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Abstract

We use simulated soccer to study multiagent learning. Each team’s players
(agents) share action set and policy but may behave differently due to position-
dependent inputs. All agents making up a team are rewarded or punished collec-
tively in case of goals. We conduct simulations with varying team sizes, and compare
two learning algorithms: TD-Q learning with linear neural networks (TD-Q) and
Probabilistic Incremental Program Evolution (PIPE). TD-Q is based on evaluation
functions (EFs) mapping input/action pairs to expected reward, while PIPE searches
policy space directly. PIPE uses adaptive “probabilistic prototype trees” to synthe-
size programs that calculate action probabilities from current inputs. Our results
show that TD-Q encounters several difficulties in learning appropriate shared EF's.
PIPE, however, does not depend on EFs and can find good policies faster and more
reliably. This suggests that in multiagent learning scenarios direct search through
policy space can offer advantages over EF-based approaches.

Keywords: Multiagent Reinforcement Learning, Soccer, TD-Q Learning, Probabilistic
Incremental Program Evolution

1 Introduction

Policy-sharing. Multiagent learning tasks often require several agents to learn to co-
operate. In general there may be quite different types of agents specialized to solving
particular subtasks. Some cooperation tasks, however, can also be solved by teams of
essentially identical agents whose behaviors differ only due to different, situation-specific
inputs.



Our case study will be limited to such teams of agents of identical type. Each agent’s
modifiable policy is given by a variable data structure: for each action a in a given set of
possible actions the current policy determines the conditional probability that the agent
will execute a, given its current input. FEach team’s members share both action set and
adaptive policy. If some multiagent cooperation task indeed can be solved by homogeneous
agents then policy-sharing is quite natural as it allows for greatly reducing the number of
adaptive free parameters. This tends to reduce the number of required training examples
(learning time) and increase generalization performance (Nowlan and Hinton, 1992).

Challenges of Multiagent Learning. One challenge is the “partial observability
problem” (POP): in general no learner’s input will tell the learner everything about its
environment (which includes other changing learners). This means that each learner’s en-
vironment may change in an inherently unpredictable way. Also, in reinforcement learning
(RL) scenarios delayed reward/punishment is typically distributed evenly among all mem-
bers of a successful /failing team of agents. This provokes the “agent credit assignment
problem” (ACAP): the problem of identifying those agents that were indeed responsible
for the outcome (Weiss, 1996; Versino and Gambardella, 1997).

Evaluation functions versus search through policy space. There are two rather
obvious classes of candidate algorithms for multiagent RL. The first includes traditional
single-agent RL algorithms based on adaptive evaluation functions (EFs) (Watkins, 1989;
Bertsekas, 1996). Usually online variants of dynamic programming and function approx-
imators are combined to model EFs mapping input-action pairs to expected discounted
future reward. The EFs are then exploited to generate rewarding action sequences.

Methods from the second class search do not require EFs. Their policy space consists
of complete algorithms defining agent behaviors, and they search policy space directly.
Members of this class are Levin search (Levin, 1973; Levin, 1984; Solomonoff, 1986; Li
and Vitanyi, 1993; Schmidhuber, 1995; Wiering and Schmidhuber, 1996), Genetic Pro-
gramming (GP) (Cramer, 1985; Dickmanns et al., 1987; Koza, 1992) and Probabilistic
Incremental Program Evolution (PIPE) (Salustowicz and Schmidhuber, 1997).

Comparison. In our case study we compare two learning algorithms, each representa-
tive of its class: TD-Q learning with linear neural nets (TD-Q) (Lin, 1993) and Probabilistic
Incremental Program Evolution (PIPE) (Satustowicz and Schmidhuber, 1997). We choose
PIPE and TD-(Q because both have already been successfully applied to interesting single-
agent tasks (TD-Q also because it is very popular). TD-Q selects actions according to
linear neural networks trained with the delta rule (Widrow and Hoff, 1960) to map player
inputs to evaluations of alternative actions. PIPE is based on probability vector cod-
ing of program instructions (Schmidhuber, 1997), Population-Based Incremental Learning
(Baluja and Caruana, 1995) and tree coding of programs used in variants of Genetic Pro-
gramming (GP) (Cramer, 1985; Koza, 1992). PIPE synthesizes programs that calculate
action probabilities from inputs. Experiences with programs are stored in “probabilistic
prototype trees” that guide program synthesis.

Soccer. To come up with a challenging scenario for our multiagent learning case study
we decided on a non-trivial soccer simulation. Soccer recently received much attention by
various multiagent researchers (Sahota, 1993; Asada et al., 1994; Littman, 1994; Stone and
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Veloso, 1995; Matsubara et al., 1996). Most early research focused on physical coordination
of soccer playing robots (Sahota, 1993; Asada et al., 1994). There also have been attempts
to learn low-level cooperation tasks such as pass play (Stone and Veloso, 1995; Matsubara
et al., 1996). Recently Stone and Veloso (1996) mentioned that even team strategies might
be learnable by TD(A) or genetic methods.

Published results on learning entire soccer strategies, however, have been limited to
extremely reduced scenarios such as Littman’s (1994) tiny 5 x 4 grid world with two single
opponent players. Our comparatively complex case study will involve simulations with
varying sets of continuous-valued inputs and actions, simple physical laws to model ball
bounces and friction, and up to 11 players (agents) on each team.

In our simulations we will vary the degree of environmental observability by providing
more or less informative inputs to the players. Less informative inputs tend to reduce the
number of adaptive parameters but increase POP’s significance.

Results Overview. Our results indicate: as more and more agents are added to
the teams, it gets harder and harder for TD-Q to learn appropriate shared EFs, due to
ACAP, POP, and problems introduced by unexpected, novel game constellations (outliers).
PIPE, however, does not depend on EFs. It learns faster than TD-Q and does not seem
to be affected much by ACAP, POP, or outliers. This suggests that currently PIPE-like,
EF-independent techniques seem more promising in case of complex multiagent learning
scenarios, unless methods for overcoming TD-Q’s problems are developed.

