
Model-Based Reinforement Learningin Dynami EnvironmentsTehnial Report UU-CS-2002-029Maro A. Wieringmaro�s.uu.nlIntelligent Systems GroupInstitute of Information and Computing SienesUtreht UniversityAbstratWe study using reinforement learning in partiular dynami environ-ments. Our environments an ontain many dynami objets whih makesoptimal planning hard. One way of using information about all dynamiobjets is to expand the state desription, but this results in a high di-mensional poliy spae. Our approah is to instantiate information aboutdynami objets in the model of the environment and to replan usingmodel-based reinforement learning whenever this information hanges.Furthermore, our approah an be ombined with an a-priori model of thehanging parts of the environment, whih enables the agent to optimallyplan a ourse of ation. Results on a navigation task in a Wumpus-likeenvironment with multiple dynami hostile spider agents show that oursystem is able to learn good solutions minimizing the risk of hitting spi-der agents. Further experiments show that the time omplexity of thealgorithm sales well when more information is instantiated in the model.Keywords: Reinforement Learning, Dynami Environments, Model-basedRL, Instantiating Information, Replanning, POMDPs, Wumpus1 IntrodutionReinforement learning. Reinforement learning (Sutton and Barto, 1998;Kaelbling et al., 1996) an be used to learn to ontrol an agent by letting theagent interat with its environment and learn from the obtained feedbak (re-ward signals). Using a trial-and-error proess, a reinforement-learning (RL)agent is able to learn a poliy (or plan) whih optimizes the umulative rewardintake of the agent over time. Reinforement learning has been applied suess-fully in partiular stationary environments suh as in hekers (Samuel, 1959),bakgammon (Tesauro, 1992), and hess (Baxter et al., 1997). Reinforementlearning has also been applied to �nd good solutions for diÆult multi-agentproblems suh as elevator ontrol (Crites and Barto, 1996), network routing(Littman and Boyan, 1993), and traÆ light ontrol (Wiering, 2000). RL hasonly been used few times in single agent non-stationary environments, however.1

Path-planning problems in non-stationary environments are in fat partiallyobservable Markov deision problems (POMDPs) (Lovejoy, 1991), whih areknown to be hard to solve exatly. Dayan and Sejnowski (1996) onentratethemselves on the dual ontrol or exploration problem where there is the needof deteting hanges in a hanging environment, while the agent should at togain as muh reward as possible. Boyan and Littman (2001) use a temporalmodel to take hanges of the environment into aount when omputing a pol-iy. In this paper we are interested in applying RL to learn to ontrol agentsin dynami environments.Dynami environments. Learning in dynami environments is hard,sine the agent needs to stay informed about the status of all dynami ob-jets in the environment. This an be done by augmenting the state spae witha desription of the status of all dynami objets, but this may quikly ause astate spae explosion. Furthermore, the agent may not exatly know the statusof an objet and therefore has to deal with unertain information. Using un-ertain information as part of the state spae is hard, sine it makes the statespae ontinuous and high dimensional.Instantiating information in the model. There exists another methodfor using knowledge about dynami objets: instantiate the information aboutthe dynami objets in the world model and then use the revised world modelto ompute a new poliy. E.g. if a door an be open or losed, and we knowwhether the door is losed, we an set new transition probabilities betweenstates in the world model suh that this information an be used by the agent.One the model is updated using the urrently available information, dynamiprogramming-like algorithms (Bellman, 1957; Moore and Atkeson, 1993) anbe used to ompute a new poliy. In this way, we have an adaptive agentwhih takes urrently known information into aount for omputing ations,and whih replans one the dynami information hanges. This is hard to dowith other planning methods, espeially for losed loop ontrol in stohasti dy-nami environments. Furthermore, the agent ould also instantiate informationreeived by ommuniation whih an be useful for multi-agent reinforementlearning. Although sharing poliies (Tan, 1993) is one way for ooperativemulti-agent learning, ommuniation with instantiating information an alsobe used for non-ooperative or semi ooperative environments.Using prior knowledge. Often reinforement learning is used to learnontrol knowledge from srath, i.e. without using a-priori knowledge. Weknow, however, that the use of some kind of a-priori knowledge an be verybene�ial. For example, if partiular ations are heavily punished we do notwant to explore those ations, but rather reason about the onsequenes of theseations using an a-priori designed model. A-priori knowledge an also be used tomodel a dynami environment so that this knowledge an be presented to the RLagent. This enables the agent to reason about the dynamis of the environmentwhih may be neessary to solve a partiular problem, where problems mayarise one after the other. As an example think about an agent whih is walkingin a ity and uses RL to learn a map of the ity. After some time, the agent mayhave the desire to drink something in a bar. One the agent enters some bar,it ould use an a-priori model of bars to understand whih dynami entities,2

