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Abstract. Sepsis is an excessive bodily reaction to an infection in the
bloodstream, which causes one in five patients to deteriorate within
two days after admission to the hospital. Until now, no clear tool for
early detection of sepsis induced deterioration has been found. This
research uses electrocardiograph (ECG), respiratory rate, and blood
oxygen saturation continuous bio-signals collected from 132 patients from
the University Medical Center of Groningen during the first 48 hours
after hospital admission. This data is examined under a range of feature
extraction strategies and Machine Learning techniques as an exploratory
framework to find the most promising methods for early detection of sepsis
induced deterioration. The analysis includes the use of Gradient Boosting
Machines, Random Forests, Linear Support Vector Machines, Multi-Layer
Perceptrons, Naive Bayes Classifiers, and k-Nearest Neighbors classifiers.
The most promising results were obtained using Linear Support Vector
Machines trained on features extracted from single heart beats using the
wavelet transform and autoregressive modelling, where the classification
occurred as a majority vote of the heart beats over multiple long ECG
segments.
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1 Introduction

Sepsis is a life-threatening organ dysfunction caused by an uncontrolled reaction
to infection by the organism [1] that can lead to organ failure, septic shock, and
death [2]. Common symptoms of sepsis include higher heart rate and respiratory
rate, and abnormal changes in bodily temperature [3]. Sepsis is one of the most
common causes for mortality among chronically ill patients, and it is estimated
that sepsis affects at least 240 people out of 100,000 in the United States, while
severe sepsis affects between 51 and 95 out of 100,000 [4]. Most patients affected
by sepsis are admitted to the hospital through the Emergency Department (ED),
and it was shown that approximately 20% of patients admitted to the ED with
infection or sepsis deteriorate [5].

Early detection of sepsis induced deterioration is extremely valuable since it
allows for fast and effective treatment. In [6] it was shown that each hour of delay
in the application of appropriate treatment is correlated with a mean increase in
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mortality of 7.6%. Nevertheless, despite the intensive research in the field, it is
still not clear how the onset, progress, and response to treatment of sepsis can
be accurately monitored [7].

The traditional approach for tracking sepsis onset and development is to use
discrete values describing vital signs and non-specific symptoms [3]. More recently,
measures obtained from Heart Rate Variability (HRV) have been gathering
research interest. Although at present the most successful studies in this area
concerned sepsis development in neonates [8], some studies have been carried out
to explore the predictive potential of HRV measures in adults [9, 10]. In 2017
the SepsiVit study was started at the University Medical Center of Groningen
(UMCG), which involves a long term data collection program, and aims at
determining whether HRV measures can provide a reliable source of information
for predicting deterioration in patients with suspected sepsis in the ED [11].

The current study focuses on the potential of Machine Learning based algo-
rithms paired with the use of raw Electrocardiograph (ECG), Plethysmograph,
and Respiratory Rate bio-signals collected during the SepsiVit study at the
UMCG as sources of information for early detection of patient deterioration
due to sepsis. Seven different Machine Learning classifiers are tested and their
classification accuracies are compared across three different feature extraction
methods. The first two methods involve Histograms of Derivatives (HOD) of
the bio-signals, while the third one uses morphological features of heart beats
extracted using the wavelet transform and autoregressive modelling as applied
in [12]. The third feature extraction method was also tested in a majority vote
fashion across 5 minute long signal windows and 1 hour long signal windows.

This paper is organized as follows. Section 2 describes the dataset in more
detail. Section 3 illustrates the three feature extraction methods used to process
the dataset. Section 4 lists and explains the machine learning models and how
they were applied. Section 5 describes the experimental setup and the obtained
results, while Section 6 concludes the paper.

2 Dataset

The dataset used in this research was collected at the ED of the UMCG according
to the protocol of the SepsiVit study. All patients included in the study (i) are
more than 18 years old, (ii) present a suspected infection or sepsis, (iii) show
two or more systemic inflammatory response syndrome criteria as defined by
the International Sepsis Definitions Conference [13], and (iv) provided written
informed consent. Patients are not included in the study in case of (i) known
pregnancy, (ii) when the patient is not admitted to the hospital from the ED
or is transfered to another hospital or care facility, and (iii) in case of previous
cardiac transplantation [11]. While the aim of the SepsiVit study is to collect
data from 171 patients, the collected and labeled data at the time of the current
study includes 132 patients (84 males; average age 61.5 years; median age 63.5
years; average missing data 53%).
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For each patient, high sample rate vital signs are recorded with a bedside
patient monitor (Philips IntelliVue MP70 System with MultiMeasurement Module
using custom software based on the Philips IntelliVue Data Export Interface
Protocol). The data includes time series data of ECG (500 Hz), Plethysmograph
(125 Hz), and Respiratory Rate (62.5 Hz) bio-signals recorded for up to 48 hours
since admission to the ED. No imputation strategy is used to recover missing
data due to the complexity and unpredictability of the bio-signals involved.
The electrodes for recording the ECG signals are placed according to the EASI
configuration [14], and in particular the data from Lead II is used for this
analysis. After the data is collected, the outcomes for the patient’s condition
are recorded. Specifically, five outcomes are monitored: whether the patient
(i) had to be transferred to the Intensive Care Unit (ICU), (ii) died in the
hospital, (iii) developed kidney failure, (iv) developed liver failure, or (v) developed
respiratory failure. Since the goal of this analysis is to provide a tool for early
sepsis deterioration, each patient was labeled as ‘deteriorating’ if they registered
positive to any of these five outcomes, and ‘healthy’ otherwise. The proportions
of the two groups are specific to each feature extraction method depending on
the amount of usable data, and are mentioned in the respective subsections of
the paper.

