
Connectionist Reinforcement Learning for Intelligent Unit Micro

Management in StarCraft

Amirhosein Shantia, Eric Begue, and Marco Wiering (IEEE Member)

Abstract—Real Time Strategy Games are one of the most
popular game schemes in PC markets and offer a dynamic
environment that involves several interacting agents. The core
strategies that need to be developed in these games are unit
micro management, building order, resource management, and
the game main tactic. Unfortunately, current games only use
scripted and fixed behaviors for their artificial intelligence (AI),
and the player can easily learn the counter measures to defeat
the AI. In this paper, we describe a system based on neural
networks that controls a set of units of the same type in
the popular game StarCraft. Using the neural networks, the
units will either choose a unit to attack or evade from the
battlefield. The system uses reinforcement learning combined
with neural networks using online Sarsa and neural-fitted Sarsa,
both with a short term memory reward function. We also
present an incremental learning method for training the units
for larger scenarios involving more units using trained neural
networks on smaller scenarios. Additionally, we developed a
novel sensing system to feed the environment data to the neural
networks using separate vision grids. The simulation results
show superior performance against the human-made AI scripts
in StarCraft.

I. INTRODUCTION

THE coordinate behavior of discrete entities in nature and

social environments has proved to be an advantageous

strategy for solving task allocation problems in very different

environments, from business administration to ant behavior

[1]. The problem is that only a proper balance of individual

decision making (actions) and group coordination (proper

time and space allocation of individual actions) may lead

a group to perform any task efficiently.

Coordination among groups of individual entities using

Artificial Intelligence (AI) techniques has been tested on dif-

ferent environments. For example, complex city catastrophe

scenarios with limited time and resources in the Robocup

Rescue tournaments are a common test place for machine

learning techniques applied to achieve cooperative behavior

[2], [3]. In addition, video games have gained popularity

as common scenarios for implementing (AI) techniques and

testing cooperative behavior [4]. The player, an agent, in

video games performs actions in a real time stochastic envi-

ronment, where units controlled by the human or game player

have to fulfill a series of finite and clear goals to win the

game. Such properties make games an ideal environment to

compare machine learning techniques to obtain high quality

individual decision making and group coordination behaviors

[4].

Amirhosein Shantia and Eric Begue are with the Department of Com-
puter Science, The University of Groningen, The Netherlands (email:
{a.shantia}@rug.nl, {ericbeg}@gmail.com)
Marco Wiering is with the Department of Artificial Intelligence, The

University of Groningen, The Netherlands (email: {M.A.Wiering}@rug.nl)

The relationships between coordination, environmental

conditions, and team performance are highly non-linear and

extremely complex, leading to an ideal place to establish neu-

ral network (NN) based systems. Following this, Polvichai et

al., developed an NN system (that was trained with genetic

algorithms) which coordinates a team of robots [1]. Their

evolved robot teams can work in different domains that users

specify and which require tradeoffs. Their evolved neural

networks are able to find the best configurations for dealing

with those tradeoffs. In games, an NN, that was trained with

Neuro-Evolution Through Augmenting Topologies (NEAT),

was successfully implemented to improve the cooperation

between the ghosts to catch a Pac-man human player in the

game [5]. Van der Heijden et al. [6], implemented opponent

modeling algorithms (via machine learning techniques) to

select dynamic formations in real-time strategic games. How-

ever, the game industry is reluctant to use machine learning

techniques, because knowledge acquisition and entity coor-

dination with current methods is currently expensive in time

and resources. This led to the use of non-adaptive techniques

in the AI of the games [4], [5]. A major disadvantage of the

non-adaptive approach is that once a weakness is discovered,

nothing stops the human player from exploiting the weakness

[4]. Even more, the current opponents in AI games are self

interested, and because of it, it is difficult to make them

cooperate and achieve a coordinated group behavior [5].

