ar 
an go to) to 
om-pute the state-transition probabilities of the �rst 
aronly. We estimate the transition probability of the
ar to a next traÆ
 light tl0 given that at tl0 
ur-rently Ktl0 , shortly written as K, 
ars are standingin the queue. This information should be 
ommuni-
ated between traÆ
 lights. To 
ompute the valuefun
tions, we will make use of transition probabilitiesP ([tl; pla
e; des℄;K; green; [tl0; p℄). We only use thisequation if the light is green:Q([tl; p; d℄; green) = X(tl0;p0)P ([tl; p; d℄;K; green; [tl0; p0℄)(R([tl; p℄; [tl0; p0℄) + 
V ([tl0; p0; d℄))Note that here the value of p is always 1 | for theother 
ars we use Equation (1) to 
ompute the Q-values. To 
ompute V , we again take the average of theQ-values a

ording to the probabilities that the lightis green or red. Note that we do not use K as argu-ment in the Q- and V-fun
tions | K is not part of the
ar-state, but is 
ommuni
ated and then instantiatedin the transition fun
tion to 
ompute the value fun
-tions. This saves us from an additional dimension inthe Q-fun
tion. The TC-2 system may work �ne, buthas parti
ular short
omings: (1) we only look ahead asingle traÆ
 light in the future | situations at traÆ
nodes some steps further are not used. (2) Predi
tingwaiting times of other 
ars waiting in the queue doesnot immediately take advantage of this 
ommuni
a-tion (although there is delayed, indire
t, 
ommuni
a-tion due to subsequent value-iteration steps).TC-3. TC-3 uses global knowledge for 
omputingwaiting times for all 
ars. It uses state transition prob-abilities: P ([tl; pla
e; des℄; L;K; [new tl; new pla
e℄)for all 
ars whi
h determine the state transition prob-abilities to the next traÆ
 lights even while the 
aris not yet in a position to 
ross the interse
tion. The3This equation very mu
h resembles Bellman's equa-tion: Q(S;A) =P0S P (S;A;S0)(R(S;S0) + 
V (S0)).



V-fun
tion is 
omputed by summing the expe
ted dis-
ounted waiting time (EDWT) at the 
urrent traÆ
light and the EDWT from the next possible lights:V ([tl; p; d℄) =W ([tl; p; d℄) +XL P (Lj[tl; p; d℄)X(tl0;p0)P ([tl; p; d℄;K; L; [tl0; p0℄)
V ([tl0; p0; d℄)Where W ([tl; pla
e; des℄) is the EDWT at the 
urrenttraÆ
 light, and K is the number of 
ars waiting atthe next possible traÆ
 light tl0. The W-fun
tion 
anbe 
omputed as:W ([tl; p; d℄) =XL P (Lj[tl; p; d℄)Q0([tl; p; d℄; L)where Q0 (the intra-node Q-fun
tion) denotes theEDWT at the 
urrent light for 
ars given the de
isionof the traÆ
 light:Q0([tl; p; d℄; L) =Xp0 P ([tl; p; d℄; L; [tl; p0℄)(R([tl; p℄; [tl; p0℄) + 
W ([tl; p0; d℄))The Q-values 
an �nally be 
omputed as follows:Q([tl; p; d℄; L) = Q0([tl; p; d℄; L) +X(tl0;p0)P ([tl; p; d℄;K; L; [tl0; p0℄)
V ([tl0; p0; d℄)We 
ompute P ([tl; pla
e; des℄;K; L; [tl0; p℄) by tra
kinga 
ar standing on a spe
i�
 pla
e. Thus, we re
ordtuples < tl; pla
e; des;K;L; tl0 > and �nally asso
iatethem with p, the pla
e where the 
ar arrives in thenext queue. If there are multiple states of a 
ar on(tl; pla
e) with the same L and Ktl0 , we only 
ount thetransition step to the next (tl0; p) a single time (thisis similar to the �rst visit sampling method (Singh &Sutton, 1996)).Adapting the system parameters. For adaptingthe systems, we update the state transition probabil-ities after ea
h time-step by tra
king 
ar-movements.Remember that the reward fun
tion is �xed (standingstill 
osts 1, otherwise the reward/
ost is 0). To 
om-pute transition probabilities, we just 
ount the numberof transitions from a 
ar-state to all next 
ar-statesand divide these by the total number of transitionsfrom that 
ar-state.4Co-learning driving poli
ies. A ni
e feature of our
ar-based value fun
tions is that they 
an be immedi-ately used to sele
t a path of traÆ
 lights to the des-tination address. Note that our 
ity (Figure 1) is like4For parti
ular systems, we have to take 
ommuni
atedstate information into a

ount as well.