3 Feature Extraction Methods

The detection of early signs of sepsis induced deterioration using bio-signals
requires a procedure of feature extraction from the raw data, so that each
extracted feature vector represents a segment of the original data. With this in
mind, a good feature extraction procedure should yield feature vectors that are
most similar among the same class and most different across different classes.

The three feature extraction methods described in this section are compared
with the ones currently being developed as a part of the SepsiVit study, which
were obtained exclusively from the ECG signal, after the removal of technical
and physiological artifacts [15]. They include HRV measures as described in [16],
and geometrical features of the R-R intervals [17].

3.1 Histograms of Derivatives

The first approach involves the extraction of the distribution of the first and
second order derivatives of the available signals, or Histograms of Derivatives
(HOD). This method is conceptually close to the Histogram of Oriented Gradients
strategy used in image processing [18]: the objective is to obtain the frequency
distribution of change in signal intensity across a signal segment. The derivative
of a function at a specific input value is defined as the slope of the tangent line
to the graph of the function at that point. In the case of the digital signals used
in this study, an approximation of the derivative function is computed as:

dx

dt
=
xt+h − xt

h
(1)
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where h is the unit interval between consecutive samples. For each of the three
signals used in this study, h is set to 1 since the time between consecutive samples
in each signal is constant.

The first step of this procedure is, for each patient’s bio-signals (i.e. ECG,
Plethysmograph, and Respiratory Rate), to extract all simultaneous 5-minute
long signal segments that don’t contain any missing data. The result is a collection
of 5-minute long data triplets containing the three bio-signals. The length of
5 minutes for each signal window was chosen experimentally as it produced
improved classification accuracies compared to a length of 30 minutes. This
choice was also guided by the convenience of requiring only 5 minutes of recorded
signal before attempting detection of sepsis induced deterioration, which would
speed up the potential application of treatment.
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Fig. 1: Plot showing first and second order derivatives of an ECG
signal segment taken from the SepsiVit dataset.

At this stage, the first
and second derivatives of
each signal segment are
computed. Given each sig-
nal in each data triplet,
equation 1 was applied
across the whole signal
segment. The result is 6
signals, two for each type
of bio-signal, of which one
is the first order derivative,
and the other is the sec-
ond order derivative, com-
puted by applying equa-
tion 1 on the computed
first derivative. A plot
representing an example
of first and second order
derivatives computed in such fashion is shown in Figure 1.

In order to obtain the frequency distribution of each derivative, a 20-bin
frequency histogram is computed for each of the 6 derivative signals. In order to
exclude outliers, the extrema of each histogram are computed as follows. For each
of the 6 derivative signals, the minimum and maximum values are collected across
the whole dataset, for a total of 12 values. A 95% interval is then calculated for
each of the 12 resulting lists of values. The lowest value in the 95% interval was
chosen for the minimum of each histogram, while the maximum value in the 95%
interval was chosen for the maximum of each histogram. The values found with
this method are reported in Table 1.

The result was six 20-bin histograms, three for the first derivative of ECG,
Plethysmograph, and Respiratory Rate, and three for their second derivatives, for
each 5-minute long data segment. Each of these histograms was then centered (by
subtracting the mean) and scaled (by dividing by the standard deviation). These
six histograms were then concatenated so that the first three vectors were the



Early Detection of Sepsis Induced Deterioration Using Machine Learning 5

histograms of the first derivative of ECG, Plethysmograph, and Respiratory Rate
histograms, while the last three were the histograms of the second derivatives in
the same order.

The last step of the feature extraction process involved, for the ECG signal
contained in each of the data triplets, extracting the mean and the standard
deviation of the Heart Rate, µ(HR) and σ(HR). These two values were appended
to each concatenated frequency histogram vector to produce a 122-dimensional
feature vector. Only patients that had at least one uninterrupted 5-minute long
window containing all three bio-signals were included in this procedure. This
feature extraction method yielded 14,389 feature vectors from 89 different patients.
Out of the total number of data triplets, 50.8% came from patients marked as
‘deteriorating’.

