
Learning Team Strategies With MultiplePolicy-Sharing Agents: A Soccer Case StudyTechnical Report IDSIA-29-97Rafa l Sa lustowicz, Marco Wiering, J�urgen SchmidhuberIDSIA, Corso Elvezia 36, 6900 Lugano, Switzerlande-mail: frafal, marco, juergeng@idsia.chtel.: +41-91-9919838 fax: +41-91-9919839January 1997AbstractWe use simulated soccer to study multiagent learning. Each team's players(agents) share action set and policy but may behave di�erently due to position-dependent inputs. All agents making up a team are rewarded or punished collec-tively in case of goals. We conduct simulations with varying team sizes, and comparetwo learning algorithms: TD-Q learning with linear neural networks (TD-Q) andProbabilistic Incremental Program Evolution (PIPE). TD-Q is based on evaluationfunctions (EFs) mapping input/action pairs to expected reward, while PIPE searchespolicy space directly. PIPE uses adaptive \probabilistic prototype trees" to synthe-size programs that calculate action probabilities from current inputs. Our resultsshow that TD-Q encounters several di�culties in learning appropriate shared EFs.PIPE, however, does not depend on EFs and can �nd good policies faster and morereliably. This suggests that in multiagent learning scenarios direct search throughpolicy space can o�er advantages over EF-based approaches.Keywords: Multiagent Reinforcement Learning, Soccer, TD-Q Learning, ProbabilisticIncremental Program Evolution1 IntroductionPolicy-sharing. Multiagent learning tasks often require several agents to learn to co-operate. In general there may be quite di�erent types of agents specialized to solvingparticular subtasks. Some cooperation tasks, however, can also be solved by teams ofessentially identical agents whose behaviors di�er only due to di�erent, situation-speci�cinputs. 1

Our case study will be limited to such teams of agents of identical type. Each agent'smodi�able policy is given by a variable data structure: for each action a in a given set ofpossible actions the current policy determines the conditional probability that the agentwill execute a, given its current input. Each team's members share both action set andadaptive policy. If some multiagent cooperation task indeed can be solved by homogeneousagents then policy-sharing is quite natural as it allows for greatly reducing the number ofadaptive free parameters. This tends to reduce the number of required training examples(learning time) and increase generalization performance (Nowlan and Hinton, 1992).Challenges of Multiagent Learning. One challenge is the \partial observabilityproblem" (POP): in general no learner's input will tell the learner everything about itsenvironment (which includes other changing learners). This means that each learner's en-vironment may change in an inherently unpredictable way. Also, in reinforcement learning(RL) scenarios delayed reward/punishment is typically distributed evenly among all mem-bers of a successful/failing team of agents. This provokes the \agent credit assignmentproblem" (ACAP): the problem of identifying those agents that were indeed responsiblefor the outcome (Weiss, 1996; Versino and Gambardella, 1997).Evaluation functions versus search through policy space. There are two ratherobvious classes of candidate algorithms for multiagent RL. The �rst includes traditionalsingle-agent RL algorithms based on adaptive evaluation functions (EFs) (Watkins, 1989;Bertsekas, 1996). Usually online variants of dynamic programming and function approx-imators are combined to model EFs mapping input-action pairs to expected discountedfuture reward. The EFs are then exploited to generate rewarding action sequences.Methods from the second class search do not require EFs. Their policy space consistsof complete algorithms de�ning agent behaviors, and they search policy space directly.Members of this class are Levin search (Levin, 1973; Levin, 1984; Solomono�, 1986; Liand Vit�anyi, 1993; Schmidhuber, 1995; Wiering and Schmidhuber, 1996), Genetic Pro-gramming (GP) (Cramer, 1985; Dickmanns et al., 1987; Koza, 1992) and ProbabilisticIncremental Program Evolution (PIPE) (Sa lustowicz and Schmidhuber, 1997).Comparison. In our case study we compare two learning algorithms, each representa-tive of its class: TD-Q learning with linear neural nets (TD-Q) (Lin, 1993) and ProbabilisticIncremental Program Evolution (PIPE) (Sa lustowicz and Schmidhuber, 1997). We choosePIPE and TD-Q because both have already been successfully applied to interesting single-agent tasks (TD-Q also because it is very popular). TD-Q selects actions according tolinear neural networks trained with the delta rule (Widrow and Ho�, 1960) to map playerinputs to evaluations of alternative actions. PIPE is based on probability vector cod-ing of program instructions (Schmidhuber, 1997), Population-Based Incremental Learning(Baluja and Caruana, 1995) and tree coding of programs used in variants of Genetic Pro-gramming (GP) (Cramer, 1985; Koza, 1992). PIPE synthesizes programs that calculateaction probabilities from inputs. Experiences with programs are stored in \probabilisticprototype trees" that guide program synthesis.Soccer. To come up with a challenging scenario for our multiagent learning case studywe decided on a non-trivial soccer simulation. Soccer recently received much attention byvarious multiagent researchers (Sahota, 1993; Asada et al., 1994; Littman, 1994; Stone and2