Outline. Section 2 describes the soccer simulation. Section 3 describes PIPE. Section
4 describes TD-Q. Section 5 reports experimental results. Section 6 discusses our findings.

2 Soccer Simulations

Our discrete-time simulations involve two teams. There are either 1, 3 or 11 players per
team. Players can move or shoot the ball. Each player’s abilities are limited (1) by the
built-in power of its pre-wired action primitives and (2) by how informative its inputs are.
We conduct two types of simulations. “Simple” simulations involve less informative inputs
and less sophisticated actions than “complex” simulations.

Field. We use a two dimensional continuous Cartesian coordinate system. The field’s
southwest and northeast corners are at positions (0,0) and (4,2) respectively. As in indoor
soccer the field is surrounded by impassable walls except for the two goals centered in the
east and west walls (see Figure 1-left). Only the ball or a player with ball can enter the
goals. Goal width (y-extension) is 0.4, goal depth (z-extension beyond the field bounds)
is 0.01. The east goal’s “middle” is denoted mgy, = (%4, y,) With 24 = 4.01 and y, = 1.0
(see Figure 1-right). The west goal’s middle is at mg, = (4, y,) With x4, = —0.01.

Ball/Scoring. The ball is a circle with variable center coordinates ¢, = (xp, yp),
variable direction 0}, and fixed radius 7, = 0.01. Its speed at time ¢ is denoted vy(t). After
having been shot the ball’s initial speed is v (max. 0.12 units per time step). Each
following time step the ball slows down due to friction: v,(t + 1) = v,(¢) — 0.005 until
vp(t) = 0 or it is picked up by a player (see below). The ball bounces off walls obeying
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Figure 1: Left: Field. Right: Depth and “middle” mge of east goal (enlarged).

the law of equal reflection angles as depicted in Figure 2. Bouncing causes an additional
slow-down: wvy(t+1) = v(¢) —0.005—0.01. A goal is scored whenever 0.8 < y, < 1.2A(z} <

R D

Figure 3: Player: center ¢, = (x,,v,), ra-
Figure 2: Ball “reflected” by wall. dius v, and orientation 0, = (‘Z;’ .

0V x> 40)

Players. We vary team size. The number of players per team is denoted Z. Z can
be 1, 3 or 11. There are two teams T,,ss = {pe1,pes,...,pez} and Tyesr = {pw1, pws,

..,pwz}. Each consists of Z homogeneous players pe; and pw; (1 < j < Z) respectively.

At a given time step each player p € Tous U Tyes i represented by a circle with variable
center ¢, = (zp,7,), fixed radius r, = 0.025 and variable orientation 0, = (ZZ’) (see
Figure 3). Players are “solid”. If player p, coming from a certain angle, attempts to
traverse a wall then it “glides” on it, loosing only that component of its speed which
corresponds to the movement direction hampered by the wall. Players p; and p; collide
if dist(cp,,cp;) < 1y, V dist(cy,,c,,) < 1, Where dist(c;,c;) denotes Euclidean distance
between points ¢; and ¢;. Collisions cause both players to bounce back to their positions
at the previous time step. If one of them owned the ball then the ball changes owners (see
below).

Initial Set-up. A game lasts from time ¢ = 0 to time t.,4. There are fixed initial
positions for all players and the ball (see Figure 4).

Initial orientations are p, = (Bl) Vpe € Teosr and 0y, = ((1]) Vpw € Toyst.

Action Framework/Cycles. Until one of the teams scores, at each discrete time step
0 <t < tenq each player executes a “cycle” (the temporal order of the 2- Z cycles is chosen
randomly). A cycle consists of: (1) attempted ball collection, (2) input computation, (3)
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Figure 4: 22 players and ball in initial positions. Players of a 1 or 3 player team are those
furthest in the back (defenders and/or goalkeeper).

action selection, (4) action execution and (5) attempted ball collection. Once all 2 - Z
cycles have been executed we move the ball if v, > 0. If a team scores or t = t,,4 then all
players and ball are reset to their initial positions.

(1) Attempted Ball Collection. A player p successfully collects ball b if its radius
rp < dist(cy, cp). We then set ¢, := ¢, v, := 0. Now the ball will move with p and can be
shot by p.

(2) Input Computation. In simple simulations Player p’s input at a given time is a
simple input vector i (p,t). In complex simulations it’s a complez input vector fc(p, t).

Simple vector 7, (p, t) has 14 components: (1) Three boolean inputs (coded with 1=true
and -1=false) that tell whether player p/a team member/an opponent has the ball. (2)
Polar coordinates (distance, angle) of both goals and the ball with respect to pole ¢, and
polar axis g, (player-centered coordinate systems). (3) Polar coordinates of both goals
relative to ball-centered coordinate system with pole ¢, and polar axis o, — if v, = 0, then
d, = 0 and the angle towards both goals is defined as 0. (4) Ball speed. Note that these
inputs do not provide a lot of information about the environment (partial observability).

The 56-dimensional complex vector i.(p,t) is a concatenation of 7,(p,t) and 21 c¢,/d),-
based polar coordinates of all other players ordered by (a) teams and (b) ascending dis-
tances to p.

TD-Q’s and PIPE’s input representation of distance d (angle a) is > (e7209%). This

helps TD-Q since it makes close distances and small angles appear more important to



TD-Q’s neural nets.
(3) Action Selection. See Sections 3 and 4.
(4) Action Execution. Depending on the simulation type, player p may execute

either simple actions from action set ASETs or complex actions from action set ASET¢.
ASETg contains:

e go_forward: move player p 0.025 units in its current direction ¢, if without ball and
0.8 - 0.025 units otherwise.

o turn_to_ball: change direction 6, of player p such that o, := (ZZ:‘;P)
p

e turn_to_goal: change direction 4, of player p such that o0, := (Ige*f’“’p), if p € Tyest and

Yg—Yp
- Igmfxp .
Op i= ( B ), if p € Tppst

e shoot: If p does not own the ball then do nothing. Otherwise, to allow for imperfect,

noisy shots, execute turn(aueise) which sets a, := (Zf;ggzz;iiz;igggzzgjﬁ), where
Qlnoise 18 picked uniformly random from —0.0277 -7 < ayppise < 0.0277 - 7. Then shoot

ball in direction @, := d,. Initial ball speed is v{"* = 0.12. Noise makes long shots

less precise than close passes.