3.2 ∆ of Histograms of Derivatives

The second feature extraction approach is largely based on the one described
in subsection 3.1. The objective of this method is to obtain a measure of the
change between the HODs of consecutive 5-minute long data triplets. Initially
all pairs of consecutive 5-minute long data triplets are collected, so that in each
pair the second triplet directly follows the first one in the time domain. The
two 122-dimensional feature vectors for both data triplets are then extracted
according to the procedure described in subsection 3.1. The final feature vector
is then computed as the element-wise difference between the two vectors as:

fv∆ = fvt − fvt−1 (2)

where fvt−1 and fvt are the feature vectors extracted from the first and second
data triplets respectively. Only patients that had at least one uninterrupted
10-minute long window containing all three bio-signals were included in this
procedure. This feature extraction procedure yielded 13,110 feature vectors from
88 different patients. Out of the total number of data triplets, 50.5% came from
patients marked as ‘deteriorating’.

3.3 Wavelet Transform and Autoregressive Modelling

The last feature extraction procedure involves using the wavelet transform and
autoregressive modelling on exclusively the ECG signal. This approach relies on

Table 1: Extrema of each of the 6 frequency histograms, computed for the SepsiVit dataset by
considering the 95% interval for each minimum and maximum value in each derivative signal.

1st derivative 2nd derivative

Min Max Min Max

ECG −348 343 −307 307

Pleth. −756 768 −511 518

Resp. −681 722 −523 676
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extracting morphological features from individual heart beats, replicating the
approach found in [12]. This procedure required a preprocessing step of noise
removal from the ECG signal and extraction of all available heart beats (done
with the Python package Biosppy 0.5.1), where the R-peaks were detected using
Hamilton’s approach [19]. Each heart beat is extracted in the form of an array
of 300 samples, where the R-peak occurs at the 100th sample. An example of a
series of extracted heart beats is shown in Figure 2.
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Fig. 2: Plot showing exemplar heart beats extracted from an ECG
segment taken from the SepsiVit dataset, after noise removal has
been applied. The different colors represent the different heart
beats.

Due to memory limi-
tations of the computer
used when running the
Machine Learning algo-
rithms, a sample of 10,000
heart beats was selected
for each patient to be used
in the study. The sample
of heart beats for each
patient was selected by
(1) extracting all heart
beats for that patient, and
(2) keeping 10,000 evenly
spaced heart beats across
all heart beats of the pa-
tient ordered in the time
domain. This was done to
ensure that, for each pa-
tient, heart beats from all stages of their stay in the hospital were available. A
time-frequency decomposition of each heart beat was then produced using the
wavelet transform as done in [12], which has been shown to be a good tool for
QRS complex detection [20].

The wavelet transform is an operation that represents a signal with a series
of coefficients which describe the energy distribution of the signal across both
time and frequency. The continuous wavelet transform (CWT) of a continuous
signal is defined as [21]:

CWTx(b, a) =
1√
|a|

∫ ∞
−∞

x(t)g

(
t− b
a

)
dt (3)

where the wavelet g(t) satisfies the conditions reported in [22]. a and b (a, b ∈
<, a 6= 0) are the dilation and translation parameters. The chosen wavelet, which
in the case of this study is the Daubechies wavelet of order 8, as done by Qibin
and Liqing [12], is compressed or expanded depending on the value of a, in such a
way that coefficients can be extracted to describe the morphology of the signal at
different frequency ranges. The high computational complexity of this approach
can be reduced by discretising one or both parameters of the function. The case
where a is discretised is defined as the dyadic wavelet transform DyWT . a is
discretised along the dyadic sequence 2i (i ∈ N) [20]. DyWT is then defined as:
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DyWTx(b, 2i) =
1√
2i

∫ ∞
−∞

x(t)g

(
t− b

2i

)
dt (4)

The dyadic wavelet transform was consequently applied to all heart beat
signals (done with the Python package pywt 1.0.6 [23]). A required parameter for
the operation was the decomposition level, which influences the frequency ranges
extracted from the signal. The chosen decomposition level was 4 as done in [12].
The wavelet transform decomposition yielded four detail coefficients d1, d2, d3, d4

and the vector of approximation coefficients a4. The detail coefficients represent
the high frequency parts of the ECG signal, while the vector of approximation
coefficients a4 represent the lower frequency changes in each heart beat, corre-
sponding with the main features of the QRS complexes. For each heart beat, the
vector a4 contained 32 points.

The second step was the extraction of the coefficients of an autoregressive
model trained on each heart beat. An autoregressive model of order p of a signal
x[n] is defined as the linear combination of the p previous samples in the signal,
and can be expressed as:

x[n] =

p∑
i=1

a[i]x[n− i] + e[n] (5)

where a[i] is the ith coefficient and e[n] is white noise with mean zero [12].
The number of coefficients p was chosen to be 14 using the Akaike Information
criterion [24], so that the 14 coefficients aar of the autoregressive model were
extracted from each heart beat (done with the Python package statsmodels
0.9). The two obtained vectors a4 = {w1, . . . , w32} and aar = {a1, . . . , a14} were
then concatenated to form the feature vector for that heart beat. Only patients
whose ECG signal contained at least one heart beat detectable using Hamilton’s
approach [19] were included in this procedure. This feature extraction procedure
yielded 1,155,997 feature vectors from 123 different patients. Out of the total
number of data triplets, 44.9% came from patients marked as ‘deteriorating’.