suh as a barkeeper, other ustomers, tables and hairs et. play a role in thebar-setting. So it an use this model, �ll in the atual situation using sensordata (e.g., vision) and ompute a poliy (or plan) to attain its urrent goal. Ifthe agent disovers more information about partiular (dynami) entities, it anagain instantiate this in the model of the urrent bar situation and reomputea poliy. In this way, the RL agent does not need to try all its ations, but aneÆiently ompute a partiular plan suited for the situation at hand. In thispaper, we will also study using a-priori knowledge for learning to solve problemsin dynami partially observable environments.Outline of this report. We will desribe model-based RL in Setion 2.Then using instantiated information is desribed in Setion 3. Then we desribethe experimental setup and results in Setion 4. Setion 5 provides a disussionwhih relates our framework to POMDPs and desribes the limitations of theurrent approah and proposes possible extensions. Finally, Setion 6 onludesthis paper.2 Model-Based Reinforement LearningIn this setion we desribe model-based reinforement learning (MBRL), and inpartiular prioritized sweeping (Moore and Atkeson, 1993; Wiering and Shmid-huber, 1998) whih is used in our urrent experiments. The main reason forusing model-based RL is that instantiating information is possible with thesealgorithms, whereas it is not possible to ombine instantiating information withdiret model-free RL algorithms suh as Q-learning (Watkins, 1989). The rea-son for using prioritized sweeping is that this algorithm is very eÆient inmanaging the neessary updates of the Q-funtion.2.1 Markov Deision ProblemsAlthough we study dynami environments, we use the well-known Markov de-ision proess framework as a model of the environment and task. This meansthat poliies will be omputed based on the urrent state of the Markov de-ision problem. If there are dynami hanges in the environment, we hangethe underlying transition and reward funtions, and reompute the poliy. Thiswill be explained in setion 3.We onsider a �nite set of states S = fS1; S2; : : : ; Sng, a �nite set of ationsA, and disrete time steps t = 1; 2; 3; : : :. Let st denote the state at timet, and at = �(st) the ation, where � represents the agent's poliy mappingstates to ations. The transition funtion P with elements Pij(a) := p(st+1 =jjst = i; at = a) for i; j 2 S de�nes the transition probability to the nextstate st+1 given st and at. A reward funtion R maps state/ation/state tupels(i; a; j) 2 S �A� S to salar reinforement signals R(i; a; j) 2 IR. A disountfator 2 [0; 1℄ disounts later against immediate rewards. The agent's goal isto selet ations whih maximize the expeted long-term umulative disountedreinforement, given an arbitrary state 2 S. For this goal, the agent learnstwo di�erent value funtions. The value V �(i) is a predition of the expeted3

disounted umulative reward to be reeived in the future, given that the agentis urrently in state i and poliy � will be used in the future:V �(i) = E(1Xk=0 kR(sk;�(sk); sk+1)js0 = i)Ation evaluation funtions (Q-funtions) Q�(i; a) return the expeted fu-ture disounted reward for seleting ation a in state i, and subsequently exe-uting poliy �: Q�(i; a) =Xj Pij(a)(R(i; a; j) + V �(j))where V � is de�ned as: V �(i) = maxaQ�(i; a). By setting:�(i) = argmaxaQ�(i; a)for all states i we then iteratively improve the poliy.2.2 Estimating a ModelIn reinforement learning we often do not initially possess a model ontainingthe transition and the reward funtions, and therefore we have to learn thesefrom the observations reeived during the interation with the environment.Induing a model from experienes an be done by ounting the frequeny ofobserved experienes. For this the agent uses the variables:Cij(a) := number of transitions from state i to j after exeuting ation a.Ci (a) := number of times the agent has exeuted ation a in state i.Rij(a) := sum of all immediate rewards reeived after exeuting ation a instate i and stepping to state j.A maximum likelihood model (MLM) is omputed as:P̂ij(a) := Cij(a)Ci(a) and R̂(i; a; j) := Rij(a)Cij(a) (1)After eah experiene the variables are adjusted and the MLM is updated. Indeterministi environments one experiene per state/ation pair (SAP) is suÆ-ient to infer the true underlying model. In stohasti environments, however,we need to explore the e�ets of an ation in a state ad in�nitum.2.3 Prioritized Sweeping (PS)Dynami programming (DP) tehniques (Bellman, 1957) ould immediately beapplied to the estimated model, but online DP, whih updates the ompletevalue funtion with value iteration after eah step, tends to be omputationallyvery expensive. Although o�ine DP whih reomputes the poliy after a om-plete trial, would be more eÆient, online updating is muh better for eÆientexploration and is espeially needed in dynami environment. To speed up on-line DP algorithms in omplex environments, some sort of eÆient update-stepmanagement should be performed. 4