Complex actions in ASETs are parameterized. They allow for pre-wired cooperation but
also increase action space. Parameter « stands for an angle, P/O stands for some teammate
player’s/opponent’s index from {1..Z—1}/{1..Z}. Indices P and O are sorted by distances
to the player currently executing an action, where closer teammate players/opponents
have lower indices. For TD-Q « is either picked from s; = {0,%,%5,—%,—%} or from
sy = {0, %w, %w, —%W, —%w}. PIPE uses continuous angles. Player p may execute the
following complex actions from ASET¢:

e goto_ball(a): If p owns ball do nothing. Otherwise execute turn_to_ball, then turn(«)
(TD-Q: « € s1) and finally go_forward,

e goto_goal(a): First execute turn-to_goal, then turn(a) (TD-Q: a € s;) and finally
go_forward.

o goto_own_goal(a): First execute turn() such that o, := (”“Z:jyip) (if p € Typest) or 0

= (Igejxp) (lfp € Teast); then t’UJTTL(Oz) (TD-QI (OS] 31); ﬁnally go_forward.

Yg—Yp

o goto_player(P,a): First execute turn(f) such that o, := (Zi:;’:), then turn(a) (TD-

Q: « € s9) and finally go_forward. Here (P,p € Teast V Py p € Tyest) N P # p.

o goto_opponent(O,a): First execute turn() such that 0, := (”;g:z;’), then turn(o)

(TD-Q: « € s9) and finally go_forward. Here (p € Tousi AO € Topest)V (P € Tyest NO €
Teast)-



o pass_to_player(P): First execute turn(3) such that o0, := (‘Zi:;’jf’), then shoot. Here
p

P,p € ToustVP, p € Tyess. Initial ball speed is set to vim"# = 0.005+\/2 - 0.005 - dist(cy, cp).

This ensures that the ball will arrive at cp at a slow speed. If v{" > 0.12 then
init

v = 0.12.

e shoot_to_goal: First execute turn_to_goal, then shoot, where initial ball speed is set to
Vit = (0.005 + \/2 +0.005 - dist(c,, mgy), where my = mge if p € Tyest and my = myy,
if p € Togse- If 02 > 0.12 then " := 0.12.

3 Probabilistic Incremental Program Evolution (PIPE)

In some of our simulations we use Probabilistic Incremental Program Evolution (PIPE)
to synthesize programs which, given player p’s input vector f(p, t), select actions from
ASET. In simple simulations we set ASET := ASETs and ;(p, t) := ;s(p, t). In complex
simulations we set ASET := ASET¢ and i(p,t) := i,(p,t). We use PIPE as described in
(Satustowicz and Schmidhuber, 1997), except for “elitist learning” which we omit due to
high environmental stochasticity.

A PIPE alternative for searching program space would be genetic programming (GP)
(Cramer, 1985; Dickmanns et al., 1987; Koza, 1992). We chose PIPE over GP because
it compared favorably with Koza’s GP variant in previous experiments (Satustowicz and
Schmidhuber, 1997).

Action Selection. Action selection depends on 5 (8) variables when simple (complex)
actions are used: g € IR, A; € IR, Vi € ASET. Action i € ASET is selected with
probability P4, according to the Boltzmann-Gibbs distribution at temperature %:

eAig

PA.I

1

Vi e ASET (1)

= A
dvjcaspr €I

All A; and ¢ are calculated by a program.

3.1 Basic Data Structures and Procedures

Programs. In simple simulations a main program PROGRAM consists of a program
PROGY which computes the “greediness” parameter ¢ and 4 “action programs” PROG?
(i € ASETs). In complex simulations we need PROGY, 7 action programs PROG' (i €
ASETc), programs PROG™ for each angle parameter, programs PROG!” for each player
parameter and programs PROG' for each opponent parameter (for actions using these
parameters). The result of applying PROG to data z is denoted PROG(x). Given f(p, t),

—

PROG!(i(p, t)) returns A; and g := |[PROGY(i(p,))|. An action i € ASET is then selected

- —

according to (1). In the case of complex actions programs PROG(i(p,t)), PROG'" (i(p, 1))

and PROG™ (i(p,t)) return values for all parameters of action i: o := PROG™(i(p, 1)), P

=1 + (Jround(PrROG (i(p,1))) | mod (Z — 1)), O := 1 + (|round(PrROG(i(p,t))) | mod
Z). Recall that Z is the number of players per team.
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All programs PROG?, PROG™, PROG”, PROG are generated according to probabilistic
prototype trees PPT', PPT'®, PPT'Y, PPT'C respectively. In what follows we explain how a
program PROG € {PROG!, PROG™, PROG", PROG?} is generated from the corresponding
probabilistic prototype tree PPT € { PPT, PPT'®, PPT'", PPT°}.

Program Instructions. A program PROG contains instructions from a function set
F=A{fi,f2 ..., fr} with k functions and a terminal set T = {t, s, ..., ¢} with [ terminals.
We use F' = {+, —, %, sin, cos,exp,rlogt and T = {i(p,t)1, ..., i(p,t)s, R}, where %
denotes protected division (Vy,z € IR,z # 0: y%z = y/z and y%0 = 1), rlog denotes
protected logarithm (Vy € IR,y # 0: rlog(y)=log(abs(y)) and rlog(0) = 0), i(p,t); 1 < i <
v denotes component ¢ of a vector f(p, t) with v components and R represents a generic
random constant € [0;1) (see also “ephemeral random constant” (Koza, 1992)).

Program Representation. Programs are encoded in m-ary trees, with n being the
maximal number of function arguments. Each argument is calculated by a subtree. The
trees are parsed depth first from left to right.