Due to the large number of feature vectors obtained with this method, Princi-
pal Component Analysis (PCA), a common feature reduction procedure, was used
to compress the dimensionality of the feature vectors from 46 to 10 dimensions
[25]. PCA involves projecting a set of vectors across the dimension with the
maximal variance, in order to reduce the number of dimensions while preserving
the maximal amount of information regarding the distribution of the vectors. For
each test, PCA was applied by fitting it on the training split of the data, and
then applying it to both the training and the testing splits of the data.

4 Machine Learning Methods

All algorithms described in this section were implemented in Python using
the package scikit-learn 0.19.1 [26]. The dataset was split into training and
testing/validation sets using 90% and 10% of the data respectively. The strategy
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used for splitting the dataset was group 10-fold cross-validation, so that 10
iterations of testing were performed for each algorithm. An important property
of the group k-folds strategy for dataset splitting is that no data from the same
patient occurred in different folds, so as to eliminate overfitting over single
patients. The results as reported in section 5 consist of the mean classification
accuracy for the tuned models across the 10 training iterations, along with
its standard deviation. The accuracy was computed as the number of correct
classifications over all classification attempts. For the Linear Support Vector
Machine, weighted k-Nearest Neighbors, and Multi-Layer Perceptron, the data
must be scaled. A MinMax scaler, which scales each feature to an interval [0, 1],
was chosen experimentally as it yielded better results compared to a standard
scaler. For each training fold the scaler was fitted on the training split of the
dataset, and consequently applied to both the training and the testing split.
Class scaling was applied to the two classes in the training phase for all classifiers
except for the Multi-Layer Perceptron and the Weighted k-Nearest Neighbors,
in order to normalise the impact of the distribution of the two classes during
training. The parameter tuning for all algorithms was done by parameter grid
search using cross-validation. The parameters for all algorithms are reported in
Table 2.

Table 2: Parameters used for each of the classifiers. The feature extraction methods are, in or-
der: Histograms of Derivatives (HOD, see subsection 3.1), Difference of Histograms of Derivatives
(HOD∆, see subsection 3.2), wavelet transform and autoregressive modelling (HB, see subsection
3.3), and using the HRV measures extracted as part of the SepsiVit study (SV). The classifiers
are, in order: Linear Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Ma-
chine (GBM), Weighted k-Nearest Neighbors (WkNN), Multi-Layer Perceptron (MLP), and Linear
Regression (LR).

HOD HOD∆ HB SV

SVM C 11 12 15 9.5

RF n estimators 7, 000 5, 000 3, 500 5, 000

GBM
n estimators 10, 000 10, 000 10, 000 10, 000

learning rate 0.01 0.01 0.005 0.0001

min samples. 10

WkNN
n neighbors 6 11 251 55

p 1

MLP

hidden n. 31 53 7 4

learning rate 0.0005 0.0005 0.0005 0.001

max iter 3, 000

activation logistic

LR
C 15 8 10 15

solver newton-cg

multi class multinomial
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4.1 Linear Support Vector Machine

Support Vector Machines (SVMs) are a set of supervised learning algorithms
useful in classification, which is widely and successfully applied in the medical
field [27, 12, 28]. A Linear Support Vector Machine generates a hyperplane which
position and orientation is optimised to best differentiate between the two classes,
and which is computed using the support vectors, which are the vectors in the
training set closest to the decision hyperplane [29]. The Linear SVM model used
the squared hinge loss function, which produced a classification boundary with a
soft margin, yielding classification probabilities. The only tuned parameter was
C, which represents the importance given to outliers during training.

4.2 Random Forest

A Random Forest is an ensemble-based algorithm which works as a combination
of decision tree predictors [30]. Each tree in a Random Forest is initialised
using the values of a random vector sampled independently using the same
distribution. This method is more robust to overfitting compared to standard
decision trees [31]. All default parameters were kept the same as the scikit-learn
implementation of the algorithm [26], except for n estimators, the number of
trees to be generated. As the number of trees is increased, the accuracy normally
increases and eventually plateaus. In the case of the wavelet transform and
autoregressive modelling feature extraction method (see subsection 3.3), the
number of generated trees was artificially kept low to accomodate for the memory
limitations of the computer used in the analysis.