Other approaches to coordinate behavior are to use Rein-

forcement Learning (RL) techniques [7], [8]. RL techniques

are implemented in learning tasks when the solution: (i)

requires a sequence of actions embedded into deterministic,

or more often stochastic environments; and (ii) the system

must find an optimal solution based on the feedback from

its own actions (generally called the reward). For instance,

[9] designed a group of independent decision-making agents

with independent rewards based on a Markov game (a

framework for RL). Those independent agents have to decide

whether they are going to operate on their own, or collaborate

and form teams for their mutual benefit when the scenario

demands it. The results show a performance improvement

in environments with restriction on communication and ob-

servation range. In addition, Aghazadeh et al., developed

a method called Parametric Reinforcement Learning [10],

where the central part of the algorithm is to optimize, in

real time, the action selection policies of different kinds

of individual entities with a global and unique reward

function. Their system won the city-catastrophe scenario in

the Robocup Rescue tournament in 2007 which proves the

efficiency [10].

A proper method for video-game AI must fit and learn



the opponent behavior in a relatively realistic and complex

game environment, with typically little time for optimization

and often with partial observability of the environment [4],

[5]. It has been shown that neural networks are very efficient

methods for approximating a complicated mapping between

inputs and outputs or actions [11], [9], [10], and therefore

we will also use them in our research.

The Neural-Fitted Q-iteration (NFQ-i) algorithm was de-

veloped to exploit the advantages of a neural network to

approximate the value function, and RL techniques to assign

credit to individual actions [12]. In some applications NFQ-i

has been shown to be much more experience efficient than

online RL techniques. These properties predict that NFQ-i

can be a powerful tool for learning video-game AI.

In this paper, we developed the Neural-Fitted Sarsa (NFS)

algorithm and compare it to online Sarsa [13], [14] on a

simulation using StarCraft, in which efficient game strategies

should be learned for a team of fighting units. StarCraft is

one of the most popular real-time strategic games, and it has

complex scripted AI which makes it an ideal candidate to

prove the efficiency of the NFS technique.

Real time strategy games are not only an interesting

topic for sole research purposes. The video game industry

has roughly sold eleven billion dollars in 2008 and 2009.

The share for PC games are around seven hundred million

dollars. Real time strategy games dominate the PC games

sell by 35.5%. Therefore, any breakthrough in this field

is a potential investment for financial success [15]. The

university of Santa Cruz held a competition in 2010 (AAID

2010) in which StarCraft micro-management was one of the

tournaments. The winner of that tournament used a finite

state machine to control units. Our method, on the other hand,

uses reinforcement learning algorithm with neural networks

which can adapt themselves to changing enemy tactics and

can find new tactics based on the team’s experiences without

supervision [16].

Contributions. In this paper we explore whether con-

nectionist reinforcement learning techniques can be useful

for obtaining good performing game AI for controlling a

set of units in a battlefield scenario in the game StarCraft.

First of all, we compare neural-fitted Sarsa to online Sarsa

to see whether the neural-fitted approach can better exploit

limited experiences for obtaining good quality AI. Next, we

introduce vision grids for obtaining terrain information about

the dynamic state of the battlefield. Furthermore, we propose

an incremental learning approach where the action-selection

policies for larger teams are pretrained using the experiences

obtained by smaller teams. This incremental learning is then

compared to training bigger teams with randomly initialized

neural networks. It is important also to note that, unlike the

standard scripts or limited finite state machines where the

design is bound to the type of units, our proposed methods

can adapt themselves automatically against different types

of enemies in different terrains. Therefore, if our system is

successful it could be very applicable to learn to produce

game AI for this game genre.

��

���

���
�� ����

����	
�

������������	
���	��
���������������

�����������������

���
���������		�����������

����������������������

���������������������

�����������������

�������������������

���������������������

���
�������������������������

������������������������
�� ������
�����

��!		����"�������	�������

��!		����"�����������������

��!		����"��������������	�������

Fig. 1. The game state information (agent internal state and environment)
are fed to a Neural Network with one hidden layer and one output unit that
represents the Q-value.

Outline. In the next section, we first describe the game

StarCraft, and then our proposed neural network architecture.

We will there also describe the game environment and

our vision grids. In Section III, we present our proposed

reinforcement learning techniques. In Section IV, we show

the results of 6 experiments where our learning systems train

different sized teams to fight against the prescripted game AI

used in StarCraft. Section V concludes this paper.

II. STARCRAFT AND NEURAL NETWORKS

A. StarCraft TM

StarCraft TM is a popular Real-Time War Strategy (RTS)

video game developed by Blizzard Entertainment in 1998.