Veloso, 1995; Matsubara et al., 1996). Most early research focused on physical coordinationof soccer playing robots (Sahota, 1993; Asada et al., 1994). There also have been attemptsto learn low-level cooperation tasks such as pass play (Stone and Veloso, 1995; Matsubaraet al., 1996). Recently Stone and Veloso (1996) mentioned that even team strategies mightbe learnable by TD(�) or genetic methods.Published results on learning entire soccer strategies, however, have been limited toextremely reduced scenarios such as Littman's (1994) tiny 5� 4 grid world with two singleopponent players. Our comparatively complex case study will involve simulations withvarying sets of continuous-valued inputs and actions, simple physical laws to model ballbounces and friction, and up to 11 players (agents) on each team.In our simulations we will vary the degree of environmental observability by providingmore or less informative inputs to the players. Less informative inputs tend to reduce thenumber of adaptive parameters but increase POP's signi�cance.Results Overview. Our results indicate: as more and more agents are added tothe teams, it gets harder and harder for TD-Q to learn appropriate shared EFs, due toACAP, POP, and problems introduced by unexpected, novel game constellations (outliers).PIPE, however, does not depend on EFs. It learns faster than TD-Q and does not seemto be a�ected much by ACAP, POP, or outliers. This suggests that currently PIPE-like,EF-independent techniques seem more promising in case of complex multiagent learningscenarios, unless methods for overcoming TD-Q's problems are developed.Outline. Section 2 describes the soccer simulation. Section 3 describes PIPE. Section4 describes TD-Q. Section 5 reports experimental results. Section 6 discusses our �ndings.2 Soccer SimulationsOur discrete-time simulations involve two teams. There are either 1, 3 or 11 players perteam. Players can move or shoot the ball. Each player's abilities are limited (1) by thebuilt-in power of its pre-wired action primitives and (2) by how informative its inputs are.We conduct two types of simulations. \Simple" simulations involve less informative inputsand less sophisticated actions than \complex" simulations.Field. We use a two dimensional continuous Cartesian coordinate system. The �eld'ssouthwest and northeast corners are at positions (0,0) and (4,2) respectively. As in indoorsoccer the �eld is surrounded by impassable walls except for the two goals centered in theeast and west walls (see Figure 1-left). Only the ball or a player with ball can enter thegoals. Goal width (y-extension) is 0.4, goal depth (x-extension beyond the �eld bounds)is 0.01. The east goal's \middle" is denoted mge = (xge; yg) with xge = 4:01 and yg = 1:0(see Figure 1-right). The west goal's middle is at mgw = (xgw; yg) with xgw = �0:01.Ball/Scoring. The ball is a circle with variable center coordinates cb = (xb; yb),variable direction ~ob and �xed radius rb = 0:01. Its speed at time t is denoted vb(t). Afterhaving been shot the ball's initial speed is vinitb (max. 0:12 units per time step). Eachfollowing time step the ball slows down due to friction: vb(t + 1) = vb(t) � 0:005 untilvb(t) = 0 or it is picked up by a player (see below). The ball bounces o� walls obeying3

goal depth = 0.01

0.8

1.2

2.0

0.0
0.0 4.0

goal middle = (4.01,1.0)

Figure 1: Left: Field. Right: Depth and \middle" mge of east goal (enlarged).the law of equal re
ection angles as depicted in Figure 2. Bouncing causes an additionalslow-down: vb(t+1) = vb(t)�0:005�0:01. A goal is scored whenever 0:8 < yb < 1:2^(xb <
α α

Figure 2: Ball \re
ected" by wall.
rp

dx
dyp

p

pp

()
(x , y)Figure 3: Player: center cp = (xp; yp), ra-dius rp and orientation ~op = �dxpdyp�.0 _ xb > 4:0).Players. We vary team size. The number of players per team is denoted Z. Z canbe 1, 3 or 11. There are two teams Teast = fpe1; pe2; : : : ; peZg and Twest = fpw1; pw2;: : : ; pwZg. Each consists of Z homogeneous players pej and pwj (1 � j � Z) respectively.At a given time step each player p 2 Teast [Twest is represented by a circle with variablecenter cp = (xp; yp), �xed radius rp = 0:025 and variable orientation ~op = �dxpdyp� (seeFigure 3). Players are \solid". If player p, coming from a certain angle, attempts totraverse a wall then it \glides" on it, loosing only that component of its speed whichcorresponds to the movement direction hampered by the wall. Players pi and pj collideif dist(cpi; cpj) < rpi _ dist(cpi; cpj) < rpj , where dist(ci; cj) denotes Euclidean distancebetween points ci and cj. Collisions cause both players to bounce back to their positionsat the previous time step. If one of them owned the ball then the ball changes owners (seebelow).Initial Set-up. A game lasts from time t = 0 to time tend. There are �xed initialpositions for all players and the ball (see Figure 4).Initial orientations are ~ope = ��10 � 8pe 2 Teast and ~opw = �10� 8pw 2 Teast.Action Framework/Cycles. Until one of the teams scores, at each discrete time step0 � t < tend each player executes a \cycle" (the temporal order of the 2 �Z cycles is chosenrandomly). A cycle consists of: (1) attempted ball collection, (2) input computation, (3)4

Figure 4: 22 players and ball in initial positions. Players of a 1 or 3 player team are thosefurthest in the back (defenders and/or goalkeeper).action selection, (4) action execution and (5) attempted ball collection. Once all 2 � Zcycles have been executed we move the ball if vb > 0. If a team scores or t = tend then allplayers and ball are reset to their initial positions.(1) Attempted Ball Collection. A player p successfully collects ball b if its radiusrp � dist(cp; cb). We then set cb := cp; vb := 0. Now the ball will move with p and can beshot by p.(2) Input Computation. In simple simulations Player p's input at a given time is asimple input vector ~is(p; t). In complex simulations it's a complex input vector ~ic(p; t).Simple vector~is(p; t) has 14 components: (1) Three boolean inputs (coded with 1=trueand -1=false) that tell whether player p/a team member/an opponent has the ball. (2)Polar coordinates (distance, angle) of both goals and the ball with respect to pole cp andpolar axis ~op (player-centered coordinate systems). (3) Polar coordinates of both goalsrelative to ball-centered coordinate system with pole cb and polar axis ~ob | if vb = 0, then~ob = ~0 and the angle towards both goals is de�ned as 0. (4) Ball speed. Note that theseinputs do not provide a lot of information about the environment (partial observability).The 56-dimensional complex vector ~ic(p; t) is a concatenation of ~is(p; t) and 21 cp/~op-based polar coordinates of all other players ordered by (a) teams and (b) ascending dis-tances to p.TD-Q's and PIPE's input representation of distance d (angle �) is 5�d5 (e�20��2). Thishelps TD-Q since it makes close distances and small angles appear more important to5