This an be done by prioritized sweeping (PS) (Moore and Atkeson, 1993)whih assigns priorities to updating the Q-values of di�erent state/ation pairs(SAPs) aording to their relative update sizes. Following the update of astate-value, the state's predeessors are inserted in a priority queue. Then thepriority queue is used reursively for bakpropagating the update of the stateswith highest priority.Moore and Atkeson's PS (M+A's PS) alulates the priority of some stateby heking all transitions to updated suessor states and identifying the onewhose update ontribution is largest. Our variant allows for omputing theexat size of updates of state values sine they have been used for updating theQ-values of their predeessors, and yields more appropriate priorities. Unlikeour PS, M+A's PS annot detet large state-value hanges due to many smallupdate steps, and will forget to proess the orresponding states.Our implementation (Wiering, 1999) uses a set of predeessor lists Preds(j)ontaining all predeessor states of state j. We denote the priority of state iby j�(i)j, where the value �(i) equals the hange of V (i) sine the last time itwas proessed by the priority queue. To alulate it, we onstantly update allQ-values of predeessor states of urrently proessed states, and trak hangesof V (i). The details are given below.Our Prioritized Sweeping:1) Promote the most reent state k to thetop of the priority queue2) 8 a do:3 Q(k; a) :=Pj P̂kj(a)(R̂(k; a; j) + V (j))4) While n < Umax AND the queue is not empty5 Remove the top state s from the queue6 �(s) := 07 8 Predeessor states i of s do:8 V 0(i) := V (i)9 8 a do:10 Q(i; a) :=Pj P̂ij(a)(R̂(i; a; j) + V (j))11 V (i) := maxaQ(i; a)12 �(i) := �(i) + V (i)� V 0(i)13 If j�(i)j > �14 Promote i to priority j�(i)j15 n := n+ 1The parameter Umax is the maximal number of updates to be performedper update-sweep. The parameter � 2 IR+ ontrols update auray.3 Instantiating InformationFor partiular environments with dynami objets, the agent should have in-formation about the status (e.g., position) of these objets. One way of usingthis information is to expand the state spae to inlude the state of all dynamiobjets. However, suppose that we possess information about a dynami objet5

in the form of oupany probabilities. Clearly it is not desirable to inludethese oupany probabilities in the state spae, sine this would result in ahigh dimensional ontinuous state spae whih makes planning and the use ofdynami programming-like algorithms hard.Instantiating information. Another way is to instantiate the informa-tion about the dynami objet in the world model. E.g. if we have informa-tion about oupany probabilities of robots in a soer game, we may adjustthe model's transition probabilities to aount for possible hits with obstales.Thus, expeted oupany probabilities of a hostile agent an be used for set-ting transition probabilities to a (possibly terminal) enounter with the hostileagent. In this paper we only study replanning where ollision avoidane playsthe main role. Therefore we model all ollisions with other agents as highlypunished transitions to terminal states. In ase an agent ould pik up objetssuh as a tool (e.g., a hammer) and an perform ations with that tool, theproblem beomes more omplex. In that ase, we need to inlude the objetsas part of the state spae, or we need to have multiple temporal branhes be-tween world models. This may quikly beome intratable, and therefore inthis paper we only onsider terminal hits with dynami objets.1An example of instantiating information. Suppose that the agentreeives new information that the hostile agent has probability p(j) to oupy aspei� state j. If the agent makes a step after whih she meets the hostile agent,she dies. How do we then hange the model to inorporate the informationabout oupany probabilities of the hostile agent? Clearly we have to reset thetransition ounters and reward variables, sine this is what our model onsistsof. We de�ne the transition ounter from state i to some terminal state (H forhit) whih is oupied by a hostile agent if ation A is exeuted as CiH(a). Nowif some state ation pair (i; a) an make a transition to state j with probabilityP̂ij(a) and we know the probability that a hostile agent oupies state j is p(j),we set the transition ounter for modelling transitions from i to the terminalstate H (hit) to:2 CiH(a) := p(j)P̂ij(a)(Coldi (a)� ColdiH (a))1� p(j)P̂ij(a)and Ci(a) := Coldi (a)� ColdiH (a) +CiH(a)In this way the new probability P̂iH(a) will beome p(j)P̂ij(a). We set thereward RiH(a) to Rhit.General algorithm. In ase an ation a from a state i an result in mul-tiple states j all with a di�erent probability of being oupied by the hostileagent, we annot set the transition ounter to one of these transitions imme-diately, but have to sum the transition ounter over all transitions to stateswhih may be oupied by a hostile agent. For this we �rst reset all ounters1In priniple any state transition ould be modelled, as long as there are not novel objetsinvolved whih were not already inluded in the state desription.2If p(j)P̂ij(a) = 1, we set the transition ounter to a very large number.6