4.3 Gradient Boosting Machine

The Gradient Boosting Machine algorithm is, much like the Random Forest, an
ensemble-based algorithm used in classification which combines a number of weak
decision tree classifiers into a strong decision tree classifier. Each decision tree is
generated by combining the previous decision trees and applying a higher weight
to events that are difficult to predict. The result is a gradient descent algorithm
that minimizes the classification error by generating more decision trees [32]. The
two parameters that were tuned for this algorithm were n estimators, the number
of trees to be generated, and learning rate, which shrinks the contribution of
each tree. There is a trade-off between the values of the two parameters, so they
need to be adjusted to each other. For all other parameters, the defaults of the
scikit-learn package were used, except for the value of min samples leaf , which
was set to 10. This value defines the minimum number of feature vectors to be
found in each leaf of the decision trees.

4.4 Weighted k-Nearest Neighbors

The Weighted k-Nearest Neighbors (WkNN) algorithm is a variation of the
standard k-Nearest Neighbors classification algorithm. The latter works by, for
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each feature vector in the testing set, producing a majority vote across the k
closest feature vectors of the training set, according to a specified distance metric.
The WkNN algorithm works in a similar fashion, with the added feature that
votes from each neighboring feature vector are scaled depending on their distance
from the feature vector to be classified [33]. The tuned parameter was only
n neighbors, which is k, the number of the closest feature vectors that are taken
into account for the classification. The distance metric used for this algorithm
was the Minkowski distance, with the inverse scaling factor p set to 1.

4.5 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a type of feedforward artificial neural
network which implements the backpropagation supervised learning algorithm.
The MLP implemented as a part of this study contained only one hidden layer.
The amount of neurons in the hidden layer was the parameter hidden neurons,
tuned for each feature extraction method. The final, output layer contains a
number of neurons equal to the number of classes, to which activations a Softmax
function is applied in order to compute class-wise probabilities. The learning rate
parameter was also tuned using cross-validation [31, 34]. All other parameters
were kept to the defaults given by scikit-learn, except for the applied logistic
activation function, and the maximum number of training iterations for the
algorithm, which was set to 3,000.

4.6 Näıve Bayes Classifier

The Näıve Bayes classifier is one of the simplest probabilistic classifiers, which
has the advantage of being computationally inexpensive, and has been used
with success on Heart Rate Arrhythmia classification in [35]. This classifier
constructs a set of probabilities, which correspond to the probability that each
feature value appears among the feature vectors within a certain class. The Näıve
Bayes classifier makes, however, a strong assumption of conditional independence
between the features within the feature vectors [36]. This assumption rarely holds
in real life scenarios, and it clearly doesn’t hold for the feature vectors extracted
with the procedures described in section 3. For this study, the Gaussian Näıve
Bayes classifier was used, which relies on the assumption that the likelihood of
the features follows a Gaussian distribution. The algorithm was tested as it tends
to perform well in many classification tasks, and because of its conveniently low
computational complexity. This classifier requires only the prior probabilities of
the two classes, computed as the proportion of each class across each complete
processed dataset.

4.7 Logistic Regression

The Logistic Regression classifier is a standard linear model for classification.
In this study, a multinomial logistic regression was used, which means that
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the probability estimates should be better calibrated per class compared to a
dichotomous implementation. The classifier used the ‘newton-cg’ solver. The only
parameter tuned using cross-validation was C, the inverse of the regularization
strength α.

5 Experiments and Results

For each tuned classifier and for every testing procedure, the mean and standard
deviation of the classification accuracy across the 10 folds of the cross-validation
process are reported. The testing procedures were five in total. The first three
involved standard classification of the feature vectors obtained with the three
feature extraction methods described in section 3 using cross-validation. For each
of the three produced datasets, each feature vector was assigned the same label
as the patient that it was extracted from. During the training phase, the classifier
was trained on the training set using the correct labels. During the testing phase,
each feature vector was classified as belonging to the ‘deteriorating’ class or to
the ‘healthy’ class. The result of the classification was then compared with the
correct label in order to compute the accuracy (i.e. the proportion of correct
classifications during the testing phase).

The last two testing procedures were applied to the morphology descriptors,
which are described in subsection 3.3). For both testing procedures, the training
phase was the same as for the third testing procedure, so that the classifier could
classify each heart beat as ‘deteriorating’ or not given its feature vector. What
changed in the last two testing procedures was the testing phase. The first of
the two testing procedures was done as a majority vote, where heart beats are
extracted and processed for all 5-minute long ECG segments. The classification
process is then applied to all heart beats in each 5-minute long ECG segment so
that if 50% or more of the heart beats are classified as ‘deteriorating’, then the
whole segment receives such classification outcome. The third testing procedure
is performed in a similar fashion by taking a majority vote across 12 5-minute
long ECG segments.

All testing procedures are compared to the performance of the tuned algo-
rithms used on the HRV features extracted as part of the SepsiVit study, as
mentioned in section 3. All outcomes of the testing procedures are reported in
Table 3.