TD-Q's neural nets.(3) Action Selection. See Sections 3 and 4.(4) Action Execution. Depending on the simulation type, player p may executeeither simple actions from action set ASETS or complex actions from action set ASETC .ASETS contains:� go forward: move player p 0.025 units in its current direction ~op if without ball and0:8 � 0:025 units otherwise.� turn to ball: change direction ~op of player p such that ~op := �xb�xpyb�yp�� turn to goal: change direction ~op of player p such that ~op := �xge�xpyg�yp �, if p 2 Twest and~op := �xgw�xpyg�yp �, if p 2 Teast.� shoot: If p does not own the ball then do nothing. Otherwise, to allow for imperfect,noisy shots, execute turn(�noise) which sets ~op := �cos(�noise)�dxp�sin(�noise)�dypsin(�noise)�dxp+cos(�noise)�dyp�, where�noise is picked uniformly random from �0:0277 �� � �noise � 0:0277 ��. Then shootball in direction ~ob := ~op. Initial ball speed is vinitb = 0:12. Noise makes long shotsless precise than close passes.Complex actions in ASETC are parameterized. They allow for pre-wired cooperation butalso increase action space. Parameter � stands for an angle, P=O stands for some teammateplayer's/opponent's index from f1::Z�1g/f1::Zg. Indices P and O are sorted by distancesto the player currently executing an action, where closer teammate players/opponentshave lower indices. For TD-Q � is either picked from s1 = f0; �4 ; �2 ;��4 ;��2g or froms2 = f0; 25�; 45�;�25�; �45�g. PIPE uses continuous angles. Player p may execute thefollowing complex actions from ASETC :� goto ball(�): If p owns ball do nothing. Otherwise execute turn to ball, then turn(�)(TD-Q: � 2 s1) and �nally go forward,� goto goal(�): First execute turn to goal, then turn(�) (TD-Q: � 2 s1) and �nallygo forward.� goto own goal(�): First execute turn(�) such that ~op := �xgw�xpyg�yp � (if p 2 Twest) or ~op:= �xge�xpyg�yp � (if p 2 Teast); then turn(�) (TD-Q: � 2 s1); �nally go forward.� goto player(P,�): First execute turn(�) such that ~op := �xP�xpyP�yp�, then turn(�) (TD-Q: � 2 s2) and �nally go forward. Here (P; p 2 Teast _ P; p 2 Twest) ^ P 6= p.� goto opponent(O,�): First execute turn(�) such that ~op := �xO�xpyO�yp�, then turn(�)(TD-Q: � 2 s2) and �nally go forward. Here (p 2 Teast^O 2 Twest)_(p 2 Twest^O 2Teast). 6

� pass to player(P): First execute turn(�) such that ~op := �xP�xpyP�yp�, then shoot. HereP; p 2 Teast_P; p 2 Twest. Initial ball speed is set to vinitb = 0:005+q2 � 0:005 � dist(cp; cP).This ensures that the ball will arrive at cP at a slow speed. If vinitb > 0:12 thenvinitb := 0:12.� shoot to goal: First execute turn to goal, then shoot, where initial ball speed is set tovinitb = 0:005 +q2 � 0:005 � dist(cp; mg), where mg = mge if p 2 Twest and mg = mgwif p 2 Teast. If vinitb > 0:12 then vinitb := 0:12.3 Probabilistic Incremental Program Evolution (PIPE)In some of our simulations we use Probabilistic Incremental Program Evolution (PIPE)to synthesize programs which, given player p's input vector ~i(p; t), select actions fromASET. In simple simulations we set ASET := ASETS and ~i(p; t) := ~is(p; t). In complexsimulations we set ASET := ASETC and ~i(p; t) := ~ic(p; t). We use PIPE as described in(Sa lustowicz and Schmidhuber, 1997), except for \elitist learning" which we omit due tohigh environmental stochasticity.A PIPE alternative for searching program space would be genetic programming (GP)(Cramer, 1985; Dickmanns et al., 1987; Koza, 1992). We chose PIPE over GP becauseit compared favorably with Koza's GP variant in previous experiments (Sa lustowicz andSchmidhuber, 1997).Action Selection. Action selection depends on 5 (8) variables when simple (complex)actions are used: g 2 IR, Ai 2 IR, 8i 2 ASET . Action i 2 ASET is selected withprobability PAi according to the Boltzmann-Gibbs distribution at temperature 1g :PAi := eAi�gP8j2ASET eAj �g 8i 2 ASET (1)All Ai and g are calculated by a program.3.1 Basic Data Structures and ProceduresPrograms. In simple simulations a main program Program consists of a programProgg which computes the \greediness" parameter g and 4 \action programs" Progi(i 2 ASETS). In complex simulations we need Progg, 7 action programs Progi (i 2ASETC), programs Progi� for each angle parameter, programs ProgiP for each playerparameter and programs ProgiO for each opponent parameter (for actions using theseparameters). The result of applying Prog to data x is denoted Prog(x). Given ~i(p; t),Progi(~i(p; t)) returns Ai and g := jProgg(~i(p; t))j. An action i 2 ASET is then selectedaccording to (1). In the case of complex actions programs Progi�(~i(p; t)), ProgiP (~i(p; t))and ProgiO(~i(p; t)) return values for all parameters of action i: � := Progi�(~i(p; t)), P:= 1 + (jround(ProgiP (~i(p; t))) j mod (Z � 1)), O := 1 + (jround(ProgiO(~i(p; t))) j modZ). Recall that Z is the number of players per team.7