to hostile states to 0, and then reompute the ounters using the oupanyprobabilities. The following algorithm does this:Instantiating information :1) For all state-ation pairs (i; a) whih are in apossible area of the hostile agent do:2) Ci(a) := Ci(a)� CiH(a)3) CiH(a) := 04) For all hostile areas D do:5) For all (i; a) pairs whih an lead tosome suessor state k in D do:6) For all suessor states j of (i; a)7) If state j falls inside D with prob.p(j)8) CH := Cij(a)p(j)9) CT := Cij(a)10) pold := CiH(a)=Ci(a)11) pnew := P̂ij(a)CH=CT12) �C := Ci(a)�(pnew+pold)�CiH(a)(1�pnew�pold)13) CiH(a) := CiH(a) + �C14) Ci(a) := Ci(a) + �C15) R̂(i; a;H) := RhitThis algorithm exatly reomputes the desired probabilities:P (Hji; a) =Xs P (i; a; s)P (Hjs)for transitions from a state/ation pair to a hit with some hostile agent (dynamiobstale) and renormalized the other probabilities. Note that rewards R̂(i; a;H)are set to Rhit whih is prede�ned in the reward funtion.Using prioritized sweeping to replan. After we instantiated all newlyavailable information, we store all hanged states at the top of the priorityqueue and use prioritized sweeping to reompute the poliy. This ensures thatthe new information is immediately used.4 ExperimentsWe have exeuted two sets of experiments (Wumpus II and Wumpus III) tovalidate the usefulness of our method. In both experiments we have to dealwith partial observability of the dynami hostile spider agents. In the �rst setof experiments, the agent uses an a-priori model to reason where the dynamihostile agents might be. In the seond set of experiments the agent uses alimited sensor to observe where the hostile agents are. For the seond set ofexperiments we also study time omplexity issues for updating the model afterinstantiating new information. 7

4.1 Wumpus IIThe �rst set of experiments onsists of a number of di�erent experiments. In the�rst experiment we have a small maze and one hostile spider agent, and in theseond experiment we have a larger maze and 5 (10 or 20) moving spider agents.The agent needs to �nd the goal in the least number of steps without hittinga spider. The agent annot see the spider, however. If the agent hits a spiderit dies and knows the region where the spider was. A spider agent oupies apartiular nest and moves randomly around the nest so that all states in theregion of an ative spider nest have the same oupany probability. If the agent�nds an ative nest, the agent an smell whether there is an ative spider inthe region or not. Figure 1 shows the �rst environment used in the experimentswhih onsists of two spider nests. For the region around the spider nest, weuse 25 states. During a trial, the spider moves randomly in the region aroundthe nest. After a trial, the spider may move to a di�erent nest or goes to itsurrent nest.
G

 S

X
X

Figure 1: The maze environment ontaining two spider nests X whih may beused by the spider. The start and goal positions are indiated by S and G. Theregions around the spider nests denote whih states the spider may oupy if ituses a partiular nest. The agent and the spider an move in 4 diretions.4.1.1 The Model of the EnvironmentThe agent knows its exat (X;Y) loation at all times, but annot observethe spider agent. It only knows the exat spider loation when it hits thespider, but then it dies so that information is only partially useful, sine a newtrial starts and the spider is reset to the position of the new ative, possiblyneighboring, spider nest. After eah trial the spider has a partiular probabilityPmove = 1� Pstay of moving to one of the neighboring nests.Modelling oupany probabilities. In the beginning the agent doesnot know where the spider nests are. It has to disover these for itself, butone it hits a spider nest, it remembers its loation in (X;Y) oordinates. The8