The Histograms of Derivatives and Differences of Histograms of Derivatives
methods for feature extraction did not show any promise, ranging from a mean
classification accuracy of 43.1±11.9% for the Multi-Layer Perceptron in the
Difference of Histograms of Derivatives procedure, to 56.6±12% for the Random
Forests algorithm applied to the Histograms of Derivative method for feature
extraction.

The best results were obtained using the Linear Support Vector Machine on
the feature vectors extracted in the SepsiVit study, which had a mean accuracy
of 65.5% and a standard deviation of 7.9%. The most promising results were
obtained with the feature extraction method involving the wavelet transform and
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Table 3: Mean and standard deviation of the classification accuracies for all models and testing
procedures. The testing procedures are, in order: Histograms of Derivatives (HOD, see subsection
3.1), difference of Histograms of Derivatives (HOD∆, see subsection 3.2), wavelet transform and
autoregressive modelling without majority vote (HB, see subsection 3.3), wavelet transform and
autoregressive modelling applied in a majority vote fashion over 5-minute long ECG segments (MV),
wavelet transform and autoregressive modelling applied in a majority vote fashion over 12 5-minute
long ECG segments (MV2), and using the HRV measures extracted as part of the SepsiVit study
(SV).The classifiers are, in order: Linear Regression (LR), Weighted k-Nearest Neighbors (WkNN),
Näıve Bayes (NB), Linear Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) Random
Forest (RF), and Gradient Boosting Machine (GBM).

HOD HOD∆ HB MV MV2 SV

LR 54.1 ± 14.3 50.5 ± 7.4 59.3 ± 9.4 60.6 ± 10.8 61.0 ± 10.6 63.0 ± 5.2

WkNN 52.8 ± 6.7 50.4 ± 6.6 55.1 ± 6.3 57.1 ± 10.9 57.8 ± 11.2 57.9 ± 5.8

NB 54.8 ± 13.3 49.7 ± 14.3 51.8 ± 10.7 54.0 ± 15.4 53.9 ± 15.9 57.9 ± 5.8

SVM 52.4 ± 13.9 50.5 ± 12.7 60.9± 9.1 62.2± 10.7 62.4± 10.9 65.5± 7.9

MLP 53.8 ± 11.1 43.1 ± 11.9 59.8 ± 12.9 57.1 ± 15.2 56.9 ± 15.9 60.3 ± 8.1

RF 56.3± 12 54.8± 6.7 55.4 ± 7.8 58.2 ± 12.2 58.5 ± 12.8 59.3 ± 6.9

GBM 54.6 ± 8.4 54.4 ± 9.0 57.6 ± 7.8 61.5 ± 13.1 61.9 ± 13.6 61.3 ± 8.5

autoregressive modelling, which was only marginally improved by the majority
vote testing procedures. The Linear Support Vector Machine classifier produced
the best results with the data extracted in this fashion, peaking at 62.4±10.9%
mean classification accuracy.

Overall, the Linear Support Vector Machine was the best classifier, sometimes
beaten by the Random Forest.

6 Conclusion and Future Work

The results presented in the previous section show that none of the attempted
feature extraction methods are superior in their ability to encapsulate differences
between the two classes and similarity among the same class compared to the
HRV features extracted as part of the SepsiVit study [11]. Nonetheless, the results
of this study imply that there is more useful information in the morphological
descriptions of the ECG signal compared to the frequency distributions of the
slopes of high frequency bio-signals.

While there was an increase in classification accuracy obtained by applying
the majority vote testing strategies, the fact that the improvement was as small
as 1.5% indicates that the improvement is only marginal, and given the benefits
of early detection of sepsis induced deterioration [6], a classification strategy
requiring less data such as the standard heart beat classification or the majority
vote across 5-minute ECG segments might be more beneficial for improving
survival rates, compared to one that uses 60-minute ECG segments.

A difficulty encountered in this study was the limited size of the dataset.
The low variability in the bio-signals across the data of each individual patient
makes it so that the diversity in the dataset, and so the capacity of the Machine
Learning algorithms to properly generalise the problem, is entirely dependent on
the amount of different patients included in the study. Since reaching the target of
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the SepsiVit study of 171 patients (i.e. only 30% more than were available for this
research) is likely not going to produce sufficient diversity in the dataset, future
data collection programs are needed to further investigate the predictive potential
of high frequency bio-signals for early detection of sepsis induced deterioration.

Future studies could focus on any of the following points for improvement.
A more complete analysis of the feature extraction methods should be carried
out: new strategies should be tested, and all strategies should be used together
to produce feature vectors containing all features for each bio-signal segment.
An analysis of which features contribute the most to the classification would
then reveal the features that are most relevant towards the early detection of
sepsis induced deterioration. Furthermore, different classifiers should be tested.
Obvious candidates are Recurrent Neural Networks such as LSTMs, widely used
on time series data, which nevertheless require large amounts of data for effective
training, and which as such would depend on a new data collection program.