All programs Progi, Progi�, ProgiP , ProgiO are generated according to probabilisticprototype trees PPTi, PPTi�, PPTiP , PPTiO respectively. In what follows we explain how aprogramProg 2 fProgi, Progi�, ProgiP , ProgiOg is generated from the correspondingprobabilistic prototype tree PPT 2 fPPTi, PPTi�, PPTiP , PPTiOg.Program Instructions. A program Prog contains instructions from a function setF = ff1; f2; : : : ; fkg with k functions and a terminal set T = ft1; t2; : : : ; tlg with l terminals.We use F = f+;�; �;%; sin; cos; exp; rlogg and T = f~i(p; t)1, . . . , ~i(p; t)v; Rg, where %denotes protected division (8y; z 2 IR; z 6= 0: y%z = y=z and y%0 = 1), rlog denotesprotected logarithm (8y 2 IR; y 6= 0: rlog(y)=log(abs(y)) and rlog(0) = 0),~i(p; t)i 1 � i �v denotes component i of a vector ~i(p; t) with v components and R represents a genericrandom constant 2 [0;1) (see also \ephemeral random constant" (Koza, 1992)).Program Representation. Programs are encoded in n-ary trees, with n being themaximal number of function arguments. Each argument is calculated by a subtree. Thetrees are parsed depth �rst from left to right.Probabilistic Prototype Tree. A probabilistic prototype tree (PPT) is generally acomplete n-ary tree. At each node Nd;w it contains a random constant Rd;w and a variableprobability vector ~Pd;w, where d � 0 denotes the node's depth (root node has d = 0) andw de�nes the node's horizontal position when tree nodes with equal depth are read fromleft to right (0 � w < nd). The probability vectors ~Pd;w have l + k components. Eachcomponent Pd;w(I) denotes the probability of choosing instruction I 2 F [T at Nd;w. Wemaintain PI2F[T Pd;w(I) = 1.Program Generation. To generate a program Prog from PPT, an instructionI 2 F [T is selected with probability Pd;w(I) for each accessed node Nd;w of PPT. Thisinstruction is denoted Id;w. Nodes are accessed in a depth �rst way, starting at the rootnode N0;0, and traversing PPT from left to right. Once Id;w 2 F is selected, a subtreeis created for each argument of Id;w. If Id;w = R, then an instance of R, called Vd;w(R),replaces R in Prog. If Pd;w(R) exceeds a threshold TR, then Vd;w(R) = Rd;w. OtherwiseVd;w(R) is randomly generated.Tree Shaping. To reduce memory requirements we incrementally grow and prunePPTs.Growing. Initially the PPT contains only the root node. Nodes are created \ondemand" whenever Id;w 2 F is selected and the subtree for an argument of Id;w is missing.Pruning. We prune subtrees of a PPT attached to nodes which contain at least oneprobability vector component above a threshold TP . In case of functions we prune onlysubtrees that are not required as function arguments. Pruning also tends to discard oldprobability distributions that are irrelevant by now.3.2 LearningPIPE attempts to �nd better and better programs. Program quality is measured by ascalar, real-valued \�tness value". PIPE guides its search to promising search space areasby incrementally building on previous solutions. It generates successive program popula-tions according to the underlying probabilistic prototype trees (PPTs) and stores in those8

trees the knowledge gained from evaluating the programs. In what follows we show howthe PPTs are adapted to synthesize better and better programs.PPT Initialization. For all PPT's, each PPT node Nd;w requires an initial randomconstant Rd;w and an initial probability Pd;w(I) for each instruction I 2 F [T . We pickRd;w uniformly random from the interval [0;1). To initialize instruction probabilities weuse a constant probability PT for selecting an instruction from T and (1�PT) for selectingan instruction from F . ~Pd;w is then initialized as follows:Pd;w(I) := PTl ; 8I : I 2 T and Pd;w(I) := 1�PTk ; 8I : I 2 F (2)Generation-Based Learning. PIPE learns in successive generations, each compris-ing 5 distinct phases: (1) creation of program population, (2) population evaluation, (3)learning from population, (4) mutation of prototype trees and (5) prototype tree pruning.(1) Creation of Program Population. A population of programs Programj(0 < j � PS; PS is population size) is generated using the prototype trees as described inSection 3.1. All PPTs are grown \on demand".(2) Population Evaluation. Each program Programj of the current populationis evaluated and assigned a non-negative \�tness value" FIT (Programj). To evaluate aprogram we play one entire soccer game. We de�ne FIT(Programj) = 100 - number ofgoals scored by learner + number of goals scored by opponent. The o�set 100 is su�cientto ensure a positive score di�erence needed by the learning algorithm (see below). IfFIT (Programj) < FIT (Programi), then program Programj is said to embody abetter solution than program Programi. Among programs with equal �tness we prefershorter ones (Occam's razor), as measured by number of nodes. We de�ne b to be theindex of the best program of the current generation and preserve the best program foundso far in Programel (elitist).(3) Learning from Population. Prototype tree probabilities are modi�ed such thatthe probabilities P (Progpartb) of creating each Progpartb 2 Programb increase, wherepart = fi,i�,iP,iOg. Our experiments indicate that it is bene�cial to increase P (Progpartb)regardless of Progpartb 's length. To compute P (Progpartb) we look at all PPTpart nodesNpartd;w used to generate Progpartb :P (Progpartb) = Yd;w:Npartd;w used to generate Progpartb Pd;w(Id;w(Progpartb)); (3)where Id;w(Progpartb) denotes the instruction of program Progpartb at node position d; w.Then we calculate a target probability P partTARGET for each Progpartb :P partTARGET = P (Progpartb) + (1 � P (Progpartb)) � lr � " + FIT (Programel)" + FIT (Programb) : (4)Here lr is a constant learning rate and " a user de�ned constant. The fraction "+FIT (Programel)"+FIT (Programb)enables �tness dependent learning (fdl). We learn more from programs with higher quality9

(lower �tness) than from programs with lower quality (higher �tness). Constant " deter-mines the degree of fdl's in
uence. If 8 FIT(Programel): " << FIT(Programel), thenPIPE can use small population sizes, as generations containing only low-quality individualsdo not a�ect the PPT much. Even learning with only one program per generation is thenpossible.Given P partTARGET , all single node probabilities Pd;w(Id;w(Progpartb)) are increased itera-tively (in parallel):REPEAT UNTIL P (Progpartb) � P partTARGET :Pd;w(Id;w(Progpartb)) := Pd;w(Id;w(Progpartb)) + clr � lr � (1 � Pd;w(Id;w(Progpartb)))Here clr is a constant in
uencing the number of iterations. We use clr = 0:1, whichturned out to be a good compromise between precision and speed.Finally each random constant in Progpartb is copied to the appropriate node in PPTpart:if Id;w(Progpartb) = R then Rpartd;w := V partd;w (R).(4) Mutation of Prototype Trees. Mutation is PIPE's major exploration mech-anism. Mutation of probabilities in all PPTs is guided by the current best solutionProgramb. We want to explore the area \around" Programb. Probabilities P partd;w (I)stored in all nodes Npartd;w that were accessed to generate program Programb are mutatedwith a probability P partMp , de�ned as:P partMp = PM(l + k) �qjProgpartb j ; (5)where PM is a free parameter setting the overall mutation probability and jProgpartb jdenotes the number of nodes in program Progpartb . The justi�cation of the square rootin equation (5) is empirical: we found that larger programs improve faster with a highermutation rate. Selected probability vector components are mutated as follows:P partd;w (I) := P partd;w (I) + mr � (1 � P partd;w (I)); (6)where mr is the mutation rate, another free parameter. All mutated vectors ~P partd;w are thenrenormalized.We see from assignment (6) that small probabilities (close to 0) are subject to strongermutations than high probabilities. Otherwise mutations would tend to have little e�ect onthe next generation.(5) Prototype Tree Pruning. At the end of each generation we prune all prototypetrees as described in Section 3.1.4 TD-Q LearningOne of the most widely known and promising EF-based approaches to reinforcement learn-ing is TD-Q learning. We use Lin's popular and successful TD(�) Q-variant (Lin, 1993).10

