
Multi-Agent Reinforement Learning for TraÆ Light ControlMaro Wiering maro�s.uu.nlUniversity of Utreht, Department of Computer Siene, Postbox 80 089, 3508 TB Utreht, The NetherlandsAbstratThis paper desribes using multi-agent rein-forement learning (RL) algorithms for learn-ing traÆ light ontrollers to minimize theoverall waiting time of ars in a ity. The RLsystems learn value funtions estimating ex-peted waiting times for ars given di�erentsettings of traÆ lights. Seleted settings oftraÆ lights result from ombining the pre-dited waiting times of all ars involved. Weinvestigate RL systems using di�erent kindsof global ommuniated information betweentraÆ light agents. We also show how thevalue funtions an be used by the drivingpoliies of ars to selet optimal routes to des-tination addresses. The experimental resultsshow that the RL algorithms an outperformnon-adaptable traÆ light ontrollers, andthat optimizing driving poliies is very useful.1. IntrodutionIn traÆ ontrol, we are interested in enhaning so-ial welfare for road-users suh as minimizing travelingtime or maximizing safety. An important traÆ on-trol problem is optimizing multiple ooperating traf-� light ontrollers so that the total waiting time ofars before traÆ lights is minimized. Sine optimizingtraÆ light ontrollers by hand is a omplex and te-dious task, we study how reinforement learning (RL)algorithms an be used for this goal.Learning in multi-agent systems. The traÆ lightontrol problem onsists of multiple traÆ nodes (in-tersetions) ontaining a set of traÆ lights onnetedto eah other by an infrastruture. When we modeltraÆ lights and ars as agents, we want to optimallydeal with the behavior of eah agent and with their in-terations. For optimizing the behavior of eah agentin the multi-agent system (MAS) we an employ rein-forement learning (RL) algorithms suh as Q-learning(Watkins, 1989). This is not ompletely new: Tan(1993) used multi-agent Q-learning (MAQ-L) for a

predator-prey problem. Littman and Boyan (1993)used MAQ-L for network routing and showed thatmulti-agent RL provides useful tools for suh omplexproblems. Matari (1994) used RL to train a group ofrobots to ollet puks. Shaerf, Shoman, and Tennen-holtz (1995) used a multi-agent RL system for learningload balaning. Crites and Barto (1996) used MAQ-Lfor training elevator dispathers in a simulated envi-ronment and obtained better ontrollers than a set of�xed ontrollers used in pratie.Model-based RL for MAS. Most former ap-proahes based on RL to optimize MASs used model-free (diret) RL suh as Q-learning (Watkins, 1989)and TD(�)-methods (Sutton, 1988) to optimize sin-gle agent behaviors. Previous omparison studies haveshown advantages in using model-based RL (MBRL)(see Atkeson & Santamaria, 1997; Moore & Atke-son, 1993; Wiering, 1999). In model-based (indi-ret) RL, a transition model is estimated and dynamiprogramming-like methods are used to ompute thevalue funtion mapping agent states to expeted longterm reward. This an speed up learning time dramat-ially. We will use MBRL to learn to estimate waitingtimes of ars given partiular input states.Co-learning. We also study how we an use the sameRL systems and learned value funtions to optimizethe paths whih ars take to arrive at their destinationaddress. Sine the value funtions are then exploitedby two types of agents (ars and traÆ lights) andare adapted based on deisions of all agents, agentsooperatively learn the shared value funtions. We willuse the term o-learning for this joint learning strategy.Co-learning an be used if all agents share the goal ofusing poliies whih minimize the same value funtion.Outline of this paper. Setion 2 desribes the traf-� light simulator. Setion 3 desribes several MBRLmethods employing di�erent kinds of ommuniationto optimize the traÆ light ontrollers and also de-sribes how they an be used for o-learning drivingpoliies. Setion 4 desribes the experimental set-upand shows experimental results. Setion 5 disussesthe �ndings and Setion 6 onludes.