StarCraft is the most successful RTS game with more than

9.5 million copies sold from its released date in 1998 until

2004. StarCraft consists of three races and involves building

structures and using different types of soldiers to engage in

battle. The game-play in these games involves unit micro-

management, building order, resource management, and the

game main tactic. In this paper we focused on micro-

management of a number of units with the same type. The

game has a terrain with different possible heights, choke

points, etc. Each unit of the game has a number of attributes

such as health, armor, weapon, move speed, attack speed,

turn speed, etc. Player unit information is always accessible

to the player, but enemy unit information can be chosen to

be visible or hidden when it is out of sight. We currently use

global knowledge to simplify the problem and avoid training

an exploration technique, which would be necessary if the

opponent cannot be seen otherwise.

B. Neural Networks

As mentioned before, the game environment contains a

lot of information such as player and enemy locations, self

attributes and a number of actions that each unit can perform.

The relationship between the possible actions and the state

of the game is non-linear and involves a high number of

dimensions, leading to an ideal place to establish a neural

network approach (Figure 1). We use several multi-layer NNs

to approximate the state-action value function Q(st, at) that
denotes the expected future reward intake when performing

action at in state st at time t. As activation function for

the hidden layer, we used the hyperbolic tangent, and a



linear activation function for the output unit. Following the

research described in [17] each NN is dedicated to one

action-type. The input units represent the state and the

output represents the Q-value for the action corresponding

to the neural network. We used a feedforward multi-layer

perceptron with one hidden layer. It can be described as a

directed graph in which each node (i) performs a transfer

function fi formalized as:

yi = fi(

n∑

j=1

ωijxj − θi) (1)

Where ωij are the weights and θi is the bias of the

neuron. After propagating the inputs xj forward through

the neural network, the output of the NN represents the Q-

value for performing a specific action given the state of the

environment.

1) Environment and Input: We feed the neural networks

with information we consider important to evaluate the game

state (see Figure 1). This information constitutes our learning

bias. The data sent to the neural networks are relative to the

agent and are classified into two categories, which are:

1) Agent Internal State

a) Hit points

b) Weapon status

c) Euclidean distance to target

d) Is target the same as previous?

2) Environment State (Ally and Enemy)

a) Number of Allies targeting this enemy

b) Number of enemies targeting current unit

c) Hit points of Allies and Enemies

d) Surrounding environment dangerousness

The variables in this last category are collected using ally and

target state and different vision grids (see Section II-B3). The

agents use this information to select an action one by one.

2) Input value normalization: Every input variable from

the game-state is normalized before it is processed by the

NNs. The variables that have an intrinsic maximum value

(e.g. hit points) are normalized in a straightforward way,

that is by x/xmax. The other variables that do not have

an obvious maximum value are expressed as a fraction of

a constant. For example, the number of units are expressed

as a fraction of the number of units alive at the beginning of

each game round, and distances are expressed as a fraction

of the length of the entire map.

3) Vision Grids: In a battlefield scenario, terrain infor-

mation is essential for the performance of a team. Terrain

information contains clues or measurements about the battle

field configuration. It is very time consuming to consider

all the information in the environment at once for decision

making. Therefore, we divided decision making into two

phases. First, when the units are far, decisions are only

made by simple hit point and damage calculation. Next,

when they are close the neural networks for the computer

players can take into account all the information around

a unit. To encode this kind of information we use a grid

Fig. 2. Illustration of the usage of a vision grid to collect information
about the dangerousness.

data structure. Our approach uses several small grids, where

each encodes a specific type of battle field information such

as location, weapon state, hit points, weapon cool downs,

weapon range, etc. Currently, 9 different grids are used,

each of which carries information about enemy and ally

locations and hit points, targets of allies and enemies, the

position of the current target being evaluated, dangerousness

of surrounding locations, and finally the supported positions

for the current unit. For example, the dangerousness grid is

a map that tells how much it is dangerous or safe for a unit

being at a specific location based on the attacking range and

power of the enemies relative to that location, see Figure

2. A grid is centered on the agent and oriented accordingly

with the facing direction of the agent (direction invariant).

Each grid cell is either zero (if no information is present

regarding that specific grid cell) or a number which gives

specific information related to that cell. The grid information

will finally be reshaped to a vector and will be added to the

neural network input.