For e�ciency reasons our TD-Q version uses linear neural nets (nets with hidden unitsrequire too much simulation time). The goal of the networks is to map the player-speci�cinput~i(p; t) to action evaluations Q(~i(p; t); a1); : : : ;Q(~i(p; t); aN), where N denotes the num-ber of possible actions. To save free parameters we use the same networks for all policy-sharing players. We reward the players equally whenever a goal has been made or the gameis over.Simple action selection. In simple simulations we use a di�erent net for each of thefour actions fa1; : : : ; a4g. To select an action for player p we �rst calculate Q-values of allactions. The Q-value of action ak, given input ~i(p; t) isQ(~i(p; t); ak) = i=vXi=1wki~i(p; t)i + wkv+1; (7)where ~wk is the weight vector for action network k, v denotes the number of inputs, and~wkv+1 is the bias strength. Once all Q-values have been calculated, a single action is chosenaccording to the Boltzmann-Gibbs rule (see assignment (1)).Complex action selection. Since complex actions may have 0, 1, or 2 parameterswe use a natural, modular, tree-based architecture that allows for reducing the number ofaction evaluations. Instead of using continuous angles we use discrete angles (see Section 2).The root node contains networks Na1 ; : : : ; Na7 for evaluating \abstract" complex actionsneglecting the parameters, e.g., pass to player. Some speci�c root-network Nak 's \sonnetworks" Nak1 ; : : : ; NakP1(ak) are then used for selecting the �rst parameter, where P1(ak)denotes the number of possible discrete values of action ak's �rst parameter. Similarly,second parameters are selected using \grandson networks". For instance, if an actioncontains both player and angle parameters, then there are \son networks" for player-parameters and \grandson networks" for angle parameters. The complete tree contains159 linear networks.After computing the 7 \abstract" complex action Q-values according to equation (7),one of the 7 is selected according to the Boltzmann-Gibbs rule (see assignment (1)). Ifthe selected action requires parameters we use equation (7) to compute the Q-values ofall possible �rst parameters and select one according to the Boltzmann-Gibbs rule (seeassignment (1)). Similarly we select the second parameter if there is any.TD-Q learning. For both simple and complex simulations we use Lin's TD(�) Q-variant (Lin, 1993). Each game consists of separate trials. For each player p there is avariable time-pointer t(p). At trial start we set t(p) to current game time tc. We incrementt(p) after each cycle. The trial stops once one of the teams scores or the game is over. Sincesome player may have scored before it was another player's turn, at trial end some players'time-pointers may di�er (by at most 1). Denote player p's �nal time-pointer by t�(p). Wewant the Q-value Q(~i(p; t); ak) of selecting action ak given input ~i(p; t) to approximateQ(~i(p; t); ak) � E(
t�(p)�t(p)R(t�(p)); (8)where E denotes the expectation operator, 0 �
 � 1 the discount factor which encour-ages quick goals (or a lasting defense against opponent goals), and R(t�(p)) denotes thereinforcement at trial end (-1 if opponent team scores, 1 if own team scores, 0 otherwise).11

To learn these Q-values we monitor player experiences in player-dependent history listswith maximum size Hmax. At trial end player p's history list H(p) isff~i(p; t1(p)); at1(p); V 0(~i(p; t1(p)))g; : : : ; f~i(p; t�(p)); at�(p); V 0(~i(p; t�(p)))gg.Here V 0(~i(p; t)) := MaxkfQ(~i(p; t�(p)); ak)g, t1(p) := tc, if t�(p) < Hmax, and t1(p) :=t�(p) � Hmax + 1 otherwise (t1(p) denotes the start of the history list). To evaluate theselected complex action parameters we store them in the history list as well. Their eval-uations are updated just like the Q-values of the \abstract" complex actions, but theirQ-values are not used for updates of other previously selected actions (or action parame-ters).After each trial we calculate examples using the TD-Q method. For each playerhistory list, we compute desired Q-values Qnew(t) for selecting action at, given ~i(p; t)(t = t1(p); : : : ; t�(p)) as follows: Qnew(t�(p)) := R(t�(p)):Qnew(t) :=
 � [� �Qnew(t + 1) + (1 � �) �MaxkfQ(~i(p; t); ak)g]:� determines future experiences' degree of in
uence.Once all players have created TD-Q training examples, we train the selected nets tominimize their TD-Q errors. All player history-lists are processed as follows: we trainthe networks starting with the �rst history list entry of player 1, then we take the �rstentry of player 2, etc. Once all �st entries have been processed we start processing thesecond entries, etc. The nets are trained using the delta-rule (Widrow and Ho�, 1960)with learning rate LrN .5 ExperimentsWe conduct two di�erent types of simulations - simple and complex. During simple simula-tions we use simple input vectors~is(t; p) and simple actions from ASETS. During complexsimulations we use complex input vectors ~ic(t; p) and complex actions from ASETC . Insimple simulations we analyze TD-Q's and PIPE's behavior as we vary team size. In com-plex simulations we study both algorithms' performances in case of more sophisticatedaction sets and more informative inputs. Informative inputs are meant to decrease POP'ssigni�cance. On the other hand, they increase the number of adaptive parameters.To obtain statistically signi�cant results we perform 10 independent runs for each com-bination of simulation type, learning algorithm and team size.5.1 Experiments with simple actionsExperiment 1. To keep the number of cycles (and training examples) per simulationconstant as team size is varied, we play 3300 (1100, 300) games for 1 (3, 11) players.Each game takes tend = 5000 time steps. Every 100 games (50 in the 11 player case) wetest current performance by playing 20 test games (no learning) against a \biased randomopponent" BRO and summing the score results.12