Manhattan and from one starting pla
e to a destina-tion address there 
an be multiple shortest paths. Thenon-adaptable systems generate at ea
h traÆ
 lightwhat the options are to go from one traÆ
 light to thenext one in order to go to the destination address andsele
t one of these randomly. Co-learning 
an be usedto sele
t among these shortest paths that path withminimal expe
ted waiting time. For TC-1, we 
om-pare the values V ([tl0; 1; des℄) to determine the bestnext traÆ
 light tl0 for a 
ar 
rossing an interse
tion.For TC-2 and TC-3, we 
an 
ompute the Q-values forgoing to the next traÆ
 light tl0 using global informa-tion. We 
ompute the values Q(tl0) for going to a nexttraÆ
 light (given the 
urrent light tl) as follows:Q(tl0) =Xp P ([tl; 1; d℄;K; green; [tl0; p℄)V ([tl0; p; d℄)and 
hoose the traÆ
 light tl0 with the lowest Q(tl0).4. ExperimentsWe exe
ute experiments with 10 systems: a random
ontroller for ea
h traÆ
 node, a �xed 
ontroller whi
hiterates over all traÆ
 node de
isions, a 
ontrollerwhi
h lets the largest queues go �rst, a 
ontroller whi
htries to let most 
ars pass the interse
tion, and ourthree RL systems: TC-1, TC-2, and TC-3, with orwithout 
o-learning. For our experiments we use the
ity depi
ted in Figure 1.Set-up of traÆ
 simulations. The traÆ
 patternis a fully randomized pattern where random startingtraÆ
 lights at the border of the 
ity (20 possibili-ties) are sele
ted for ea
h newly inserted 
ar and arandom destination addresses is used for the 
ar (10possibilities).5 At ea
h 
y
le (time-step), 1 to 8 
arsare inserted in the 
ity, all with di�erent starting traÆ
lights, sin
e 
ars 
annot o

upy the same initial pla
eat the same traÆ
 light. Therefore it is also possiblethat the traÆ
 network be
omes saturated, where 
arsare refused sin
e we 
annot add more 
ars when all 20possible starting positions are o

upied.Systems and parameters. The Random system se-le
ts the de
ision at ea
h traÆ
 node randomly, theFixed system starts with de
ision 1 for all traÆ
 nodesfor one time-step, then sele
ts de
ision 2 at the nexttime-step, until it has sele
ted all six de
isions andstarts again with de
ision 1. The Longest Q system
ounts the number of 
ars whi
h would not have towait for a red light for ea
h de
ision and sele
ts thetraÆ
 node de
ision leading to the maximum. The5Due to parti
ular impossible paths, generated 
ars 
an-not use all 200 
ombinations.



Table 2. Final waiting time results for di�erent systemswhen adding 1-3 
ars per time-step. Results are averagesover 10 simulations. r = used a real number for the gainvariable.System 1 
ar 2 
ars 3 
arsRandom 10.9 � 0.4 19.7 � 1.2 174 � 11Fixed 5.6 � 0.05 9.5 � 0.4 69 � 6Longest Q 0.47 � 0.02 1.50 � 0.04 4.4 � 0.2Most Cars 0.47 � 0.02 1.60 � 0.07 4.6 � 0.4TC-1r 0.47 � 0.02 1.50 � 0.03 3.9 � 0.3TC-1r 
o 0.45 � 0.03 1.44 � 0.07 3.9 � 0.4TC-2r 0.47 � 0.02 1.52 � 0.06 4.2 � 0.2TC-2r 
o 0.45 � 0.02 1.36 � 0.06 3.9 � 0.3TC-3 0.46 � 0.02 1.48 � 0.07 4.0 � 0.3TC-3 
o 0.44 � 0.02 1.36 � 0.05 3.6 � 0.3Table 3. Final waiting time results and the nr. of refused
ars (1K =1000) for the systems when adding 4 
ars pertime-step. * = 20% randomness is used in the a
tion se-le
tion.System waiting time refused 
arsRandom 171 � 13 26K � 1KFixed 70 � 7 226K � 11KLongest Q* 3683 � 1297 941K � 43KMost Cars 706 � 1830 6K � 9KTC-1 190 � 108 15K � 1KTC-1 
o 70 � 22 3K � 2KTC-2 128 � 45 10K � 2KTC-2 
o 58 � 22 3K � 2KTC-3* 106 � 12 49K � 24KTC-3 
o* 89 � 20 14K � 17KMost 
ars system examines how many 
ars 
an passan interse
tion given some traÆ
 node de
ision, andsele
ts the de
ision whi
h is expe
ted to let most 
ars(0-2) 
ross an interse
tion. TC-1, TC-2, and TC-3,with or without 
o-learning use 
 = 0:99, one value-fun
tion iteration per time-step and no exploration,ex
ept for systems whi
h get stu
k in dead networkswhere no 
ars 
an drive anymore (whi
h sometimeshappens with the TC-3, Longest Q, and Most 
arssystems), for whi
h we add 20% random a
tions to thede
ision poli
y. We let ea
h system run until 50,000
ars have exited the 
ity and re
ord simulation resultsafter ea
h 2000 
ars have left the 
ity. Results areaverages over 10 simulations.Experimental results. Table 2 shows the �nal (after50,000 steps) average waiting time results for the last2000 
ars exiting the 
ity when adding 1 to 3 
ars pertime-step. When adding a single 
ar at ea
h 
y
le,TC-3 with 
o-learning works best, 
losely followed bythe other 
o-learning RL systems. The random sys-tem performs worst with a waiting time whi
h is morethan 23 times longer than the best algorithms. When