Figure 2 illustrates the usage of grids to collect information

about the dangerousness around the learning agent. The

learning agent is represented as a red dot and its facing di-

rection is denoted by the little arrow. Similarly, two enemies

are represented in blue. The attack range of each enemy is

drawn using the large circles. A vision grid is centered at

the agent’s position and oriented in its facing direction. The

numbers in the cells represent the dangerousness at the cell

position, the value here represents the hypothetic fraction of

the total hit points a unit can lose when being attacked at

the corresponding location. Those values are for illustrative

purpose and do not correspond to the actual game. The cells



with zero value are left blank. Notice that the dangerousness

is higher at locations attackable by both enemies. Each cell

is a neural network input unit. The proposed method has

a number of advantages. Since the evaluation is done for

each pair of units, an infinite number of units can use the

architecture and, because the grids are rotation invariant, the

number of learning patterns are limited.

III. REINFORCEMENT LEARNING

When a task requires a sequence of actions to be done by

an agent in a dynamic environment, one of the most common

methods to make the agent to learn improving its behavior

is reinforcement learning (RL) [7], [8]. The agent will start

choosing actions depending on the state of the game by using

the neural networks to output a single value for each action.

An action will be selected based on the Q-values and an

exploration strategy to deal with the exploitation/exploration

dilemma [18]. When the action is done, a reward will be

given to the action which is the feedback of the environment

to the agent. After the final state of the game is reached,

which in our case is the end of a single game round (after

one of the two teams lost all its soldiers), the state-action

value functions corresponding to the neural networks will

be updated depending on state transitions and the rewards

received during the game. Finally, the computed target values

are back propagated through the neural network to update the

weights.

The agents should predict the state-action value, Q(st, at),
for each state st and each possible action at. This value

reflects the predicted future reward intake after performing

the action in that specific state, and the optimal Q-values

should obey the Bellman optimality equation given by:

Q∗(st, at) = E[rt] + γ
∑

st+1

P (st+1|st, at)max
a

Q∗(st+1, a)

(2)

Where P (st+1|st, at) denotes the state-transition function,
E[rt] the expected reward on the transition, and a discount

factor 0 ≤ γ < 1 is used to discount rewards obtained later

in the game. When γ is close to one, the agent is far-sighted

and the rewards received in the future count more. On the

other hand, when γ is zero, only the immediately obtained

reward counts.

A. Online Sarsa and Boltzmann exploration

The most widely known online value-function based rein-

forcement learning algorithms are Q-learning [19], [20] and

Sarsa [13], [14]. In preliminary experiments, our results in-

dicated that Sarsa performed better for training the StarCraft

fighting units than Q-learning. Therefore all our reported

experiments use Sarsa as reinforcement learning technique.

Sarsa is an on-policy method, which means that the policy

is used both for selecting actions and for updating previous

action Q-values. The online Sarsa update rule is shown in

equation 3.

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]
(3)

The Boltzmann exploration strategy uses the Q-values to

select actions in the following way:

P (a) =
eQ(st,a)/τ

∑
b e

Q(st,b)/τ
(4)

Here τ denotes the temperature, which we will decrease

progressively in our experiments according to a cooling

schedule. The computed action-probabilities P (a) are then

used to select one final action.

B. Actions

In our system for training the StarCraft AI, we used two

action types for all the agents. The units can either target an

enemy and approach and attack them or they can evade from

the battlefield. To calculate the evade location we consider

the direct line between enemies and the current unit and the

weapon range. Next, we take the average of these vectors and

the opposite location of it will be selected. If the evade action

is selected, the unit will move away from enemies until it

reaches a safe spot. However, when a unit is surrounded, it

will remain in its position. For the attack action, for each ally

unit, all the enemy units will be evaluated using the inputs

mentioned in the previous section. After a decision is made,

units have a limited amount of time to perform the action.

If the limit is passed, the action is canceled and another

action will be selected. Each type of action is associated

with a unique neural network. To evaluate a specific action,

the neural network associated with the action type is fed

with the inputs describing the state of the game, the neural

network is activated and its output is the action Q-value. At

each time-step an action needs to be selected, a living unit

will compute with one neural network the Q-value for the

evade action, and with another neural network the Q-value

for attacking each enemy unit. Since information about the

enemy unit is given as input to the neural network, in this

way we can deal with an arbitrary amount of units, while

still only having to train two neural networks. Finally, it is

important to note that we used policy sharing in our system,

which means that all units use the same neural networks and

all the experiences of all units are used to train the neural

networks.