Figure 1. The traÆ ontrol problem. The goal is to learntraÆ light poliies whih minimize the overall time arsneed to go to their destination address. The omplete net-work ontaining all 6 intersetions is alled the ity. En-trees to and exits from the ity are given by the open side-roads. At eah intersetion, there are 8 traÆ lights opera-tional. Before eah traÆ light there is a spei� road-lanedisretized into a number of possible plaes for ars.2. TraÆ SimulatorA traÆ light ontrol problem is given by a networkwhere edges represent roads and nodes represent inter-setions where traÆ lights are operational. There arears oming from outside the system and these followa poliy to drive over the roads (while waiting for redtraÆ lights) until they have arrived at their destina-tion address (see Figure 1).TraÆ light model. At eah traÆ node (interse-tion), there are 8 traÆ lights operational: 4 for go-ing straight ahead or to the right, and 4 for going tothe left. We prevent aidents by not allowing traÆlight states whih make ollisions between ars possi-ble. Possible settings for traÆ lights are: two traf-� lights from opposing diretions allow ars to gostraight ahead or to turn right (2 possibilities), twotraÆ lights at the same diretion of the intersetionallow the ars from there to go straight ahead, turnright or turn left (4 possibilities). This makes a totalof 6 possible deisions (ations) for eah traÆ node.1Behavior of ars. Before eah di�erent traÆ light,there is a spei� road-lane disretized into a num-ber of plaes. At eah time-step, new ars are gen-erated with a partiular destination address and en-ter the network (ity) at the last plae of one of theside-entrane road-lanes. We assume for now that ars1We have not allowed the possibility that ars fromroad-lanes of opposing diretions turn left at the same time.

follow a random poliy to arrive at the destination ad-dress along one of the shortest paths, although as wewill see later, ars ould also be adaptive and learn spe-i� driving poliies to minimize their traveling time.After new ars have been added, traÆ light deisionsare made and eah ar moves to the subsequent plaeif this is possible | if it is unoupied or the ar's pre-deessor is moved as well. Cars standing in front of ared traÆ light are not moved.All road-lanes have a limited apaity for storing ars(we used a maximum of 20 ars). Therefore, it mayhappen that ars standing before a green traÆ lightannot ontinue, sine the next road-lane is over-rowded (and its �rst ar annot drive). Our simulatoris a disrete event simulator | we do not take aeler-ation/deeleration times into aount nor do we modeldi�erent ar veloities. We are mostly interested in theo-operational behavior of traÆ nodes and ars.How to solve this problem? TraÆ light ontrolproblems are often solved by optimizing the times eahlight is on green and red. These ontrollers are oftenmade more advaned by using sensors to infer that atsome point in time no traÆ has arrived at a traÆlight so that the light an be set to red. Althoughoptimizing waiting times may work well, it remainsa hard problem and deisions do not take the exatenvironmental state into aount, possibly leading tosub-optimal ontrollers. That is why RL systems maybe advantageous. These systems an learn to set atraÆ light given a partiular environmental input.3. Reinforement Learning for TraÆLight ControlIn RL (Kaelbling, Littman & Moore, 1996) we try tooptimize the behavior of an agent by letting it inter-at with the environment and learn from its obtainedfeedbak (reward). An agent is situated in an environ-ment, reeives (virtual) sensory inputs and uses theseto selet an ation by its poliy. This poliy is opti-mized by learning from the results of applying di�erentation sequenes given some input. A value funtionis used to estimate long term reward intake given thatthe agent observes a partiular input (state) and se-lets ations aording to its poliy. Well-known al-gorithms for learning value funtions are Q-learning(Watkins, 1989) and TD(�)-learning (Sutton, 1988).These algorithms update the value funtion diretlyon the sequene of state/ation pairs observed dur-ing the interation of the agent with the environment.Model-based RL (Moore & Atkeson, 1993) �rst learnsa transition model whih estimates the probabilities ofmaking state-transitions given partiular ations and