Probabilistic Prototype Tree. A probabilistic prototype tree (PPT) is generally a
complete n-ary tree. At each node Ny, it contains a random constant R, and a variable
probability vector ﬁd,w, where d > 0 denotes the node’s depth (root node has d = 0) and
w defines the node’s horizontal position when tree nodes with equal depth are read from
left to right (0 < w < n?). The probability vectors f’d,w have [ + k components. Each
component Py, (I) denotes the probability of choosing instruction I € FUT at Ng,. We
maintain Y ;e pur Paw(l) = 1.

Program Generation. To generate a program PROG from PPT, an instruction
I € FUT is selected with probability Py, (/) for each accessed node Ny, of PPT. This
instruction is denoted I,. Nodes are accessed in a depth first way, starting at the root
node Ny, and traversing PPT from left to right. Once I;,, € F' is selected, a subtree
is created for each argument of I;,. If I;, = R, then an instance of R, called Vy,(R),
replaces R in ProG. If P,,(R) exceeds a threshold Tk, then Vj,(R) = Ry, Otherwise
Vaw(R) is randomly generated.

Tree Shaping. To reduce memory requirements we incrementally grow and prune
PPTs.

Growing. Initially the PPT contains only the root node. Nodes are created “on
demand” whenever I;,, € F'is selected and the subtree for an argument of I,,, is missing.

Pruning. We prune subtrees of a PPT attached to nodes which contain at least one
probability vector component above a threshold 7T». In case of functions we prune only
subtrees that are not required as function arguments. Pruning also tends to discard old
probability distributions that are irrelevant by now.

3.2 Learning

PIPE attempts to find better and better programs. Program quality is measured by a
scalar, real-valued “fitness value”. PIPE guides its search to promising search space areas
by incrementally building on previous solutions. It generates successive program popula-
tions according to the underlying probabilistic prototype trees (PPTs) and stores in those
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trees the knowledge gained from evaluating the programs. In what follows we show how
the PPTs are adapted to synthesize better and better programs.

PPT Initialization. For all PPT’s, each PPT node Ny, requires an initial random
constant R, and an initial probability P, (/) for each instruction I € FFUT. We pick
R;,, uniformly random from the interval [0;1). To initialize instruction probabilities we
use a constant probability Py for selecting an instruction from 7" and (1 — Py) for selecting
an instruction from F'. ﬁd,w is then initialized as follows:

Py.(I) =Ir VI:T€T and  Py,(I):=52 VI TeF (2)
5 l ) ) k

Generation-Based Learning. PIPE learns in successive generations, each compris-
ing 5 distinct phases: (1) creation of program population, (2) population evaluation, (3)
learning from population, (4) mutation of prototype trees and (5) prototype tree pruning.

(1) Creation of Program Population. A population of programs PROGRAM;
(0 < j < PS; PS is population size) is generated using the prototype trees as described in
Section 3.1. All PPTs are grown “on demand”.

(2) Population Evaluation. Each program PROGRAM; of the current population
is evaluated and assigned a non-negative “fitness value” FIT(PROGRAM;). To evaluate a
program we play one entire soccer game. We define FIT(PROGRAM;) = 100 - number of
goals scored by learner + number of goals scored by opponent. The offset 100 is sufficient
to ensure a positive score difference needed by the learning algorithm (see below). If
FIT(PROGRAM;) < FIT(PROGRAM;), then program PROGRAM; is said to embody a
better solution than program PROGRAM;. Among programs with equal fitness we prefer
shorter ones (Occam’s razor), as measured by number of nodes. We define b to be the
index of the best program of the current generation and preserve the best program found
so far in PROGRAM? (elitist).

(8) Learning from Population. Prototype tree probabilities are modified such that
the probabilities P(PROGE™) of creating each PROG}*" € PROGRAM, increase, where
part = {i,ic,iP,i0}. Our experiments indicate that it is beneficial to increase P(PROGP™™)
regardless of PROGE™"’s length. To compute P(PROG}™") we look at all PPTP** nodes
NI used to generate Proc)™":

P(PrROG}™™) = II Py(Ig.(PROGE™)), (3)

dw:N?*r used to generate PROG]™™

where I, (PROGP") denotes the instruction of program PrROGE™" at node position d, w.

Then we calculate a target probability P24y for each PROGE™™:

£+ FIT(PROGRAM)

prart — P(Prog?®! 1 — P(PrOGI"™)) - .
TARGET ( b )+ ( o)) e+ FIT(PROGRAMy)

(4)

«+ FrT(PROGRAM)
e+FIT(PROGRAM,)
enables fitness dependent learning (fdl). We learn more from programs with higher quality

Here [7 is a constant learning rate and € a user defined constant. The fraction
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(lower fitness) than from programs with lower quality (higher fitness). Constant ¢ deter-
mines the degree of fdl's influence. If V FIT(PROGRAM®): £ << FIT(PROGRAM?), then
PIPE can use small population sizes, as generations containing only low-quality individuals
do not affect the PPT much. Even learning with only one program per generation is then
possible.

Given PP papr, all single node probabilities Py, (I, (PROGE™)) are increased itera-
tively (in parallel):

REPEAT UNTIL P(ProGY™™") > PPt cpr
Py (110(PROGE™)) i= Py (14.0(PROGE™)) + 7 - 11 - (1 — Py(I4.0(PROGE™)))

Here ¢/" is a constant influencing the number of iterations. We use ¢” = 0.1, which
turned out to be a good compromise between precision and speed.

Finally each random constant in PROGE*" is copied to the appropriate node in PPT?%"t:
if I;,,(PROGY") = R then RY' := VIV (R).

(4) Mutation of Prototype Trees. Mutation is PIPE’s major exploration mech-
anism. Mutation of probabilities in all PPTs is guided by the current best solution

PROGRAM,. We want to explore the area “around” PROGRAM,. Probabilities Pé’zft(l )

stored in all nodes Ngzt that were accessed to generate program PROGRAM, are mutated
with a probability Py’ " defined as:

Ppart _ PM (5)
M, — s’
(14 k) -\/|PrOGP™|

where P); is a free parameter setting the overall mutation probability and |[ProGP™"|
denotes the number of nodes in program PROG’b’m. The justification of the square root
in equation (5) is empirical: we found that larger programs improve faster with a higher

mutation rate. Selected probability vector components are mutated as follows:
Py (1) == Py (1) +mr - (1= PA(T)), (6)

where mr is the mutation rate, another free parameter. All mutated vectors ﬁi 'th are then
renormalized.