C. Dealing with Continuous Time

RL techniques are well defined and work well with discrete

time-steps. In StarCraft, the state (internal variables) of the

game is updated in each frame, that is approximately twenty

five times per second when the game is running at the normal

playing speed. This update speed contributes to the real

time aspect of the game. Despite the fact that the frame by

frame update is discrete, the change of the game state is

better conceived as being continuous when observed at the

round time scale, that is at a scale of the order of seconds.

In order to apply RL to this game we have to somehow

discretize the continuous time. The first approach we had

was to consider that a new state occurs after a number of

frames (e.g. 25 frames, or one real second) have elapsed.



We encountered several problems with this approach. To

illustrate an important one, it may happen that the agent

is unable to perform a selected action, because it is busy

doing a previous action and thus can not be interrupted. In

this situation, the reward for a specific action may not be

adequately given, resulting in a noisy reward. The second

and last approach we used was more appropriate regarding

applying RL to this dynamic game. We consider that a

new state occurs when the agent has finished performing

an action. So one step is as follow: the agent observes the

state at time t, selects an action to perform from a set of

possible actions, performs the selected action while the game

is continuously updating (the clock is ticking), and after the

action is done, the game is in a new state at time-step t+1,
and the agent uses its obtained reward in that interval to

update its Q-function.

D. Reward Function

The performance of RL techniques may depend heavily

on the reward function, which must sometimes be carefully

designed to reflect the objectives of the task. Because the

objective of the player in real time strategic games is to defeat

the enemy in the battle, we designed a reward function that

reflects this properly. Ally’s total hit points, number of alive

allies, enemy total hit points, and number of alive enemies

are the properties to measure this reward. The reward Ri for

a frame i is given to each agent after it has done an action,

and is computed using:

Ri = damageDone−damageReceived+60∗numberKills
(5)

Where numberKills only uses the number of killed

opponents during a frame.

1) Short Term Memory Reward Function: Using the pre-

vious reward function, that indicates the reward per frame, we

developed a Short Term Memory Reward (STMR) function

that computes a cumulative reward on a continuous basis.

When an event occurs in which a reward is emitted (positive

or negative), the value of the temporary reward-sum increases

or decreases accordingly. When time passes, the absolute

value of the total reward of all frames during performing the

same action decreases by a decaying factor κ, which makes

the reward decay in time. The agent receives the reward when

an action is done at the next frame, which corresponds to a

transition to the next time-step t + 1. The reward at time t
(rt) at the f th frame after starting executing the action is

computed as follows:

rt =
∑

i

Riκ
f−i,

where Ri is the reward at frame i and κ is the decaying

factor. This method is a bit similar to the use of macro-

actions, options, etc. in the Semi-Markov decision process

framework, but an important difference is that in our short-

term reward function the rewards closest to the end of the

action are more important. Furthermore, the number of time-

steps are not used to discount the next state-action pair’s

Q-value in the update rule. We have also done experiments

with the standard use of Semi-Markov Decision Processes,

but our above described method performed much better.

2) Dead Units: Another problem that we faced during

training was distributing the correct reward when an ally or

enemy unit is dead. Normally, at the end of the game we

give positive or negative reward values to all the units if

they won or lost the game respectively. However, assigning

rewards and punishments to units that die during a game

round is not an easy problem. Consider a case when the

team is winning but a unit dies in the process. Possibly

the unit’s decisions were perfect, but it was the enemy’s

focus that killed the unit. Therefore, it is not correct nor

fair to just give a negative reward (we did not achieve good

results by punishing dead units). Consequently, the reward

of a dead unit during the game is the average reward of all

living units in the next state. This makes sure that even the

dead units will receive positive rewards when the team is

acting well. However, when an enemy unit is killed, it is not

fair to distribute the same amount of reward to all the units.

Therefore, the unit with the highest kill count will receive the

highest reward. This means that all units optimize their own

different reward intake. Although the units are self-interested

agents, the reward function is selected in such a way, that

they all profit from a cooperative behavior in which they

together defeat the opponent team.