ompute average rewards assoiated to these transi-tions. Then it uses dynami programming-like meth-ods (Bellman, 1961; Barto, Bradtke & Singh, 1995;Moore & Atkeson, 1993) to ompute the value fun-tion. MBRL an signi�antly speed up learning (Atke-son & Santamaria, 1997; Moore & Atkeson, 1993;Wiering, 1999), although it requires a disrete repre-sentation of the input spae and more storage spae.Estimating umulative waiting time. Eah y-le, ars an wait 1 time-step before a traÆ light, orthey an drive to the next plae. Partiular ars arestanding in the queue (a row of ars standing beforea traÆ light without a gap between them), and theirmovement is dependent on their predeessors and traf-� light setting. If ars are not standing in the queue,they always move one plae further. If the light isgreen, the �rst ar in the queue immediately rossesthe intersetion and starts on the last plae of the road-lane for the next traÆ light. After one or more time-steps, it ends up at some plae in a new queue at thenext traÆ light or it esapes the ity. The goal is tominimize the umulative waiting time of all ars be-fore all traÆ lights met before exiting the ity. Todo this, eah ar learns to estimate its waiting timewhen the light is green or red and all ar preditionsare ombined to make the deision of a traÆ node.Global desription of the system. Eah ar is ata spei� traÆ-light (tl 2 [1::48℄), a position in thequeue (plae 2 [1::20℄), and has a partiular destina-tion address (des 2 [1::10℄). Sine there are 960 pos-sible plaes in the network whih may be oupied bya ar, there are at least 2960 possible traÆ situations.Sine eah ar has a spei� destination address, thereare even more system states. A system state should bemapped to ations of all 6 traÆ nodes, making a to-tal of 66 possible global ations in our network. Thus,learning a entral ontroller mapping system states toations is infeasible. To deal with so many states andations, we independently ontrol traÆ nodes | eahontroller reeives as input the ars (traÆ light, plae,and destination)2 standing for one of its 8 traÆ lightsand selets one of its 6 ations.Making a traÆ node deision. Suppose all arswould exatly know their waiting time until they arriveat the destination address given that their traÆ lightis urrently set to red or green. Then, eah ar has again for having its light set to green. This gain equalsthe di�erene between its waiting time when the light2We assume that in the near future it is possible forars to ommuniate with intelligent traÆ light ontrollerswhih enables them to send plae and destination informa-tion in a real world appliation.

is red and when it is green. If there are a number ofars standing before di�erent traÆ lights at a traÆnode, we an hoose the deision whih maximizes thesummed gains of all ars whih pro�t from the dei-sion. This deision would then be (loally) optimal.Car-based value funtions. For this goal, we willuse ar-based value funtions stored in lookup tables.The ar-based value funtions estimate the total (dis-ounted) expeted waiting time before all traÆ lightsfor eah ar until it arrives at the destination ad-dress given its urrent traÆ light, plae, and thedeision of the light (red or green). We will writeQ([tl; plae; des℄; ation) to denote this value. We willwrite V ([tl; plae; des℄) to denote the average waitingtime (without knowing the traÆ light deision) for aar at (tl; plae) until it has reahed its destination ad-dress. Note that we use the destination address of thear, whih may help to estimate its waiting time moreaurately. The Q- and V-funtions are distributivelystored in the traÆ light ontrollers whih ommuni-ate with ars and other traÆ lights. To learn the Q-and V-funtions, traÆ nodes may request V-values ofother traÆ nodes.Given the urrent traÆ situation, we make a hoiefor eah traÆ node node as follows. The gain-variableWnode(A) omputes the advantage (gain) of the de-ision of the traÆ node, A, whih sets two spei�traÆ lights to green:Table 1. Seleting a traÆ node deision by summing indi-vidual gains.(1) For all A, one of the 6 deisions:(1.a) Wnode(A) = 0(1.b) For all traÆ lights tl set to green by A(1.b.1) For all ars in the queue at the traÆ light tl,with their destination and plae(1.b.1.a) Wnode(A) = Wnode(A)+Q([tl; plae; des℄; red)�Q([tl; plae; des℄; green)(2) Selet the deision A of the traÆ node with maximalWnode(A)If a ar is not waiting in the queue (i.e. the ar anstill drive onwards until it meets the queue), we do notlet it vote for the total waiting time, sine the urrentdeision of the traÆ light does not a�et the urrenttransition of the ar.Although the Q-values are real numbers, we have usedintegers for representing the variablesWnode(A), whihallows for exploring the results of deisions whih seemalmost as good as the urrently best deision. Parti-ular systems, however, su�ered from this integer rep-resentation so that we had to use real numbers fortheir gain variable (we will later denote the use of realnumbers by a system as systemr).