We see from assignment (6) that small probabilities (close to 0) are subject to stronger
mutations than high probabilities. Otherwise mutations would tend to have little effect on
the next generation.

(5) Prototype Tree Pruning. At the end of each generation we prune all prototype
trees as described in Section 3.1.

4 TD-Q Learning

One of the most widely known and promising EF-based approaches to reinforcement learn-
ing is TD-Q learning. We use Lin’s popular and successful TD(\) Q-variant (Lin, 1993).
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For efficiency reasons our TD-Q version uses linear neural nets (nets with hidden units
require too much simulation time). The goal of the networks is to map the player-specific
input f(p, t) to action evaluations Q(;(p, t),ay),... ,Q(f(p, t),an), where N denotes the num-
ber of possible actions. To save free parameters we use the same networks for all policy-
sharing players. We reward the players equally whenever a goal has been made or the game
is over.

Simple action selection. In simple simulations we use a different net for each of the
four actions {a,...,as}. To select an action for player p we first calculate Q-values of all
actions. The Q-value of action ay, given input f(p, t) is

Q1) ar) = 3" wkilp, 1) + k., (7)
=1

where " is the weight vector for action network k, v denotes the number of inputs, and
wk 41 is the bias strength. Once all Q-values have been calculated, a single action is chosen
according to the Boltzmann-Gibbs rule (see assignment (1)).

Complex action selection. Since complex actions may have 0, 1, or 2 parameters
we use a natural, modular, tree-based architecture that allows for reducing the number of
action evaluations. Instead of using continuous angles we use discrete angles (see Section 2).
The root node contains networks N, ..., N for evaluating “abstract” complex actions
neglecting the parameters, e.g., pass_to_player. Some specific root-network N®’s “son
networks” N%: ... N*Pi@w are then used for selecting the first parameter, where P1(az)
denotes the number of possible discrete values of action a;’s first parameter. Similarly,
second parameters are selected using “grandson networks”. For instance, if an action
contains both player and angle parameters, then there are “son networks” for player-
parameters and “grandson networks” for angle parameters. The complete tree contains
159 linear networks.

After computing the 7 “abstract” complex action Q-values according to equation (7),
one of the 7 is selected according to the Boltzmann-Gibbs rule (see assignment (1)). If
the selected action requires parameters we use equation (7) to compute the Q-values of
all possible first parameters and select one according to the Boltzmann-Gibbs rule (see
assignment (1)). Similarly we select the second parameter if there is any.

TD-Q learning. For both simple and complex simulations we use Lin’s TD(\) Q-
variant (Lin, 1993). Each game consists of separate trials. For each player p there is a
variable time-pointer ¢(p). At trial start we set ¢(p) to current game time ¢°. We increment
t(p) after each cycle. The trial stops once one of the teams scores or the game is over. Since
some player may have scored before it was another player’s turn, at trial end some players’
time-pointers may differ (by at most 1). Denote player p’s final time-pointer by ¢*(p). We
want the Q-value Q(i(p, t), az) of selecting action a;, given input 7(p,t) to approximate

Qi(p,t), ar) ~ E(Y" PO R(1 (p)), (8)

where £ denotes the expectation operator, 0 < v < 1 the discount factor which encour-
ages quick goals (or a lasting defense against opponent goals), and R(¢*(p)) denotes the
reinforcement at trial end (-1 if opponent team scores, 1 if own team scores, 0 otherwise).
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To learn these Q-values we monitor player experiences in player-dependent history lists
with maximum size H,,,. At trial end player p’s history list H(p) is

{ilp, (), @), V' (ilp, ' (P))}, - -, {ip, °(P)), €=y, V' (ilp, £ (P))) } -
Here V'(i(p,t)) := Mazp{Q(i(p,t*(p)),ax)}, t'(p) = t°, if *(p) < Hpae, and t'(p) =
t*(p) — Hpae + 1 otherwise (¢'(p) denotes the start of the history list). To evaluate the
selected complex action parameters we store them in the history list as well. Their eval-
uations are updated just like the QQ-values of the “abstract” complex actions, but their
Q-values are not used for updates of other previously selected actions (or action parame-
ters).

After each trial we calculate examples using the TD-Q method. For each player
history list, we compute desired Q-values Q""(t) for selecting action a;, given ;(p, t)

(t =t'(p),...,t*(p)) as follows:

Q1) = R ().
QU (t) =[N Q" (t+ 1)+ (1= AN)- Maxp{Q(i(p, 1), ax)}]-

A determines future experiences’ degree of influence.

Once all players have created TD-Q training examples, we train the selected nets to
minimize their TD-Q errors. All player history-lists are processed as follows: we train
the networks starting with the first history list entry of player 1, then we take the first
entry of player 2, etc. Once all fist entries have been processed we start processing the
second entries, etc. The nets are trained using the delta-rule (Widrow and Hoff, 1960)
with learning rate Lr™.

5 Experiments

We conduct two different types of simulations - simple and complex. During simple simula-
tions we use simple input vectors gs(t, p) and simple actions from ASETs. During complex
simulations we use complex input vectors ;c(t, p) and complex actions from ASETq. In
simple simulations we analyze TD-Q’s and PIPE’s behavior as we vary team size. In com-
plex simulations we study both algorithms’ performances in case of more sophisticated
action sets and more informative inputs. Informative inputs are meant to decrease POP’s
significance. On the other hand, they increase the number of adaptive parameters.

To obtain statistically significant results we perform 10 independent runs for each com-
bination of simulation type, learning algorithm and team size.