References

1. M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-Hari, D. Annane,
M. Bauer, R. Bellomo, G. R. Bernard, J. Chiche, C. M. Coopersmith, R. S. Hotchkiss,
M. M. Levy, J. C. Marshall, G. S. Martin, S. M. Opal, G. D. Rubenfeld, T. van der
Poll, J. Vincent, and D. C. Angus. The third international consensus definitions for
sepsis and septic shock (sepsis-3). JAMA, 315(8):801–810, Feb 2016. 26903338[pmid].

2. R. C. Bone, C. J. Fisher, T. P. Clemmer, G. J. Slotman, C. A. Metz, and R. A.
Balk. Sepsis syndrome: a valid clinical entity. Methylprednisolone severe sepsis
study group. Critical Care Medicine, 17(5), May 1989.

3. C. A. Buchan, A. Bravi, and A. J. E. Seely. Variability analysis and the diagnosis,
management, and treatment of sepsis. Current Infectious Disease Reports, 14(5):512–
521, Oct 2012.

4. P. Danai and G. S. Martin. Epidemiology of sepsis: Recent advances. Current
Infectious Disease Reports, 7(5):329–334, Sep 2005.

5. S. W. Glickman, C. B. Cairns, R. M. Otero, C. W. Woods, E. L. Tsalik, R. J.
Langley, J. C. Van Velkinburgh, L. P. Park, L. T. Glickman, V. G. Fowler, S. F.
Kingsmore, and E. P. Rivers. Disease progression in hemodynamically stable
patients presenting to the emergency department with sepsis. Academic Emergency
Medicine, 17(4):383–390.

6. P. G. Brindley, N. Zhu, and W. Sligl. Best evidence in critical care medicine early
antibiotics and survival from septic shock: it’s about time. Canadian Journal of
Anesthesia/Journal canadien d’anesthésie, 53(11):1157–1160, Nov 2006.

7. R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E.
Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally,
S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R.
Machado, G. D. Rubenfeld, S. A. Webb, R. J. Beale, J. Vincent, and R. Moreno.
Surviving sepsis campaign: International guidelines for management of severe sepsis
and septic shock 2012. Critical Care Medicine, 41(2), 2013.

8. J. R. Moorman, W. A. Carlo, J. Kattwinkel, R. L. Schelonka, P. J. Porcelli, C. T.
Navarrete, E. Bancalari, J. L. Aschner, M. Whit Walker, J. A. Perez, C. Palmer,
G. J. Stukenborg, D. E. Lake, and T. Michael O’Shea. Mortality reduction by heart
rate characteristic monitoring in very low birth weight neonates: A randomized
trial. The Journal of Pediatrics, 159(6):900–906.e1, Dec 2011.



14 F. Dal Canton et al.

9. S. Ahmad, T. Ramsay, L. Huebsch, S. Flanagan, S. McDiarmid, I. Batkin, L. McIn-
tyre, S. R. Sundaresan, D. E. Maziak, F. M. Shamji, P. Hebert, D. Fergusson,
A. Tinmouth, and A. J. E. Seely. Continuous multi-parameter heart rate variability
analysis heralds onset of sepsis in adults. PLOS ONE, 4(8):1–10, 08 2009.

10. A. Bravi, G. Green, A. Longtin, and A. J. E. Seely. Monitoring and identification
of sepsis development through a composite measure of heart rate variability. PLoS
One, 7(9):e45666, Sep 2012. PONE-D-12-18432[PII].

11. V. M. Quinten, M. van Meurs, M. H. Renes, J. J. M. Ligtenberg, and J. C. ter
Maaten. Protocol of the SepsiVit study: a prospective observational study to
determine whether continuous heart rate variability measurement during the first
48 hours of hospitalisation provides an early warning for deterioration in patients
presenting with infec. BMJ Open, 7(11), 2017.

12. Z. Qibin and Z. Liqing. ECG feature extraction and classification using wavelet
transform and support vector machines. In 2005 International Conference on
Neural Networks and Brain, volume 2, pages 1089–1092, Oct 2005.

13. M. M. Levy, M. P. Fink, J. C. Marshall, E. Abraham, D. Angus, D. Cook, J. Cohen,
S. M. Opal, J. Vincent, and G. Ramsay. 2001 SCCM/ESICM/ACCP/ATS/SIS
International Sepsis Definitions Conference. Critical Care Medicine, 31(4), 2003.

14. J. F. Cardoso and B. H. Laheld. Equivariant adaptive source separation. IEEE
Transactions on Signal Processing, 44(12):3017–3030, Dec 1996.

15. M. Peltola. Role of editing of R-R intervals in the analysis of heart rate variability.
Frontiers in Physiology, 3:148, 2012.

16. F. Shaffer and J. P. Ginsberg. An overview of heart rate variability metrics and
norms. Front Public Health, 5:258, Sep 2017. 29034226[pmid].