Communiating global information. UsingMBRL we have di�erent design hoies for using ur-rent information about the state of other traÆ lightsfor omputing waiting times. This kind of global in-formation ould be ommuniated between traÆ lightagents. If we would know how many ars are stand-ing at eah next possible traÆ light, we an improvethe probabilisti estimates of the plae where the �rstar will enter the next queue. Thus, we ould preditwaiting times more aurately by instantiating global(ommuniated) information. We will disuss threesystems; the �rst, TC-1 (TraÆ Controller 1), doesnot use suh ommuniation and only uses loal infor-mation for omputing waiting times of ars,TC-2 onlyuses global information for omputing waiting timesfor the �rst ar and loal information for the otherars, and TC-3 uses global information for omputingwaiting times for all ars.The transition and reward funtions. For om-puting the Q- and V -funtions we use state tran-sition probabilities and a reward funtion. Thestate transition funtion is given by a lookuptable onsisting of the following probabilities:P ([tl; plae; des℄; L; [new tl; new plae℄) where L de-notes whether the light for tl is red or green. Notethat the destination address des stays the same andthat most ar-states only have two possible transitions.Therefore the transition funtion does not ontain ahuge number of entries. If a ar rosses a traÆ node,we ompute its state transition probability to the newtraÆ light, and new plae as that plae where it is (ata ertain moment) for the �rst time standing in thenew queue (1 � new plae � 20). Finally, we om-pute probabilities P (Lj[tl; plae; destination℄) whihgive the probability that the light is red or green for aar waiting at (tl; plae) with a partiular destination.These probabilities are needed to ompute the aver-age waiting time V ([tl; plae; destination℄). Finally,we use a reward funtion as follows: if a ar stays atthe same plae, then R([tl; plae℄; [tl; plae℄) = 1. Oth-erwise R = 0 (the ar an advane).TC-1: Computing the V- and Q-funtions. Forour �rst system, TC-1, we ompute the Q-funtion as:Q([tl; p; d℄; L) = X(tl0;p0)P ([tl; p; d℄; L; [tl0; p0℄)(R([tl; p℄; [tl0; p0℄) + V ([tl0; p0; d℄)) (1)Where  is the disount fator (0 <  < 1) whih en-sures that Q-values are bounded. Thus, the expeteddisounted waiting time of a ar given L equals theurrent waiting probability (whih is 1 for a red light)plus the average waiting time from the next possible

ar-states.3 We ompute the V-funtion using the Q-funtion and the probabilities that the light is greenor red for a ar as follows:V (℄tl; p; d℄) =XL P (Lj[tl; p; d℄)Q([tl; p; d℄; L)After eah simulation step we update the transitionprobabilities and ompute the V-values and Q-valuesby Real Time Dynami Programming (Barto, Bradtke& Singh, 1995) using a single value-funtion iteration.TC-2. The �rst ommuniating system uses thenumber of ars standing at the next possible traf-� lights (where the �rst ar an go to) to om-pute the state-transition probabilities of the �rst aronly. We estimate the transition probability of thear to a next traÆ light tl0 given that at tl0 ur-rently Ktl0 , shortly written as K, ars are standingin the queue. This information should be ommuni-ated between traÆ lights. To ompute the valuefuntions, we will make use of transition probabilitiesP ([tl; plae; des℄;K; green; [tl0; p℄). We only use thisequation if the light is green:Q([tl; p; d℄; green) = X(tl0;p0)P ([tl; p; d℄;K; green; [tl0; p0℄)(R([tl; p℄; [tl0; p0℄) + V ([tl0; p0; d℄))Note that here the value of p is always 1 | for theother ars we use Equation (1) to ompute the Q-values. To ompute V , we again take the average of theQ-values aording to the probabilities that the lightis green or red. Note that we do not use K as argu-ment in the Q- and V-funtions | K is not part of thear-state, but is ommuniated and then instantiatedin the transition funtion to ompute the value fun-tions. This saves us from an additional dimension inthe Q-funtion. The TC-2 system may work �ne, buthas partiular shortomings: (1) we only look ahead asingle traÆ light in the future | situations at traÆnodes some steps further are not used. (2) Preditingwaiting times of other ars waiting in the queue doesnot immediately take advantage of this ommunia-tion (although there is delayed, indiret, ommunia-tion due to subsequent value-iteration steps).TC-3. TC-3 uses global knowledge for omputingwaiting times for all ars. It uses state transition prob-abilities: P ([tl; plae; des℄; L;K; [new tl; new plae℄)for all ars whih determine the state transition prob-abilities to the next traÆ lights even while the aris not yet in a position to ross the intersetion. The3This equation very muh resembles Bellman's equa-tion: Q(S;A) =P0S P (S;A;S0)(R(S;S0) + V (S0)).