5.1 Experiments with simple actions

Experiment 1. To keep the number of cycles (and training examples) per simulation
constant as team size is varied, we play 3300 (1100, 300) games for 1 (3, 11) players.
Each game takes t.,q = 5000 time steps. Every 100 games (50 in the 11 player case) we
test current performance by playing 20 test games (no learning) against a “biased random
opponent” BRO and summing the score results.
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BRO randomly executes simple actions from ASETs. BRO is not a bad player due
to the initial bias in the action set. For instance, BRO greatly prefers shooting at the
opponent’s goal over shooting at its own. If we let BRO play against a non-acting opponent
NO (all NO can do is block) for twenty 5000 time step games then BRO wins against NO
with on average 71.5 to 0.0 goals for team size 1, 44.5 to 0.1 goals for team size 3, 108.6 to
0.5 goals for team size 11.

PIPE Set-up. Parameters for all PIPE runs are: Pr=0.8, ¢ = 1, PS=10, Ir=0.2,
Py=0.1, mr=0.2, Tr=0.3, Tp=0.999999. During performance evaluations we test the
current, best-of-generation program (except for the first evaluation where we test a random
program).

TD-Q Set-up. Parameters for TD-Q all runs are: =0.99, Lr¥=0.0001, X\=0.9,
H,naz=100. All network weights are randomly initialized in [—0.01,0.01]. During each
run the Boltzmann-Gibbs rule’s greediness parameter g is linearly increased from 0 to 60.

Results. We compare average score ratios achieved during all the test phases. If at

least one goal occurs then the score ratio is learner score (0.5 otherwise).
learner score + opponent score

Figure 5 summarizes results for PIPE and TD-Q. It plots score ratios against number of
player actions. PIPE learns faster than TD-Q. Both algorithms learn slightly better with

PIPE TD-Q
T T T T T T T T T T T T T T T T
i- — 1F -
08 /7 e i 08
° S °
B 06p B 8 06
[ 2 [ B
g o4r 4 g o4f -
| 1player | | 1player —— i
02 I 3 players —----- 02 I 3 pjayers —--—--
0 |11 players ------- i o |11 players ------- |
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2et06 4et06 6et06 8et06 1e+07 1.2e+07 1.4e+07 1.6e+07 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07
#player steps #player steps

Figure 5: Awverage score ratios for PIPE (left) and TD-Q (right) plotted against number of
player actions.

small teams. There are several possible explanations. (1) Learning gets harder as POP and
ACAP get worse with increasing team size. (2) Although the number of training examples
per run remains constant, increasing team size may lead to less information per training
example.

Experiment 2. Now we play 3300 games of length t.,q, = 5000 for all team sizes (1, 3
and 11). Figure 6 summarizes the score ratios. PIPE always quickly learns an appropriate
policy regardless of team size. In the long run TD-Q learns better with single agents than
with multiple agents. The 11 player TD-Q run exhibits an abnormality: the score ratio
steadily increases until performance suddenly breaks down (see explanation below).

For all simulations both algorithms start with average score ratios around 0.5.

For team size 1 TD-(QQ eventually increases the average score ratio to 0.83, PIPE to
0.97. The best ratios ever achieved by both PIPE and TD-Q are 1.0 (not shown). TD-Q’s
average TD-error decreases constantly from 0.072 to 0.046.
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Figure 6: Average score ratios for PIPE (left) and TD-Q (right) plotted against number of
games.

For team size 3 TD-(QQ eventually increases the average score ratio to 0.76, PIPE to
0.96. TD-Q’s (PIPE’s) best ratio of all time is 0.94 (1.0) (not shown). TD-Q’s average
TD-error decreases from 0.078 to 0.065 (but is at a minimum of 0.064 after 2000 games).

For team size 11 TD-(Q eventually increases the average score ratio to 0.76, PIPE to
0.94. TD-Q’s (PIPE’s) best ratio of all time is 0.91 (1.0) (not shown). TD-Q’s average
TD-error decreases from 0.080 to 0.067 (but was slightly higher around 2500 games).

To get more insight into what’s going on we plot goals scored by learner and opponent
against number of games in Figure 7. PIPE’s score differences continually increase. TD-
Q’s first increase until TD-Q scores roughly twice as many goals as in the beginning (when
it was still random). Then, however, performance breaks down.

For team size 1 TD-(Q initially scores 28.1 goals on average, its opponent 31.9. TD-Q’s
maximal average score difference is 52.1 - 10.3 = 41.8 goals after 1700 games. Instead of
learning to increase the number of own goals, within 3300 games TD-Q learns to reduce
the number of opponent goals down to 2.9 (compared to 16.2 own goals). PIPE initially
scores 29.4 goals on average, its opponent 27.5. PIPE’s maximal average score difference
is 319.6 - 10.0 = 309.6 goals after 3300 games.

For team size 3 TD-Q initially scores 43.7 goals on average, its opponent 45. TD-Q’s
maximal average score difference is 101.8 - 31.7 = 70.1 goals after 1700 games. PIPE
initially scores 49.3 goals on average, its opponent 42.1 PIPE’s maximal average score
difference is 372.8 - 13.9 = 358.9 goals after 3300 games.

For team size 11, both TD-Q curves in Figure 7 diverge initially, but at some point
(around 2500 games) performance breaks down again. Initially TD-Q scores 838.9 goals on
average, its opponent 86. TD-Q’s maximal average score difference is 212.1 - 57.8 = 154.3
goals after 2500 games. PIPE initially scores 73.9 goals on average, its opponent 81.3.
PIPE’s maximal average score difference is 512.4 - 31.3 = 481.1 goals after 3100 games.

Figure 7 also shows that scoring becomes easier with increasing team size, even for the
random system (beginning of learning) and BRO. This is partly due to the fact that the
larger the team the higher the probability that at least one player is close to the ball.

TD-Q’s outlier problem. To understand TD-Q’s major performance breakdown in
the 11 player case we saved a network just before breakdown (after 2300 games). We
conducted 5 runs with it, testing it every 50 games. Figure 8 shows the details. Analyzing
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Figure 7: Average number of goals scored during all test phases, for team sizes 1, 3, 11.

the runs with our simulator we discovered the “outlier problem”. There are particular
game constellations where the opponent has the ball and is close to the goal but somehow
fails to score. Instead, the TD-(QQ team manages to grab the ball and score soon afterwards.