adding 2 
ars the results are quite similar. TC-3 andTC-2 with 
o-learning works best followed by TC-1with 
o-learning. When adding 3 
ars, TC-3 with 
o-learning works best followed by the other RL systems.Longest Q performs 22% worse and Most 
ars performs28% worse than TC-3 with 
o-learning. The randomand �xed systems again 
ome last and even result insaturating behavior | see Figure 2(A). Note that al-though the di�eren
es are not so large, TC-3 with 
o-learning always signi�
antly (t-test, p
han
e < 0:01)outperforms all �xed systems.Adding four 
ars. Table 3 shows the results whenadding 4 
ars. Here the network starts to saturate forall algorithms. Therefore not only the average waitingtime is important, but also the number of refused 
ars.For Longest Q and TC-3, we had to add 20% noise inthe a
tion sele
tion, sin
e otherwise they got stu
k intraÆ
 situations where no 
ars 
ould move anymoreand no 
ars were able to enter the 
ity. Su
h \dead"network states result from deterministi
 poli
ies whi
hset lights to green for 
ars whi
h 
annot 
ross the in-terse
tion, sin
e the next road-lane is full and the next(or the one after the next) traÆ
 light is set to red.TC-2 with 
o-learning works best, followed by TC-1with 
o-learning. They have the lowest waiting timesand refuse the lowest number of 
ars. Note that thenumber of refused 
ars would make aligning traÆ
 net-works more 
rowded. Apparently, optimizing drivingpoli
ies in busy traÆ
 situations is very useful here.TC-3 refuses many 
ars during the initial learningphase, but �nally obtains the best performan
e of thenon 
o-learning systems. The Most 
ars algorithm re-sults in 
u
tuating performan
e (waiting times). Itdoes not refuse so many 
ars, though, whi
h is di�er-ent from the Longest Q system whi
h refuses by farthe most 
ars.Saturation behavior for adding more 
ars. Fig-ure 2(A) shows the total number of refused 
ars duringa run when we in
rease traÆ
 loads and Figure 2(B)shows the average �nal waiting times. When adding5-8 
ars, TC-2 with 
o-learning refuses the least num-ber of 
ars. It is followed by TC-1 with 
o-learning.The Longest Q system performs worst. The �xed sys-tem also refuses many 
ars and this explains why itsaverage waiting time is shortest for highly 
rowdedtraÆ
. The random system works quite well for very
rowded roads; it seems that for su
h 
ases randomde
isions work reasonably well. The Most 
ars algo-rithm performs quite well, but su�ers from 
u
tuatingperforman
e levels. All systems 
an use 
o-learningof driving poli
ies to minimize the number of refused
ars. The reason that TC-2 with 
o-learning works