BRO randomly executes simple actions from ASETS. BRO is not a bad player dueto the initial bias in the action set. For instance, BRO greatly prefers shooting at theopponent's goal over shooting at its own. If we let BRO play against a non-acting opponentNO (all NO can do is block) for twenty 5000 time step games then BRO wins against NOwith on average 71.5 to 0.0 goals for team size 1, 44.5 to 0.1 goals for team size 3, 108.6 to0.5 goals for team size 11.PIPE Set-up. Parameters for all PIPE runs are: PT=0.8, " = 1, PS=10, lr=0.2,PM=0.1, mr=0.2, TR=0.3, TP=0.999999. During performance evaluations we test thecurrent best-of-generation program (except for the �rst evaluation where we test a randomprogram).TD-Q Set-up. Parameters for TD-Q all runs are:
=0.99, LrN=0.0001, �=0.9,Hmax=100. All network weights are randomly initialized in [�0:01; 0:01]. During eachrun the Boltzmann-Gibbs rule's greediness parameter g is linearly increased from 0 to 60.Results. We compare average score ratios achieved during all the test phases. If atleast one goal occurs then the score ratio is learner scorelearner score + opponent score (0.5 otherwise).Figure 5 summarizes results for PIPE and TD-Q. It plots score ratios against number ofplayer actions. PIPE learns faster than TD-Q. Both algorithms learn slightly better with
0

0.2

0.4

0.6

0.8

1

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07

sc
or

e-
ra

tio

#player steps

PIPE

1 player
3 players

11 players
0

0.2

0.4

0.6

0.8

1

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07

sc
or

e-
ra

tio

#player steps

TD-Q

1 player
3 players

11 playersFigure 5: Average score ratios for PIPE (left) and TD-Q (right) plotted against number ofplayer actions.small teams. There are several possible explanations. (1) Learning gets harder as POP andACAP get worse with increasing team size. (2) Although the number of training examplesper run remains constant, increasing team size may lead to less information per trainingexample.Experiment 2. Now we play 3300 games of length tend = 5000 for all team sizes (1, 3and 11). Figure 6 summarizes the score ratios. PIPE always quickly learns an appropriatepolicy regardless of team size. In the long run TD-Q learns better with single agents thanwith multiple agents. The 11 player TD-Q run exhibits an abnormality: the score ratiosteadily increases until performance suddenly breaks down (see explanation below).For all simulations both algorithms start with average score ratios around 0.5.For team size 1 TD-Q eventually increases the average score ratio to 0.83, PIPE to0.97. The best ratios ever achieved by both PIPE and TD-Q are 1.0 (not shown). TD-Q'saverage TD-error decreases constantly from 0.072 to 0.046.13

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

sc
or

e-
ra

tio

#games

PIPE

1 player
3 players

11 players 0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

sc
or

e-
ra

tio

#games

TD-Q

1 player
3 players

11 playersFigure 6: Average score ratios for PIPE (left) and TD-Q (right) plotted against number ofgames.For team size 3 TD-Q eventually increases the average score ratio to 0.76, PIPE to0.96. TD-Q's (PIPE's) best ratio of all time is 0.94 (1.0) (not shown). TD-Q's averageTD-error decreases from 0.078 to 0.065 (but is at a minimum of 0.064 after 2000 games).For team size 11 TD-Q eventually increases the average score ratio to 0.76, PIPE to0.94. TD-Q's (PIPE's) best ratio of all time is 0.91 (1.0) (not shown). TD-Q's averageTD-error decreases from 0.080 to 0.067 (but was slightly higher around 2500 games).To get more insight into what's going on we plot goals scored by learner and opponentagainst number of games in Figure 7. PIPE's score di�erences continually increase. TD-Q's �rst increase until TD-Q scores roughly twice as many goals as in the beginning (whenit was still random). Then, however, performance breaks down.For team size 1 TD-Q initially scores 28.1 goals on average, its opponent 31.9. TD-Q'smaximal average score di�erence is 52.1 - 10.3 = 41.8 goals after 1700 games. Instead oflearning to increase the number of own goals, within 3300 games TD-Q learns to reducethe number of opponent goals down to 2.9 (compared to 16.2 own goals). PIPE initiallyscores 29.4 goals on average, its opponent 27.5. PIPE's maximal average score di�erenceis 319.6 - 10.0 = 309.6 goals after 3300 games.For team size 3 TD-Q initially scores 43.7 goals on average, its opponent 45. TD-Q'smaximal average score di�erence is 101.8 - 31.7 = 70.1 goals after 1700 games. PIPEinitially scores 49.3 goals on average, its opponent 42.1 PIPE's maximal average scoredi�erence is 372.8 - 13.9 = 358.9 goals after 3300 games.For team size 11, both TD-Q curves in Figure 7 diverge initially, but at some point(around 2500 games) performance breaks down again. Initially TD-Q scores 88.9 goals onaverage, its opponent 86. TD-Q's maximal average score di�erence is 212.1 - 57.8 = 154.3goals after 2500 games. PIPE initially scores 73.9 goals on average, its opponent 81.3.PIPE's maximal average score di�erence is 512.4 - 31.3 = 481.1 goals after 3100 games.Figure 7 also shows that scoring becomes easier with increasing team size, even for therandom system (beginning of learning) and BRO. This is partly due to the fact that thelarger the team the higher the probability that at least one player is close to the ball.TD-Q's outlier problem. To understand TD-Q's major performance breakdown inthe 11 player case we saved a network just before breakdown (after 2300 games). Weconducted 5 runs with it, testing it every 50 games. Figure 8 shows the details. Analyzing14