V-funtion is omputed by summing the expeted dis-ounted waiting time (EDWT) at the urrent traÆlight and the EDWT from the next possible lights:V ([tl; p; d℄) =W ([tl; p; d℄) +XL P (Lj[tl; p; d℄)X(tl0;p0)P ([tl; p; d℄;K; L; [tl0; p0℄)V ([tl0; p0; d℄)Where W ([tl; plae; des℄) is the EDWT at the urrenttraÆ light, and K is the number of ars waiting atthe next possible traÆ light tl0. The W-funtion anbe omputed as:W ([tl; p; d℄) =XL P (Lj[tl; p; d℄)Q0([tl; p; d℄; L)where Q0 (the intra-node Q-funtion) denotes theEDWT at the urrent light for ars given the deisionof the traÆ light:Q0([tl; p; d℄; L) =Xp0 P ([tl; p; d℄; L; [tl; p0℄)(R([tl; p℄; [tl; p0℄) + W ([tl; p0; d℄))The Q-values an �nally be omputed as follows:Q([tl; p; d℄; L) = Q0([tl; p; d℄; L) +X(tl0;p0)P ([tl; p; d℄;K; L; [tl0; p0℄)V ([tl0; p0; d℄)We ompute P ([tl; plae; des℄;K; L; [tl0; p℄) by trakinga ar standing on a spei� plae. Thus, we reordtuples < tl; plae; des;K;L; tl0 > and �nally assoiatethem with p, the plae where the ar arrives in thenext queue. If there are multiple states of a ar on(tl; plae) with the same L and Ktl0 , we only ount thetransition step to the next (tl0; p) a single time (thisis similar to the �rst visit sampling method (Singh &Sutton, 1996)).Adapting the system parameters. For adaptingthe systems, we update the state transition probabil-ities after eah time-step by traking ar-movements.Remember that the reward funtion is �xed (standingstill osts 1, otherwise the reward/ost is 0). To om-pute transition probabilities, we just ount the numberof transitions from a ar-state to all next ar-statesand divide these by the total number of transitionsfrom that ar-state.4Co-learning driving poliies. A nie feature of ourar-based value funtions is that they an be immedi-ately used to selet a path of traÆ lights to the des-tination address. Note that our ity (Figure 1) is like4For partiular systems, we have to take ommuniatedstate information into aount as well.