1000

10000

100000

1e+06

1 2 3 4 5 6 7 8

N
um

be
r 

of
 r

ef
us

ed
 c

ar
s

Number of cars inserted

Random
Fixed

Longest Q
Most cars

TC-1
TC-1 co

TC-2
TC-2 co

TC-3
TC-3 co

0.1

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8

W
ai

tin
g 

tim
e 

of
 la

st
 2

00
0 

ca
rs

Number of cars inserted

Random
Fixed

Longest Q
Most cars

TC-1
TC-1 co

TC-2
TC-2 co

TC-3
TC-3 co

Figure 2. A 
omparison between the di�erent adaptableand �xed systems on more or less 
rowded traÆ
 patterns.(A): The average number of refused 
ars during an entirerun. (B): The average waiting time of the last 2000 
arsexiting the 
ity. Results are averages over 10 simulations.best, may be that it 
ontinuously adapts its poli
y,thereby making it non-stationary. Therefore it 
an re-a
t when parti
ular de
isions do not make sense, likesetting the light to green while the �rst 
ar 
annotgo to an over
rowded next road-lane. TC-3 is notable to 
ontinuously 
hange its poli
y, and thereforeit sometimes ends up in dead networks (when usedwithout randomness). The reason is that only intra-Q values are adapted when 
ars remain waiting, andthis is sometimes not suÆ
ient to 
hange the out
omeof the voting pro
ess, sin
e inter-Q values may have alarge impa
t on the de
ision. Furthermore, 
ommuni-
ating K is less useful if K is almost always 20 and the�rst 
ar 
annot drive. The Longest Q system su�ersa lot from deadlo
k situations (no 
ar 
an drive givensome de
isions of the traÆ
 lights), but it is strangethat even with 20% randomness it 
annot over
omeits problems (with more randomness it performs bet-ter, but even with 90% randomness, it performs worsethan the random system).

5. Dis
ussionFor low traÆ
 loads, 
onstru
ting good (near-optimal)�xed 
ontrollers is not diÆ
ult, sin
e all traÆ
 nodes
an operate lo
ally. Therefore the gain in using RL forlearning traÆ
 light 
ontrollers is quite small, althoughlearning driving poli
ies is still useful. When we in-
rease traÆ
 load, the amount of intera
tion betweentraÆ
 nodes in
reases, and the lo
ally well performing�xed systems do not work well anymore. Furthermore,the dynami
s of 
rowded traÆ
 patterns are 
omplexso that it is hard to design better 
ontrollers. Here,using RL systems for traÆ
 light 
ontrol is 
learly ben-e�
ial. Co-learning driving poli
ies is also very useful,sin
e it helps to dire
t traÆ
 
ow in the 
ity.Co-learning. Learning driving poli
ies at the sametime as learning traÆ
 light 
ontrollers show interest-ing 
o-learning phenomena: traÆ
 nodes whi
h arequite busy and thus have a hard task minimizing over-all waiting time are relieved by the intelligent drivingpoli
ies 
ir
umventing su
h interse
tions. Thereby the
ars are rea
tively spreading in the 
ity and help tominimize the shared value fun
tions.Communi
ation. The use of 
ommuni
ated infor-mation 
an help the RL systems to optimize traÆ
light 
ontrollers. Sin
e traÆ
 nodes are highly inter-dependent when regulating highly 
rowded traÆ
, we
ould also design di�erent 
ommuni
ation s
hemes inwhi
h traÆ
 node de
isions are 
ommuni
ated. Weare 
urrently studying methods for eÆ
iently evaluat-ing global de
isions in this way.Related work. Thorpe and Anderson (1996) useddire
t RL to learn traÆ
 
ontrollers on a simulatedtraÆ
 
ontrol problem 
onsisting of a network of 4� 4 traÆ
 light 
ontrollers. They modelled averagespeed, queueing and a

eleration/ de
eleration of 
ars.The 
ontroller was trained on a single interse
tion af-ter whi
h it was 
opied to the other interse
tions. Re-sults showed that using their best state representation(whi
h indi
ates whi
h segments of the roads were o
-
upied by 
ars) RL learned to outperform algorithmswhi
h used �xed waiting times or allowed the largestqueue to go �rst. A big di�eren
e between their andour approa
h is that their traÆ
 node poli
y sele
ts de-
isions based on a 
ombined representation of the lo
altraÆ
 situation. To deal with the explosive number ofstates, they abstra
t away from a lot of information.Instead, we use 
ar-based value fun
tions and a votings
heme for sele
ting a
tions. This has the advantagethat (lo
al) optimal 
ontrollers may be obtained if thevalue fun
tions are a

urate, while we still do not suf-fer from huge state spa
es. Furthermore, the 
ar-basedvalue fun
tions 
an be used by the driving poli
ies.