a-priori knowledge of the agent onsists of its knowledge of the size of the regionof a spider nest in whih the spider moves randomly, and the probabilities thatthe spider makes a transition to a new neighboring spider nest after eah trial3.The agent uses a probabilisti model of the spider's loation. The oupanyprobabilities P (S spider) are omputed by:P (S spider) =Xi P (Ativei)P (S spiderjAtivei)Here, the agent uses for hostile area i the probabilities: P (Ativei) and the on-ditional probabilitiesP (S spiderjAtivei) to ompute the probabilitiesP (S spider).The probability P (S spiderjAtivei), that a spider oupies a spei� state ifit travels through an ative region, is set to 1M for the M (25) states surround-ing a spider region and 0 to other states. Note that we model the stationarydistribution of the spider's loation.Computing ative nest probabilities. The �rst probability P (Ativei)models the probability that a spider agent oupies a partiular region i andfollows from the properties of the dynami stohasti system. There are severalways to get new information about the state of the system: (1) The agents �ndsa nest and observes whether it is used by a spider or not, (2) The agent hitsthe spider around some nest, (3) A new trial starts, and the agent knows thatthe spider may have migrated to a neighboring nest. In ase the agent �ndsa spider nest, it an see whether the nest is ative or not. In ase the nest isative it sets the probability P (Ativei) to 1.0, and sets the probabilities forthe other nests to 0. If the nest is not ative the agent sets the probabilityP (Ativei) to 0.0 and renormalizes the probabilities of the other nests.Hitting the spider. In the same way, in ase the agent hits the spider,the agent knows that the region in whih it was walking ontained the ativenest, and sets the probability P (Ativei) to 1.0 and the other nest probabilitiesto 0.0. After an enounter with the spider, the agent dies and a new trial isstarted.Transition probabilities between nests. After eah trial, the spidermay hange its nest. In the small maze given above, the spider has probabilityPstay = 0:9 of staying in the same nest and probability 0:1 of moving to theother nest after eah trial. Therefore we reompute the ative nest probabilitiesof the model after eah trial by:P (Ative1) = 0:9P (Ative1) + 0:1P (Ative2)And vie versa for the other nest.Disovering nests. Sine the agent an only set probabilities to non-zerofor nests it has disovered and knows that the spider an only move betweennests whih are loser than a partiular distane Manhattan D (whih is set to 7and de�nes the neighbourhood relation between nests), the probability annotbe exatly omputed in ase the agent has not yet disovered all spider nests.Therefore exploration is important to ensure all spider nests have been found.3Although learning this information is possible, it would require many interations withthe spider or with spider nests and therefore take a very long time.9

Using additional a-priori information. Finally, we use a-priori infor-mation in the form of an initial state transition model. For eah ation in astate (X;Y), we set the transition ounter to 1 for the suessor state (i.e. state(X + 1; Y) for ation East) as if ations were deterministi and no states arebloked. This initial information an be easily obtained and used in ase ofmaze environments, and makes it easier to implement the instantiating infor-mation proedure (to deal with unvisited states whih may ontain a spider).Of ourse, initially the position of the goal and spider's nests are unknown andshould be disovered by the agent. Furthermore, in ase of maze-like environ-ments as in the seond maze (see Figure 3), the initial transition model in themaze is less helpful, sine maze-loations may be oupied. For this maze, wetherefore initialize the transition ounters to 0.0001.4.1.2 Experiments with the Small MazeFirst we have exeuted experiments with the small maze given in Figure 1.Systems. We ompare using the a-priori spider model using instantiatedinformation to using model-based RL without using the spider model and in-stantiated information. The seond algorithm omputes probabilities of hittingthe spider based on previous experienes resulting in a onfrontation with thespider. It does not use any kind of a-priori knowledge. With eah system weperform 10 simulations. The algorithm using prior knowledge has aess to thefollowing information: the number of states in a spider region, the distane Dbetween neighboring spider nests, the probability Pmove = 1 � Pstay of spidertransitions between nests, the knowledge that a spider moves randomly in itsative region, and �nally the initial state transition information to navigate indeterministi empty mazes. Using this information, it keeps trak of the spidermodel whih after a hange in spider oupany probabilities is instantiated inthe agent's world model.Problem desription. The reward for hitting the spider is -5000, thereward for reahing the goal state is 1000. The reward for an individual stepis -1. We experimented with a deterministi environment, with 10% noise, andwith 25% noise. If a noisy ation is exeuted, the agent has probability 25% ofexeuting eah of its ations. Spiders move randomly to neighboring squaresand an ross bloked states (exept for the borders of the maze of ourse).Parameters. After a oarse searh through parameter spae to �nd thebest learning parameters, we used the following setup: We use max-randomexploration with Pexp = 0:5 ! 0:0 (we anneal the exploration probability).The disount fator when using the spider model is set to 0.9999, the disountfator without spider model is set to 0.95. The update auray � is set to 1.0.Finally, the maximal number of updates Umax = 500000 (whih we used tomake almost optimal use of the instantiated information possible).Results. Figure 2(A) shows the average umulative reward in 100 test tri-als after eah 50 steps during the �rst 1000 training steps in the deterministienvironment. Within 1000 steps, both methods have learned to �nd good solu-tions, but using the model results quikly in near optimal performane. Figure2(B) shows the obtained umulative reward intake during eah 100 test trials10