How does this affect its EFs? Once the linear nets have learned a good EF, they assign
negative evaluations to all actions in such dangerous situations, since most of the times the
opponent will indeed score. But once there is an outlier, the nets are trained on completely
different values. In single-player teams this may not be a big problem. In 11 player teams,
however, the effect on the nets is 11-fold. We could not get rid of this problem, neither by
(1) bounding error updates nor by (2) lowering learning rates or lambda. Case (2) actually
just causes slower learning, without stifling the effects caused by relatively equal Q-value
assignments to actions.

Increasing the greediness value tends to help a bit since this focuses reinforcements
on the best actions (although high greediness values do not work well either). Another
yet untried option might be to use a pocket algorithm-like method that stores good EFs
and backtracks once performance decreases (e.g., the success-story algorithm (Wiering and
Schmidhuber, 1996; Schmidhuber and Zhao, 1997)).
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Figure 8: Performance breakdown study: Left: Average number of goals for simple actions
with 11 players starting with already trained, good TD-Q networks with different values for
the greediness value g (means of 5 runs). Right: Corresponding score ratios.

5.2 Experiments with complex actions

Now we focus on team size 11. One run with complex actions consists of 250 games, each
lasting for t.,4 = 2000 time steps. We let both algorithms learn against the “biased random
opponent” BRO. Every 10 games we test current performance by playing 5 test games (no
learning) against BRO and summing the score results.

How good is BRO? If we let BRO play against a non-acting opponent NO for five 2000
time step games (all NO can do is block), then BRO wins against NO with on average 14.4
to 0.2. goals (2.84 goals/game; mean of 10 simulations).

PIPE Set-up. Parameters for all PIPE runs are the same as used in the experiments
with simple actions.

TD-Q Set-up. Parameters for TD-Q runs with complex actions are: v=0.99, Lr¥=0.001,
H,,..,=100, X is linearly decreased from 1.0 to 0.2. All network weights are randomly ini-
tialized in [—0.01,0.01]. During each run the Boltzmann-Gibbs rule’s greediness parameter
g is linearly increased from 0 to 30.

Results. See Figure 9. TD-Q starts out with a ratio of 0.3 and increases this to a
maximum of 0.53. PIPE starts out with a ratio of 0.58 and increases this to a maximum of
0.98. PIPE’s initial ratio is higher than 0.5, because we test the best program of the first
generation, not a random one. TD-Q’s (PIPE’s) best ratio of all time is 0.88 (1.0) (not
shown).

0.8

0.6

score-ratio

04 [ " o /”/’"\—f/"”"‘“\/ R N

02 .

PIPE average

0 |- TD-Qaverage ————- -
1

0 50 100 150 200 250

#games

Figure 9: Average score ratios with 11 players and complex actions.

Figure 10 shows the average total number of goals scored by learner and opponent
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during all test phases.
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Figure 10: Average number of goals over 10 independent learning runs for PIPE (left) and
TD-Q (right) using complex actions.

TD-Q initially is worse than its opponent — TD-Q scores 3.3 goals on average, the
opponent 8.2 goals. TD-(Q wins with a maximal average score difference of only 6.0 - 5.4
= 0.6 goals after 240 games. For the PIPE run both curves diverge clearly. Initially PIPE
scores 8.1 goals on average, the opponent 4.7. PIPE wins with a maximal average score
difference of 39.7 - 1.5 = 38.2 goals after 250 games.

Complex actions embody stronger initial bias. They allow for cooperation and better
optimal strategies. PIPE is able to exploit this. TD-Q is not, although we tried hard
to come up with a good TD-Q variant. For instance, to improve TD-Q we tried various
locality-enforcing heuristics, such as letting learning rate depend on the distance to the
ball, or presenting training examples in different order. This did not work well either
though.

In principle, increasing the TD nets’ expressive power by adding hidden units might
help to store more context information. Since, however, the introduction of hidden units
multiplies simulation time by a significant factor, we did not try them.

6 Discussion

In a simulated soccer case study with policy-sharing agents we compared a direct policy
search method (PIPE) and an EF-based one (TD-Q). Both competed with a biased ran-
dom opponent. PIPE easily learned to beat this opponent. TD-Q achieved performance
improvement, too, but its results were less exciting, especially in case of multiple agents
per team.

TD-Q’s problems are due to a combination of several reasons. (1) Partial observability.
Q-learning assumes that the environment is fully observable; otherwise it is not guaranteed
to work. Still, Q-learning variants already have been successfully applied to partially ob-
servable environments, e.g., (Crites and Barto, 1996). The POPs in our soccer simulations,
however, seem too severe for the linear networks. (2) Too many trainable parameters (vari-
ance in the “bias-variance dilemma” (Geman et al., 1992) too high — more training games
are needed). (3) Agent credit assignment problem (ACAP) (Weiss, 1996; Versino and
Gambardella, 1997): how much did some agent contribute to team performance? ACAP
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is particularly difficult in the case of multiagent soccer. For instance, a particular agent
may do something truly useful and score. Then all the other agents will receive reward,
too. Now the TD nets will have to learn an evaluation function (EF) mapping input-action
pairs to expected discounted rewards based on experiences with player actions that have
little or nothing to do with the final reward signal. This problem is actually independent
of whether policies are shared or not. Player-dependent history lists also do not contribute
much to solving ACAP (see next issue). (4) Outliers. Using player-dependent history
lists, each player learns to evaluate actions given inputs by computing updates based on
its own TD-return signal. The players collectively update their shared EF to model out-
liers (novel game situations). Collective updates, however, can lead to significant “shifts in
policy-space” and to “unlearning” of previous knowledge. This may lead to performance
breakdowns, and makes it hard to learn correct EFs.

Our multiagent scenario seems complex enough to prevent standard EF learning tech-
niques from working efficiently. In principle, however, EFs are not necessary to find good or
optimal policies. Sometimes, particularly in the presence of POPs, it makes more sense to
search policy space directly instead of spending too much time on fine-tuning EFs (Wiering
and Schmidhuber, 1996). That’s what PIPE does. Currently PIPE-like, EF-independent
techniques seem more promising for complex multiagent learning scenarios, unless methods
for overcoming TD-Q’s problems are developed.