Algorithm 1: Neural-Fitted Sarsa algorithm pseudo-code

NFS main ()

input a set of transition samples D, an MLP;

output: Updated MLP that represents QN

k = 0
while k < N do

Generate Pattern set

P = {(inputl, targetl), l = 1, ...,#D}, Where:

inputl = sl, al
targetl = rl + γQk(sl+1, al+1)
MLP-training(P )→ Qk+1

k := k + 1
end while

E. Neural-Fitted Sarsa

We also compare online Sarsa to Neural-Fitted Sarsa

(NFS). Neural-Fitted Sarsa is heavily inspired by the success

of neural-fitted Q-iteration [12], and we want to test if it is

a promising technique for training StarCraft teams. Neural-

fitted techniques rely on neural networks that are trained

multiple times on a large set of training experiences. The

problem with online reinforcement learning methods and

neural networks is that learning is slow. Instead of updating

the Q-values online with Sarsa, we can also use the Neural-

Fitted Sarsa method in which the updates are done off-line

considering an entire set of transition experiences collected

in quadruples (s, a, r, s′). Here s is the initial state, a is

the chosen action, r is the reward, and s′ is the next



TABLE I
LEARNING PARAMETERS FOR NFS AND ONLINE SARSA.

Reward Function STMR (0.8 decay)

Discount Rate 0.5

Learning Rate 0.001

Number of inputs 671

Temperature start 0.51

Temperature drop 0.995

NN Hidden Units 50

NN Vision Grid size 9 × 9

state. The method allows the establishment of a supervised

learning technique for the NN that may lead to more efficient

experience use as shown in [12]. The pseudo-code of NFS is

given in Algorithm 1. We use N = 5 in our experiments, so

that the experiences are replayed 5 times to update the MLP.

F. Incremental Learning

The number of game states in scenarios involving a large

amount of units (e.g. 6 vs. 6) is very large. Therefore, it

may take a prohibitive amount of learning time to learn the

right team strategies. The idea of using incremental learning

is to first train the neural networks with RL techniques on a

smaller problem involving less units and therefore less game

states. Then, after pretraining the neural networks in this way,

they can be used as a start to learn on larger scenarios. A

problem that has to be dealt with in this approach is that the

larger scenarios also involve more inputs, since in general

information about each ally and enemy unit is passed to the

neural networks. To cope with this, we use neural networks

with as many inputs needed to deal with the larger scenario,

and when learning on the smaller scenario always set the

additional input units to the value 0. In this way we can

simply reuse the trained neural networks, and after that they

can learn to make use of the newly available inputs.

IV. EXPERIMENTS AND RESULTS

As mentioned before, the simulation environment is the

StarCraft game engine. We focused our experiments on unit

micro management where a balanced number of units of

the same type will fight against each other. The simulations

were done in three versus three and six versus six scenarios.

The units are marines that can attack a single unit with

ranged weapons. In this section we show the results of 6

experiments. First, we compare online Sarsa to the Neural-

fitted Sarsa method using the STMR reward function on a

3 vs. 3 battlefield scenario. Next, we compare the learning

performance on a more difficult 6 vs. 6 scenario. Finally, we

compare the results with an incremental learning approach

on the 6 vs. 6 scenario. The incremental scenario uses the

previously trained neural networks in the 3 vs. 3 case as a

start for training in the 6 vs. 6 scenario. In non-incremental

learning, we start the training procedure with a randomly

initialized neural network.

A. NFS vs. Online Sarsa

We first compare the NFS algorithm to the online Sarsa

algorithm. The first experiment involves a three versus three

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game Rounds

W
in

n
in

g
 R

a
ti
o

(a) Online Sarsa

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game Rounds

W
in

n
in

g
 R

a
ti
o

(b) NFS

Fig. 3. The winning ratio versus game rounds of a three versus three
marines scenario. The comparison of online Sarsa versus neural fitted Sarsa.
The blue line is the mean and the red lines are 68% confidence intervals.
After each 500 games the average number of times the RL systems won
against the standard human-made StarCraft team is plotted.

learning scenario in which we start with NNs that are

initialized with random weights. In the NFS system the

NNs are updated after every (50) game rounds, while in

the online method, the NNs are updated after each game

round. The temperature used by Boltzmann exploration drops

after every 100 game rounds for both methods. The learning

parameters of both systems, except the update methods, are

the same. These parameters are presented in Table I. For

these simulations, we run the scenarios for 50,000 to 60,000

game rounds, which lasts approximately 12 hours with the

game running at full speed. For each method we repeated

the experiment 5 times with different random seeds and

calculated the mean and standard deviations.