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

go
al

s

#games

PIPE 1-player

learner
opponent

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

go
al

s

#games

TD-Q 1-player

player
opponent

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000

go
al

s

#games

PIPE 3-players

learner
opponent

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000
go

al
s

#games

TD-Q 3-players

player
opponent

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

go
al

s

#games

PIPE 11-players

learner
opponent

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

go
al

s

#games

TD-Q 11 players

player
opponent

Figure 7: Average number of goals scored during all test phases, for team sizes 1, 3, 11.the runs with our simulator we discovered the \outlier problem". There are particulargame constellations where the opponent has the ball and is close to the goal but somehowfails to score. Instead, the TD-Q team manages to grab the ball and score soon afterwards.How does this a�ect its EFs? Once the linear nets have learned a good EF, they assignnegative evaluations to all actions in such dangerous situations, since most of the times theopponent will indeed score. But once there is an outlier, the nets are trained on completelydi�erent values. In single-player teams this may not be a big problem. In 11 player teams,however, the e�ect on the nets is 11-fold. We could not get rid of this problem, neither by(1) bounding error updates nor by (2) lowering learning rates or lambda. Case (2) actuallyjust causes slower learning, without sti
ing the e�ects caused by relatively equal Q-valueassignments to actions.Increasing the greediness value tends to help a bit since this focuses reinforcementson the best actions (although high greediness values do not work well either). Anotheryet untried option might be to use a pocket algorithm-like method that stores good EFsand backtracks once performance decreases (e.g., the success-story algorithm (Wiering andSchmidhuber, 1996; Schmidhuber and Zhao, 1997)).15

0

100

200

300

400

500

0 50 100 150 200 250 300

go
al

s

#games

TD-Q 11 players

player (g=40)
opponent (g=40)

player (g=90)
opponent (g=90)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

sc
or

e-
ra

tio

#games

TD-Q 11-players

TD-Q (g=40)
TD-Q (g=90)Figure 8: Performance breakdown study: Left: Average number of goals for simple actionswith 11 players starting with already trained, good TD-Q networks with di�erent values forthe greediness value g (means of 5 runs). Right: Corresponding score ratios.5.2 Experiments with complex actionsNow we focus on team size 11. One run with complex actions consists of 250 games, eachlasting for tend = 2000 time steps. We let both algorithms learn against the \biased randomopponent" BRO. Every 10 games we test current performance by playing 5 test games (nolearning) against BRO and summing the score results.How good is BRO? If we let BRO play against a non-acting opponent NO for �ve 2000time step games (all NO can do is block), then BRO wins against NO with on average 14.4to 0.2. goals (2.84 goals/game; mean of 10 simulations).PIPE Set-up. Parameters for all PIPE runs are the same as used in the experimentswith simple actions.TD-Q Set-up. Parameters for TD-Q runs with complex actions are:
=0.99, LrN=0.001,Hmax=100, � is linearly decreased from 1.0 to 0.2. All network weights are randomly ini-tialized in [�0:01; 0:01]. During each run the Boltzmann-Gibbs rule's greediness parameterg is linearly increased from 0 to 30.Results. See Figure 9. TD-Q starts out with a ratio of 0.3 and increases this to amaximum of 0.53. PIPE starts out with a ratio of 0.58 and increases this to a maximum of0.98. PIPE's initial ratio is higher than 0.5, because we test the best program of the �rstgeneration, not a random one. TD-Q's (PIPE's) best ratio of all time is 0.88 (1.0) (notshown).

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

sc
or

e-
ra

tio

#games

PIPE average
TD-Q averageFigure 9: Average score ratios with 11 players and complex actions.Figure 10 shows the average total number of goals scored by learner and opponent16

during all test phases.
0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

go
al

s

#games

PIPE

learner
opponent

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

go
al

s

#games

TD-Q

learner
opponent

Figure 10: Average number of goals over 10 independent learning runs for PIPE (left) andTD-Q (right) using complex actions.TD-Q initially is worse than its opponent | TD-Q scores 3.3 goals on average, theopponent 8.2 goals. TD-Q wins with a maximal average score di�erence of only 6.0 - 5.4= 0.6 goals after 240 games. For the PIPE run both curves diverge clearly. Initially PIPEscores 8.1 goals on average, the opponent 4.7. PIPE wins with a maximal average scoredi�erence of 39.7 - 1.5 = 38.2 goals after 250 games.Complex actions embody stronger initial bias. They allow for cooperation and betteroptimal strategies. PIPE is able to exploit this. TD-Q is not, although we tried hardto come up with a good TD-Q variant. For instance, to improve TD-Q we tried variouslocality-enforcing heuristics, such as letting learning rate depend on the distance to theball, or presenting training examples in di�erent order. This did not work well eitherthough.In principle, increasing the TD nets' expressive power by adding hidden units mighthelp to store more context information. Since, however, the introduction of hidden unitsmultiplies simulation time by a signi�cant factor, we did not try them.6 DiscussionIn a simulated soccer case study with policy-sharing agents we compared a direct policysearch method (PIPE) and an EF-based one (TD-Q). Both competed with a biased ran-dom opponent. PIPE easily learned to beat this opponent. TD-Q achieved performanceimprovement, too, but its results were less exciting, especially in case of multiple agentsper team.TD-Q's problems are due to a combination of several reasons. (1) Partial observability.Q-learning assumes that the environment is fully observable; otherwise it is not guaranteedto work. Still, Q-learning variants already have been successfully applied to partially ob-servable environments, e.g., (Crites and Barto, 1996). The POPs in our soccer simulations,however, seem too severe for the linear networks. (2) Too many trainable parameters (vari-ance in the \bias-variance dilemma" (Geman et al., 1992) too high | more training gamesare needed). (3) Agent credit assignment problem (ACAP) (Weiss, 1996; Versino andGambardella, 1997): how much did some agent contribute to team performance? ACAP17