Manhattan and from one starting plae to a destina-tion address there an be multiple shortest paths. Thenon-adaptable systems generate at eah traÆ lightwhat the options are to go from one traÆ light to thenext one in order to go to the destination address andselet one of these randomly. Co-learning an be usedto selet among these shortest paths that path withminimal expeted waiting time. For TC-1, we om-pare the values V ([tl0; 1; des℄) to determine the bestnext traÆ light tl0 for a ar rossing an intersetion.For TC-2 and TC-3, we an ompute the Q-values forgoing to the next traÆ light tl0 using global informa-tion. We ompute the values Q(tl0) for going to a nexttraÆ light (given the urrent light tl) as follows:Q(tl0) =Xp P ([tl; 1; d℄;K; green; [tl0; p℄)V ([tl0; p; d℄)and hoose the traÆ light tl0 with the lowest Q(tl0).4. ExperimentsWe exeute experiments with 10 systems: a randomontroller for eah traÆ node, a �xed ontroller whihiterates over all traÆ node deisions, a ontrollerwhih lets the largest queues go �rst, a ontroller whihtries to let most ars pass the intersetion, and ourthree RL systems: TC-1, TC-2, and TC-3, with orwithout o-learning. For our experiments we use theity depited in Figure 1.Set-up of traÆ simulations. The traÆ patternis a fully randomized pattern where random startingtraÆ lights at the border of the ity (20 possibili-ties) are seleted for eah newly inserted ar and arandom destination addresses is used for the ar (10possibilities).5 At eah yle (time-step), 1 to 8 arsare inserted in the ity, all with di�erent starting traÆlights, sine ars annot oupy the same initial plaeat the same traÆ light. Therefore it is also possiblethat the traÆ network beomes saturated, where arsare refused sine we annot add more ars when all 20possible starting positions are oupied.Systems and parameters. The Random system se-lets the deision at eah traÆ node randomly, theFixed system starts with deision 1 for all traÆ nodesfor one time-step, then selets deision 2 at the nexttime-step, until it has seleted all six deisions andstarts again with deision 1. The Longest Q systemounts the number of ars whih would not have towait for a red light for eah deision and selets thetraÆ node deision leading to the maximum. The5Due to partiular impossible paths, generated ars an-not use all 200 ombinations.



Table 2. Final waiting time results for di�erent systemswhen adding 1-3 ars per time-step. Results are averagesover 10 simulations. r = used a real number for the gainvariable.System 1 ar 2 ars 3 arsRandom 10.9 � 0.4 19.7 � 1.2 174 � 11Fixed 5.6 � 0.05 9.5 � 0.4 69 � 6Longest Q 0.47 � 0.02 1.50 � 0.04 4.4 � 0.2Most Cars 0.47 � 0.02 1.60 � 0.07 4.6 � 0.4TC-1r 0.47 � 0.02 1.50 � 0.03 3.9 � 0.3TC-1r o 0.45 � 0.03 1.44 � 0.07 3.9 � 0.4TC-2r 0.47 � 0.02 1.52 � 0.06 4.2 � 0.2TC-2r o 0.45 � 0.02 1.36 � 0.06 3.9 � 0.3TC-3 0.46 � 0.02 1.48 � 0.07 4.0 � 0.3TC-3 o 0.44 � 0.02 1.36 � 0.05 3.6 � 0.3Table 3. Final waiting time results and the nr. of refusedars (1K =1000) for the systems when adding 4 ars pertime-step. * = 20% randomness is used in the ation se-letion.System waiting time refused arsRandom 171 � 13 26K � 1KFixed 70 � 7 226K � 11KLongest Q* 3683 � 1297 941K � 43KMost Cars 706 � 1830 6K � 9KTC-1 190 � 108 15K � 1KTC-1 o 70 � 22 3K � 2KTC-2 128 � 45 10K � 2KTC-2 o 58 � 22 3K � 2KTC-3* 106 � 12 49K � 24KTC-3 o* 89 � 20 14K � 17KMost ars system examines how many ars an passan intersetion given some traÆ node deision, andselets the deision whih is expeted to let most ars(0-2) ross an intersetion. TC-1, TC-2, and TC-3,with or without o-learning use  = 0:99, one value-funtion iteration per time-step and no exploration,exept for systems whih get stuk in dead networkswhere no ars an drive anymore (whih sometimeshappens with the TC-3, Longest Q, and Most arssystems), for whih we add 20% random ations to thedeision poliy. We let eah system run until 50,000ars have exited the ity and reord simulation resultsafter eah 2000 ars have left the ity. Results areaverages over 10 simulations.Experimental results. Table 2 shows the �nal (after50,000 steps) average waiting time results for the last2000 ars exiting the ity when adding 1 to 3 ars pertime-step. When adding a single ar at eah yle,TC-3 with o-learning works best, losely followed bythe other o-learning RL systems. The random sys-tem performs worst with a waiting time whih is morethan 23 times longer than the best algorithms. When