As can be seen in Figure 3, both methods converge to a

similar solution of around 72% average winning ratio. Thus,

both methods are able to learn to significantly outperform

the standard StarCraft game AI. The figure also shows that

the online method unexpectedly learns faster than the neural-

fitted method, although when we give the NFS method a bit

more training time (60,000 game rounds), it is able to obtain



0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game Rounds

W
in

n
in

g
 R

a
ti
o

(a) Online Sarsa

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game Rounds

W
in

n
in

g
 R

a
ti
o

(b) NFS

Fig. 4. The winning ratio versus game rounds of non-incremental six
versus six marines scenario. The comparison of online Sarsa versus neural-
fitted Sarsa. The blue line is the mean and the red lines are 68% confidence
intervals.

the same level of performance as online Sarsa.

We also compared the same methods in a six versus six

learning scenario. We randomized weights and then let the

system train the 6 soldiers. It should be mentioned that the

number of possible patterns in a 6 vs. 6 scenario is much

larger than in the 3 vs. 3 scenario. As can be seen in Figure 4

both methods are performing much weaker than in the 3 vs. 3

scenario, and are unable to defeat the StarCraft game AI. The

online Sarsa system seems to achieve a better performance

than the neural-fitted Sarsa algorithm.

B. Incremental vs. Non Incremental Learning

We saw that by going from a three versus three scenario

to a six versus six scenario, learning became much harder.

However, as described in Section III, we can use the trained

neural networks on the 3 vs. 3 scenario as a start for further

training on the 6 vs. 6 scenario.

Figure 5 shows the results with this incremental approach

for both online Sarsa and neural-fitted Sarsa. The figure

clearly shows that the performance with incremental learning

is much better than without incremental learning. Table II

shows the average winning ratio and the best winning ratio

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game Rounds

W
in

n
in

g
 R

a
ti
o

(a) Online Sarsa

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Game Rounds

W
in

n
in

g
 R

a
ti
o

(b) NFS

Fig. 5. The winning ratio versus game rounds of incremental six versus six
marines scenario. The comparison of online Sarsa versus neural-fitted Sarsa.
The blue line is the mean and the red lines are 68% confidence intervals.

of the learned game AI against the handcrafted StarCraft AI.

It shows that the learned behaviors are able to outperform the

StarCraft AI, although not all learning runs result in the same

good behavior. In the 3 vs. 3 scenario, the best results of 85%
winning are obtained with the NFS method, whereas in the

6 vs. 6 scenario the best results of 76% winning are obtained

with online Sarsa that uses incremental learning. The Table

clearly shows the importance of incremental learning to

obtain good results in the complex 6 vs. 6 scenario.

V. CONCLUSION

In this paper, we presented a reinforcement learning ap-

proach to learn to control fighting units in the game StarCraft.

StarCraft is one of the most famous real time strategy

games developed unit now, and has recently been used in

tournaments to compare the use of different techniques from

artificial intelligence. We compared online Sarsa to neural-

fitted Sarsa, and the results showed no clear improvement by

using a neural-fitted approach. This may be because there

are lots of different game patterns, and each new game

follows different dynamics, so that only a small bit can be

learned from each game. The results also showed that the



TABLE II
THE RESULT OF ALL SIMULATIONS. THE TABLE SHOWS THE WINNING RATIOS OF THE LAST 1000 GAMES PLAYED.

Average Winning Ratio Standard Deviation Best Winning Ratio

3 vs. 3 Online Sarsa 70% 10% 80%

3 vs. 3 NFS 75% 11% 85%

6 vs. 6 Online Sarsa 35% 5% 36%

6 vs. 6 NFS 22% 7% 24%

6 vs. 6 Incremental Online Sarsa 49% 28% 76%

6 vs. 6 Incremental NFS 42% 27% 61%

proposed methods were very efficient for learning in a 3

vs. 3 scenario, but had significant problems to learn in a

larger 6 vs. 6 soldier scenario. To scale-up the proposed

RL techniques, we proposed an incremental learning method,

and the results showed that using incremental learning, the

system was indeed able to defeat the scripted StarCraft game

AI in the complex 6 vs. 6 soldier scenario.