Moriarty and Langley (1998) also used RL for dis-tributed traÆ
 
ontrol. Their approa
h enabled 
arsto learn lane sele
tion strategies from experien
e witha traÆ
 simulator. Experimental studies showed thatlearned strategies let drivers more 
losely mat
h theirdesired speeds than hand-
rafted 
ontrollers and re-du
e the number of lane 
hanges. Their approa
halso fo
uses on distributed 
ar-based 
ontrollers, whi
hmakes it easy to take spe
i�
 desires/goals of driversinto a

ount su
h as desired speed or destination.6. Con
lusionWe have presented a set of multi-agent model-basedRL systems for traÆ
 light 
ontrol whi
h 
an also beused for optimizing driving poli
ies for 
ars. Experi-mental results show that the RL systems 
an outper-form a number of non-adaptable systems. One of thesystems, TC-3, uses global 
ommuni
ation betweentraÆ
 lights and is able to surpass the performan
eof the other algorithms when the traÆ
 is not very
rowded. If the networks start to saturate when we in-
rease traÆ
 load, the RL systems 
learly outperform�xed 
ontrollers and also pro�t a lot from 
o-learningdriving poli
ies.In future work, we would like to test our systems onmore realisti
 traÆ
 simulators in whi
h we also wantto add publi
 transport whi
h should get priorities for
rossing roads, sin
e they 
arry more passengers. Inanother dire
tion, we want to examine whether othermulti-agent problems 
an pro�t from simple 
ommuni-
ation between agents. For this, we want to use MBRLalgorithms sin
e they are qui
kly able to deal with dif-ferent kinds of instantiated information. The problemswe want to fo
us on are network routing, (pro
ess)s
heduling, robot so

er, and forest �re 
ontrol.A
knowledgementsThanks to Prof. F.C.A. Groen, Ben Kr�ose, Stephanten Hage and the anonymous reviewers for many help-ful 
omments.Referen
esAtkeson, C. G., & Santamaria, J. C. (1997). A 
ompar-ison of dire
t and model-based reinfor
ement learn-ing. In Pro
eedings of the International Conferen
eon Roboti
s and Automation.Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995).Learning to a
t using real-time dynami
 program-ming. Arti�
ial Intelligen
e, 72, 81{138.Bellman, R. (1961). Adaptive 
ontrol pro
esses. Prin
e-ton University Press.

Crites, R., & Barto, A. (1996). Improving elevator per-forman
e using reinfor
ement learning. Advan
es inNeural Information Pro
essing Systems 8 (pp. 1017{1023). Cambridge MA: MIT Press.Kaelbling, L. P., Littman, M. L., & Moore, A. W.(1996). Reinfor
ement learning: A survey. Journalof Arti�
ial Intelligen
e Resear
h, 4, 237{285.Littman, M., & Boyan, J. (1993). A distributed rein-for
ement learning s
heme for network routing. Pro-
eedings of the First International Workshop on Ap-pli
ations of Neural Networks to Tele
ommuni
ation(pp. 45{51). Hillsdale, New Jersey.Matari
, M. J. (1994). Intera
tion and intelligent be-havior. Do
toral dissertation, AI Laboratory, Mas-sa
husetts Institute of Te
hnology, Cambridge, MA.Moore, A. W., & Atkeson, C. G. (1993). Prioritizedsweeping: Reinfor
ement learning with less data andless time. Ma
hine Learning, 13, 103{130.Moriarty, D., & Langley, P. (1998). Learning 
oopera-tive lane sele
tion strategies for highways. Pro
eed-ings of the Fifteenth National Conferen
e on Arti�-
ial Intelligen
e. Menlo Park, CA: AAAI Press.S
haerf, A., Shoman, Y., & Tennenholtz, M. (1995).Adaptive load balan
ing: A study in multi-agentlearning. Journal of Arti�
ial Intelligen
e Resear
h,2, 475{500.Singh, S. P., & Sutton, R. S. (1996). Reinfor
ementlearning with repla
ing eligibility tra
es. Ma
hineLearning, 22, 123{158.Sutton, R. S. (1988). Learning to predi
t by the meth-ods of temporal di�eren
es. Ma
hine Learning, 3,9{44.Tan, M. (1993). Multi-agent reinfor
ement learning:Independent vs. 
ooperative agents. Pro
eedingsof the Tenth International Conferen
e on Ma
hineLearning (pp. 330{337).Thorpe, T., & Anderson, C. (1996). TraÆ
 light 
on-trol using SARSA with three state representations.IBM Corporation, Boulder.Watkins, C. J. C. H. (1989). Learning from delayed re-wards. Do
toral dissertation, King's College, Cam-bridge.Wiering, M. A. (1999). Explorations in eÆ
ient re-infor
ement learning. Do
toral dissertation, Intel-ligent Autonomous Systems Group, University ofAmsterdam.