adding 2 ars the results are quite similar. TC-3 andTC-2 with o-learning works best followed by TC-1with o-learning. When adding 3 ars, TC-3 with o-learning works best followed by the other RL systems.Longest Q performs 22% worse and Most ars performs28% worse than TC-3 with o-learning. The randomand �xed systems again ome last and even result insaturating behavior | see Figure 2(A). Note that al-though the di�erenes are not so large, TC-3 with o-learning always signi�antly (t-test, phane < 0:01)outperforms all �xed systems.Adding four ars. Table 3 shows the results whenadding 4 ars. Here the network starts to saturate forall algorithms. Therefore not only the average waitingtime is important, but also the number of refused ars.For Longest Q and TC-3, we had to add 20% noise inthe ation seletion, sine otherwise they got stuk intraÆ situations where no ars ould move anymoreand no ars were able to enter the ity. Suh \dead"network states result from deterministi poliies whihset lights to green for ars whih annot ross the in-tersetion, sine the next road-lane is full and the next(or the one after the next) traÆ light is set to red.TC-2 with o-learning works best, followed by TC-1with o-learning. They have the lowest waiting timesand refuse the lowest number of ars. Note that thenumber of refused ars would make aligning traÆ net-works more rowded. Apparently, optimizing drivingpoliies in busy traÆ situations is very useful here.TC-3 refuses many ars during the initial learningphase, but �nally obtains the best performane of thenon o-learning systems. The Most ars algorithm re-sults in utuating performane (waiting times). Itdoes not refuse so many ars, though, whih is di�er-ent from the Longest Q system whih refuses by farthe most ars.Saturation behavior for adding more ars. Fig-ure 2(A) shows the total number of refused ars duringa run when we inrease traÆ loads and Figure 2(B)shows the average �nal waiting times. When adding5-8 ars, TC-2 with o-learning refuses the least num-ber of ars. It is followed by TC-1 with o-learning.The Longest Q system performs worst. The �xed sys-tem also refuses many ars and this explains why itsaverage waiting time is shortest for highly rowdedtraÆ. The random system works quite well for veryrowded roads; it seems that for suh ases randomdeisions work reasonably well. The Most ars algo-rithm performs quite well, but su�ers from utuatingperformane levels. All systems an use o-learningof driving poliies to minimize the number of refusedars. The reason that TC-2 with o-learning works
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Figure 2. A omparison between the di�erent adaptableand �xed systems on more or less rowded traÆ patterns.(A): The average number of refused ars during an entirerun. (B): The average waiting time of the last 2000 arsexiting the ity. Results are averages over 10 simulations.best, may be that it ontinuously adapts its poliy,thereby making it non-stationary. Therefore it an re-at when partiular deisions do not make sense, likesetting the light to green while the �rst ar annotgo to an overrowded next road-lane. TC-3 is notable to ontinuously hange its poliy, and thereforeit sometimes ends up in dead networks (when usedwithout randomness). The reason is that only intra-Q values are adapted when ars remain waiting, andthis is sometimes not suÆient to hange the outomeof the voting proess, sine inter-Q values may have alarge impat on the deision. Furthermore, ommuni-ating K is less useful if K is almost always 20 and the�rst ar annot drive. The Longest Q system su�ersa lot from deadlok situations (no ar an drive givensome deisions of the traÆ lights), but it is strangethat even with 20% randomness it annot overomeits problems (with more randomness it performs bet-ter, but even with 90% randomness, it performs worsethan the random system).