In future work, we want to research extensions with

learning team formations, which may be essential to scale

up to even larger teams. This will involve learning to create

subgroups of soldiers, but also the patterns with which

they approach the enemy units. Furthermore, we want to

study better exploration methods to find critical states in the

environment.

REFERENCES

[1] J. Polvichai, M. Lewis, P. Scerri, and K. Sycara, Using Dynamic Neu-

ral Network to Model Team Performance for Coordination Algorithm

Configuration and Reconfiguration of Large Multi-Agent Teams, C. H.
Dagli, A. L. Buczak, D. L. Enke, M. Embrechts, and O. Ersoy, Eds.
New York, NY: ASME Press, 2006.

[2] M. R. Khojasteh and A. Kazimi, “Agent Coordination and Disaster
Prediction in Persia 2007, A RoboCup Rescue Simulation Team
based on Learning Automata,” in Proceedings of the World Congress

on Engineering 2010 Vol I., ser. WCE 2010. Lecture Notes in
Engineering and Computer Science, 2010, pp. 122–127.

[3] I. Martinez, D. Ojeda, and E. Zamora, “Ambulance decision sup-
port using evolutionary reinforcement learning in robocup rescue
simulation league,” in RoboCup 2006: Robot Soccer World Cup X,
ser. Lecture Notes in Computer Science, G. Lakemeyer, E. Sklar,
D. Sorrenti, and T. Takahashi, Eds. Springer Berlin / Heidelberg,
2007, vol. 4434, pp. 556–563.

[4] S. C. Bakkes, P. H. Spronck, and H. J. van den Herik, “Opponent
modelling for case-based adaptive game AI,” Entertainment Comput-

ing, vol. 1, no. 1, pp. 27 – 37, 2009.
[5] M. Wittkamp, L. Barone, and P. Hingston, “Using NEAT for continu-

ous adaptation and teamwork formation in pacman,” in Computational

Intelligence and Games, 2008. CIG 2008. IEEE Symposium On,
december 2008, pp. 234 –242.

[6] M. van der Heijden, S. Bakkes, and P. Spronck, “Dynamic forma-
tions in real-time strategy games,” in Computational Intelligence and

Games, 2008. CIG ’08. IEEE Symposium On, december 2008, pp. 47
–54.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. The MIT press, Cambridge MA, A Bradford Book, 1998.
[9] A. C. Chapman, R. A. Micillo, R. Kota, and N. R. Jennings,

“Decentralised dynamic task allocation: a practical game: theoretic
approach,” in Proceedings of The 8th International Conference on

Autonomous Agents and Multiagent Systems - Volume 2, ser. AAMAS
’09. Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2009, pp. 915–922.

[10] O. Aghazadeh, M. Sharbafi, and A. Haghighat, “Implementing para-
metric reinforcement learning in robocup rescue simulation,” in
RoboCup 2007: Robot Soccer World Cup XI, ser. Lecture Notes in
Computer Science, U. Visser, F. Ribeiro, T. Ohashi, and F. Dellaert,
Eds. Springer Berlin / Heidelberg, 2008, vol. 5001, pp. 409–416.

[11] E. Alpaydin, Introduction to Machine Learning. The MIT Press,
2004.

[12] M. Riedmiller, “Neural fitted Q iteration: first experiences with a
data efficient neural reinforcement learning method,” in 16th European

Conference on Machine Learning. Springer, 2005, pp. 317–328.
[13] G. Rummery and M. Niranjan, “On-line Q-learning using connection-

ist sytems,” Cambridge University, UK, Tech. Rep. CUED/F-INFENG-
TR 166, 1994.

[14] R. S. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” in Advances in Neural Infor-

mation Processing Systems 8, D. S. Touretzky, M. C. Mozer, and M. E.
Hasselmo, Eds. MIT Press, Cambridge MA, 1996, pp. 1038–1045.

[15] ESA, “Essential facts about the computer and video game industry,”
2010.

[16] U. of Santa Cruz, “StarCraft AI Competition,” http://eis.ucsc.edu/
StarCraftAICompetition, 2010, [Online].

[17] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, January
1993.

[18] S. Thrun, “Efficient exploration in reinforcement learning,” Carnegie-
Mellon University, Tech. Rep. CMU-CS-92-102, January 1992.

[19] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disser-
tation, King’s College, Cambridge, England, 1989.

[20] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, pp. 279–292, 1992.