17. M. K. Moridani, S. K. Setarehdan, A. M. Nasrabadi, and E. Hajinasrollah. Non-
linear feature extraction from HRV signal for mortality prediction of ICU cardio-
vascular patient. Journal of Medical Engineering & Technology, 40(3):87–98, 2016.
PMID: 27028609.

18. N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 886–893 vol. 1, June 2005.

19. P. Hamilton. Open source ECG analysis. In Computers in Cardiology, pages
101–104, Sept 2002.

20. S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels. Wavelet transform-based
QRS complex detector. IEEE Transactions on Biomedical Engineering, 46(7):838–
848, July 1999.

21. J. Morlet, G. Arens, E. Fourgeau, and D. Glard. Wave propagation and sampling
theory - Part i: Complex signal and scattering in multilayered media. GEOPHYSICS,
47(2):203–221, 1982.

22. A. Grossmann. Wavelet Transforms and Edge Detection, pages 149–157. Springer
Netherlands, Dordrecht, 1988.

23. G. Lee, F. Wasilewski, R. Gommers, K. Wohlfahrt, A. O’Leary, H. Nahrstaedt, and
Contributors. Pywavelets - wavelet transforms in python, 2006. [Online; accessed
2018].

24. H. Akaike. Information Theory and an Extension of the Maximum Likelihood
Principle, pages 199–213. Springer New York, New York, NY, 1998.

25. I. Jolliffe. Principal Component Analysis, pages 1094–1096. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011.

26. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,



Early Detection of Sepsis Induced Deterioration Using Machine Learning 15

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

27. Q. Li, C. Rajagopalan, and G. D. Clifford. Ventricular fibrillation and tachycardia
classification using a machine learning approach. IEEE Transactions on Biomedical
Engineering, 61(6):1607–1613, June 2014.

28. M. H. Song, J. Lee, S. P. Cho, K. J. Lee, and S. K. Yoo. Support vector machine
based arrhythmia classification using reduced features. International Journal of
Control, Automation, and Systems, 3(4):571–579, 2005.

29. M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Schölkopf. Support vector
machines. IEEE Intelligent Systems and their Applications, 13(4):18–28, July 1998.

30. L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.
31. T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning.

New York, NY, 2009.
32. J. H. Friedman. Greedy function approximation: A gradient boosting machine.

Ann. Statist., 29(5):1189–1232, 10 2001.
33. K. Hechenbichler and K. Schliep. Weighted k-nearest-neighbor techniques and

ordinal classification, 2004. [Online; accessed 2018].
34. D. Kriesel. A Brief Introduction to Neural Networks. 2007.
35. T. Soman and P. O. Bobbie. Classification of arrhythmia using machine learning

techniques. In WSEAS Transactions on Computers, volume 4, pages 548–552, 2005.
36. T. F. Chan, G. H. Golub, and R. J. LeVeque. Updating formulae and a pairwise

algorithm for computing sample variances. In H. Caussinus, P. Ettinger, and
R. Tomassone, editors, COMPSTAT 1982 5th Symposium held at Toulouse 1982,
pages 30–41, Heidelberg, 1982. Physica-Verlag HD.

37. B. M. Asl, S. K. Setarehdan, and M. Mohebbi. Support vector machine-based
arrhythmia classification using reduced features of heart rate variability signal.
Artificial Intelligence in Medicine, 44(1):51–64, 2008.

38. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

39. J. C. Forte, M. A. Wiering, H. R. Bouma, F. Geus, and A. H. Epema. Predicting
long-term mortality with first week post-operative data after coronary artery bypass
grafting using machine learning models. In Finale Doshi-Velez, Jim Fackler, David
Kale, Rajesh Ranganath, Byron Wallace, and Jenna Wiens, editors, Proceedings of
the 2nd Machine Learning for Healthcare Conference, volume 68 of Proceedings of
Machine Learning Research, pages 39–58, Boston, Massachusetts, 18–19 Aug 2017.
PMLR.

40. J. Futoma, S. Hariharan, M. Sendak, N. Brajer, M. Clement, A. Bedoya, C. O’Brien,
and K. Heller. An improved multi-output gaussian process rnn with real-time
validation for early sepsis detection. ArXiv e-prints, aug 2017.

41. K. E. Henry, D. N. Hager, P. J. Pronovost, and S. Saria. A targeted real-time
early warning score (trewscore) for septic shock. Science Translational Medicine,
7(299):299ra122–299ra122, 2015.

42. S. Karpagachelvi, M. Arthanari, and M. Sivakumar. ECG feature extraction
techniques - A survey approach. CoRR, abs/1005.0957, 2010.

43. J. Kim, H. S. Shin, K. Shin, and M. Lee. Robust algorithm for arrhythmia
classification in ecg using extreme learning machine. In Biomedical engineering
online, volume 8, pages 1–12, 2009.

44. A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics
and Computing, 14(3):199–222, Aug 2004.