5. DisussionFor low traÆ loads, onstruting good (near-optimal)�xed ontrollers is not diÆult, sine all traÆ nodesan operate loally. Therefore the gain in using RL forlearning traÆ light ontrollers is quite small, althoughlearning driving poliies is still useful. When we in-rease traÆ load, the amount of interation betweentraÆ nodes inreases, and the loally well performing�xed systems do not work well anymore. Furthermore,the dynamis of rowded traÆ patterns are omplexso that it is hard to design better ontrollers. Here,using RL systems for traÆ light ontrol is learly ben-e�ial. Co-learning driving poliies is also very useful,sine it helps to diret traÆ ow in the ity.Co-learning. Learning driving poliies at the sametime as learning traÆ light ontrollers show interest-ing o-learning phenomena: traÆ nodes whih arequite busy and thus have a hard task minimizing over-all waiting time are relieved by the intelligent drivingpoliies irumventing suh intersetions. Thereby thears are reatively spreading in the ity and help tominimize the shared value funtions.Communiation. The use of ommuniated infor-mation an help the RL systems to optimize traÆlight ontrollers. Sine traÆ nodes are highly inter-dependent when regulating highly rowded traÆ, weould also design di�erent ommuniation shemes inwhih traÆ node deisions are ommuniated. Weare urrently studying methods for eÆiently evaluat-ing global deisions in this way.Related work. Thorpe and Anderson (1996) useddiret RL to learn traÆ ontrollers on a simulatedtraÆ ontrol problem onsisting of a network of 4� 4 traÆ light ontrollers. They modelled averagespeed, queueing and aeleration/ deeleration of ars.The ontroller was trained on a single intersetion af-ter whih it was opied to the other intersetions. Re-sults showed that using their best state representation(whih indiates whih segments of the roads were o-upied by ars) RL learned to outperform algorithmswhih used �xed waiting times or allowed the largestqueue to go �rst. A big di�erene between their andour approah is that their traÆ node poliy selets de-isions based on a ombined representation of the loaltraÆ situation. To deal with the explosive number ofstates, they abstrat away from a lot of information.Instead, we use ar-based value funtions and a votingsheme for seleting ations. This has the advantagethat (loal) optimal ontrollers may be obtained if thevalue funtions are aurate, while we still do not suf-fer from huge state spaes. Furthermore, the ar-basedvalue funtions an be used by the driving poliies.



Moriarty and Langley (1998) also used RL for dis-tributed traÆ ontrol. Their approah enabled arsto learn lane seletion strategies from experiene witha traÆ simulator. Experimental studies showed thatlearned strategies let drivers more losely math theirdesired speeds than hand-rafted ontrollers and re-due the number of lane hanges. Their approahalso fouses on distributed ar-based ontrollers, whihmakes it easy to take spei� desires/goals of driversinto aount suh as desired speed or destination.6. ConlusionWe have presented a set of multi-agent model-basedRL systems for traÆ light ontrol whih an also beused for optimizing driving poliies for ars. Experi-mental results show that the RL systems an outper-form a number of non-adaptable systems. One of thesystems, TC-3, uses global ommuniation betweentraÆ lights and is able to surpass the performaneof the other algorithms when the traÆ is not veryrowded. If the networks start to saturate when we in-rease traÆ load, the RL systems learly outperform�xed ontrollers and also pro�t a lot from o-learningdriving poliies.In future work, we would like to test our systems onmore realisti traÆ simulators in whih we also wantto add publi transport whih should get priorities forrossing roads, sine they arry more passengers. Inanother diretion, we want to examine whether othermulti-agent problems an pro�t from simple ommuni-ation between agents. For this, we want to use MBRLalgorithms sine they are quikly able to deal with dif-ferent kinds of instantiated information. The problemswe want to fous on are network routing, (proess)sheduling, robot soer, and forest �re ontrol.AknowledgementsThanks to Prof. F.C.A. Groen, Ben Kr�ose, Stephanten Hage and the anonymous reviewers for many help-ful omments.ReferenesAtkeson, C. G., & Santamaria, J. C. (1997). A ompar-ison of diret and model-based reinforement learn-ing. In Proeedings of the International Confereneon Robotis and Automation.Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995).Learning to at using real-time dynami program-ming. Arti�ial Intelligene, 72, 81{138.Bellman, R. (1961). Adaptive ontrol proesses. Prine-ton University Press.
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