is particularly di�cult in the case of multiagent soccer. For instance, a particular agentmay do something truly useful and score. Then all the other agents will receive reward,too. Now the TD nets will have to learn an evaluation function (EF) mapping input-actionpairs to expected discounted rewards based on experiences with player actions that havelittle or nothing to do with the �nal reward signal. This problem is actually independentof whether policies are shared or not. Player-dependent history lists also do not contributemuch to solving ACAP (see next issue). (4) Outliers. Using player-dependent historylists, each player learns to evaluate actions given inputs by computing updates based onits own TD-return signal. The players collectively update their shared EF to model out-liers (novel game situations). Collective updates, however, can lead to signi�cant \shifts inpolicy-space" and to \unlearning" of previous knowledge. This may lead to performancebreakdowns, and makes it hard to learn correct EFs.Our multiagent scenario seems complex enough to prevent standard EF learning tech-niques from working e�ciently. In principle, however, EFs are not necessary to �nd good oroptimal policies. Sometimes, particularly in the presence of POPs, it makes more sense tosearch policy space directly instead of spending too much time on �ne-tuning EFs (Wieringand Schmidhuber, 1996). That's what PIPE does. Currently PIPE-like, EF-independenttechniques seem more promising for complex multiagent learning scenarios, unless methodsfor overcoming TD-Q's problems are developed.An interesting aspect of PIPE is: unlike TD-Q it can learn to map inputs to \greedinessvalues" used in the (Boltzmann-Gibbs) exploration rule. This enables PIPE to pick actionsmore or less stochastically, thus controlling its own exploration process.ReferencesAsada, M., Uchibe, E., Noda, S., Tawaratsumida, S., and Hosoda, K. (1994). A vision-based reinforcement learning for coordination of soccer playing behaviors. In Proc. ofAAAI-94 Workshop on AI and A-life and Entertainment, pages 16{21.Baluja, S. and Caruana, R. (1995). Removing the genetics from the standard geneticalgorithm. In Prieditis, A. and Russell, S., editors, Machine Learning: Proceedingsof the Twelfth International Conference, pages 38{46. Morgan Kaufmann Publishers,San Francisco, CA.Bertsekas, D. P. (1996). Neuro-Dynamic Programming. Athena Scienti�c, Belmont, MA.Cramer, N. L. (1985). A representation for the adaptive generation of simple sequentialprograms. In Grefenstette, J., editor, Proceedings of an International Conference onGenetic Algorithms and Their Applications, Hillsdale NJ. Lawrence Erlbaum Asso-ciates.Crites, R. and Barto, A. (1996). Improving elevator performance using reinforcementlearning. In Touretzky, D., Mozer, M., and Hasselmo, M., editors, Advances in NeuralInformation Processing Systems 8, pages 1017{1023, Cambridge MA. MIT Press.18

Dickmanns, D., Schmidhuber, J. H., and Winklhofer, A. (1987). Der genetische Algo-rithmus: Eine Implementierung in Prolog. Fortgeschrittenenpraktikum, Institut f�urInformatik, Lehrstuhl Prof. Radig, Technische Universit�at M�unchen.Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias/variancedilemma. Neural Computation, 4:1{58.Koza, J. R. (1992). Genetic Programming { On the Programming of Computers by Meansof Natural Selection. MIT Press.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Trans-mission, 9(3):265{266.Levin, L. A. (1984). Randomness conservation inequalities: Information and independencein mathematical theories. Information and Control, 61:15{37.Li, M. and Vit�anyi, P. M. B. (1993). An Introduction to Kolmogorov Complexity and itsApplications. Springer.Lin, L. J. (1993). Reinforcement Learning for Robots Using Neural Networks. PhD thesis,Carnegie Mellon University, Pittsburgh.Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learn-ing. In Prieditis, A. and Russell, S., editors, Machine Learning: Proceedings of theEleventh International Conference, pages 157{163. Morgan Kaufmann Publishers, SanFrancisco, CA.Matsubara, H., Noda, I., and Hiraki, K. (1996). Learning of cooperative actions in multi-agent systems: a case study of pass play in soccer. In AAAI-96 Spring Symposium onAdaptation, Coevolution and Learning in Multi-agent Systems, pages 63{67.Nowlan, S. J. and Hinton, G. E. (1992). Simplifying neural networks by soft weight sharing.Neural Computation, 4:173{193.Sahota, M. (1993). Real-time intelligent behaviour in dynamic environments: Soccer-playing robots. Master's thesis, University of British Columbia.Sa lustowicz, R. P. and Schmidhuber, J. (1997). Probabilistic incremental program evo-lution. Evolutionary Computation, to appear. See ftp://ftp.idsia.ch/pub/rafal/-PIPE.ps.gz.Schmidhuber, J. (1995). Discovering solutions with low Kolmogorov complexity and highgeneralization capability. In Prieditis, A. and Russell, S., editors, Machine Learning:Proceedings of the Twelfth International Conference, pages 488{496. Morgan Kauf-mann Publishers, San Francisco, CA. 19

Schmidhuber, J. (1997). A general method for incremental self-improvement and multi-agent learning in unrestricted environments. In Yao, X., editor, Evolutionary Compu-tation: Theory and Applications. Scienti�c Publ. Co., Singapore. In press.Schmidhuber, J. and Zhao, J. (1997). The success-story algorithm for multi-agent reinforce-ment learning. In Weiss, G., editor, Distributed Arti�cial Intelligence meets MachineLearning. Springer. To appear.Solomono�, R. (1986). An application of algorithmic probability to problems in arti�cialintelligence. In Kanal, L. N. and Lemmer, J. F., editors, Uncertainty in Arti�cialIntelligence, pages 473{491. Elsevier Science Publishers.Stone, P. and Veloso, M. (1995). Beating a defender in robotic soccer: Memory-basedlearning of a continuous function. In Tesauro, G., Touretzky, D. S., and Leen, T. K.,editors, Advances in Neural Information Processing Systems 7. MIT Press, CambridgeMA.Stone, P. and Veloso, M. (1996). A layered approach to learning client behaviors in therobocup soccer server. Submitted to Applied Arti�cial Intelligence (AAI) in August1996.Versino, C. and Gambardella, L. M. (1997). Learning real team solutions. In Weiss, G.,editor, DAI Meets Machine Learning, Lecture Notes in Arti�cial Intelligence. Springer-Verlag. In press.Watkins, C. (1989). Learning from Delayed Rewards. PhD thesis, King's College.Weiss, G. (1996). Adaptation and learning in multi-agent systems: Some remarks and abibliography. In Weiss, G. and Sen, S., editors, Adaptation and Learning in Multi-Agent Systems, volume 1042, pages 1{21. Springer-Verlag, Lecture Notes in Arti�cialIntelligence.Widrow, B. and Ho�, M. E. (1960). Adaptive switching circuits. 1960 IRE WESCONConvention Record, 4:96{104. New York: IRE. Reprinted in Anderson and Rosenfeld[1988].Wiering, M. A. and Schmidhuber, J. (1996). Solving POMDPs with Levin search andEIRA. In Saitta, L., editor, Machine Learning: Proceedings of the Thirteenth Inter-national Conference, pages 534{542. Morgan Kaufmann Publishers, San Francisco,CA.
20