An interesting aspect of PIPE is: unlike TD-Q it can learn to map inputs to “greediness
values” used in the (Boltzmann-Gibbs) exploration rule. This enables PIPE to pick actions
more or less stochastically, thus controlling its own exploration process.

References

Asada, M., Uchibe, E., Noda, S., Tawaratsumida, S., and Hosoda, K. (1994). A vision-
based reinforcement learning for coordination of soccer playing behaviors. In Proc. of
AAAI-9} Workshop on Al and A-life and Entertainment, pages 16—21.

Baluja, S. and Caruana, R. (1995). Removing the genetics from the standard genetic
algorithm. In Prieditis, A. and Russell, S., editors, Machine Learning: Proceedings
of the Twelfth International Conference, pages 38-46. Morgan Kaufmann Publishers,
San Francisco, CA.

Bertsekas, D. P. (1996). Neuro-Dynamic Programming. Athena Scientific, Belmont, MA.

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential
programs. In Grefenstette, J., editor, Proceedings of an International Conference on
Genetic Algorithms and Their Applications, Hillsdale NJ. Lawrence Erlbaum Asso-
ciates.

Crites, R. and Barto, A. (1996). Improving elevator performance using reinforcement
learning. In Touretzky, D., Mozer, M., and Hasselmo, M., editors, Advances in Neural
Information Processing Systems 8, pages 1017-1023, Cambridge MA. MIT Press.

18



Dickmanns, D., Schmidhuber, J. H., and Winklhofer, A. (1987). Der genetische Algo-
rithmus: Eine Implementierung in Prolog. Fortgeschrittenenpraktikum, Institut fiir
Informatik, Lehrstuhl Prof. Radig, Technische Universitat Miinchen.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias/variance
dilemma. Neural Computation, 4:1-58.

Koza, J. R. (1992). Genetic Programming — On the Programming of Computers by Means
of Natural Selection. MIT Press.

Levin, L. A. (1973). Universal sequential search problems. Problems of Information Trans-
mission, 9(3):265—266.

Levin, L. A. (1984). Randomness conservation inequalities: Information and independence
in mathematical theories. Information and Control, 61:15-37.

Li, M. and Vitanyi, P. M. B. (1993). An Introduction to Kolmogorov Complexity and its
Applications. Springer.

Lin, L. J. (1993). Reinforcement Learning for Robots Using Neural Networks. PhD thesis,
Carnegie Mellon University, Pittsburgh.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learn-
ing. In Prieditis, A. and Russell, S., editors, Machine Learning: Proceedings of the
Eleventh International Conference, pages 157-163. Morgan Kaufmann Publishers, San
Francisco, CA.

Matsubara, H., Noda, I., and Hiraki, K. (1996). Learning of cooperative actions in multi-
agent systems: a case study of pass play in soccer. In AAAI-96 Spring Symposium on
Adaptation, Coevolution and Learning in Multi-agent Systems, pages 63—67.

Nowlan, S. J. and Hinton, G. E. (1992). Simplifying neural networks by soft weight sharing.
Neural Computation, 4:173-193.

Sahota, M. (1993). Real-time intelligent behaviour in dynamic environments: Soccer-
playing robots. Master’s thesis, University of British Columbia.

Satustowicz, R. P. and Schmidhuber, J. (1997). Probabilistic incremental program evo-
lution.  Evolutionary Computation, to appear. See ftp://ftp.idsia.ch/pub/rafal/-
PIPE.ps.gz.

Schmidhuber, J. (1995). Discovering solutions with low Kolmogorov complexity and high
generalization capability. In Prieditis, A. and Russell, S., editors, Machine Learning:
Proceedings of the Twelfth International Conference, pages 488-496. Morgan Kauf-
mann Publishers, San Francisco, CA.

19



Schmidhuber, J. (1997). A general method for incremental self-improvement and multi-
agent learning in unrestricted environments. In Yao, X., editor, Fvolutionary Compu-
tation: Theory and Applications. Scientific Publ. Co., Singapore. In press.

Schmidhuber, J. and Zhao, J. (1997). The success-story algorithm for multi-agent reinforce-
ment learning. In Weiss, G., editor, Distributed Artificial Intelligence meets Machine
Learning. Springer. To appear.

Solomonoff, R. (1986). An application of algorithmic probability to problems in artificial
intelligence. In Kanal, .. N. and Lemmer, J. F., editors, Uncertainty in Artificial
Intelligence, pages 473-491. Elsevier Science Publishers.

Stone, P. and Veloso, M. (1995). Beating a defender in robotic soccer: Memory-based
learning of a continuous function. In Tesauro, G., Touretzky, D. S., and Leen, T. K.,

editors, Advances in Neural Information Processing Systems 7. MIT Press, Cambridge
MA.

Stone, P. and Veloso, M. (1996). A layered approach to learning client behaviors in the
robocup soccer server. Submitted to Applied Artificial Intelligence (AAI) in August
1996.

Versino, C. and Gambardella, L. M. (1997). Learning real team solutions. In Weiss, G.,
editor, DAI Meets Machine Learning, Lecture Notes in Artificial Intelligence. Springer-
Verlag. In press.

Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, King’s College.

Weiss, G. (1996). Adaptation and learning in multi-agent systems: Some remarks and a
bibliography. In Weiss, G. and Sen, S., editors, Adaptation and Learning in Multi-
Agent Systems, volume 1042, pages 1-21. Springer-Verlag, Lecture Notes in Artificial
Intelligence.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. 1960 IRE WESCON
Conwvention Record, 4:96-104. New York: IRE. Reprinted in Anderson and Rosenfeld
[1988].

Wiering, M. A. and Schmidhuber, J. (1996). Solving POMDPs with Levin search and
EIRA. In Saitta, L., editor, Machine Learning: Proceedings of the Thirteenth Inter-

national Conference, pages 534-542. Morgan Kaufmann Publishers, San Francisco,
CA.

20