-40000

-20000

0

20000

40000

60000

80000

100000

120000

0 200 400 600 800 1000

A
ve

ra
ge

 r
ew

ar
d

Nr steps

No model 0.0
model 0.0

-20000

0

20000

40000

60000

80000

100000

120000

0 5000 10000 15000 20000

A
ve

ra
ge

 r
ew

ar
d

Nr steps

No model 0.0
Spider model 0.0

No Model 0.25
Spider model 0.25

Figure 2: The results for the small maze environment ontaining two spidernests. (A) shows learning results for the �rst 1000 steps. (B) shows the resultsfor muh longer simulations. Results are averages over 10 simulations.after eah 1000 learning steps of the two di�erent algorithms for the small mazewith deterministi ations and with 25% randomness in the ation seletion.The �gure learly shows that using the spider-model outperforms not using themodel. Basially, the agent an reason about the spider's loation and use itsmarginal information to ompute optimal dynami poliies. Thus, the agentalways prefers to go through the region with the smallest probability of on-taining the spider. This is impossible to learn without using the spider model,although it is learly bene�ial in partiular dynami environments. The sim-ulation for 20,000 steps osts 358 seonds for using the spider model and 12seonds for not using it.Table 1: Results for the systems with (With) and without (No) the spidermodel. Noise refers to the amount of noise in the ation exeution. Goal/Spiderhit refers to the number of test trials resulting in a hit with the goal/spider.Final reward denotes average reward of the last 100 test trials.Model (noise) Goal hit Spider hit Final rewardWith (0.0) 1927 � 8 73 � 8 79K � 10KWith (0.1) 1917 � 12 83 � 12 68K � 9KWith (0.25) 1910 � 41 80 � 19 76K � 11KNo (0.0) 1802 � 20 198 � 20 44K � 31KNo (0.1) 1782 � 20 218 � 20 36K � 23KNo (0.25) 1717 � 24 283 � 24 7K � 25KTable 1 shows the total number of goal hits and spider hits in a total of 2000test trials (100 test trials after eah 1000 steps in a 20,000 step simulation) and11

the average reward intake during the last 100 test trials. The table learlyshows that using the spider model leads to fewer hits (4% vs. 11%) with thespider (and therefore a larger number of times the goal was reahed). It shouldbe mentioned that during the initial trials most hits with spiders are made,and that it is impossible to avoid spider hits ompletely | the position ofthe spider an never remain ompletely known. The table also shows thatadditional randomness does not lead to signi�antly more hits with the spiderwhen the spider model is used, The reason is that the agent learns to irumventthe dangerous region in most trials, and therefore does not su�er muh fromrandom ations whih let the agent stay there longer. Additional randomnessdereases the performane of the RL agent without spider model drastially,however. An interesting phenomena when using the spider model is that inpartiular simulations, the agent has learned a path traversing the spider nest'sloation so that it is able to get more information whether the urrent path issafe (nest is not ative). If not, the agent plans a new path. In our urrentwork we have not exploited this information gain, however, see hapter 5 for apossible extension of the algorithm whih an be used for dual ontrol.4.1.3 Experiments with a Large Maze with Multiple SpidersWe have also experimented with a larger maze of size 50 � 50 (see Figure 3)ontaining 30 possible loations for spider nests, and 5 spiders traversing 30%of the maze. The maze also ontains about 20% randomly distributed blokedstates and 20% penalty states.Reward funtion. For hitting the goal, the agent reeives a reward of2500. For hitting the spider, the reward is -10,000. For hitting a bloked state,the reward is -2, for hitting a penalty state, the reward is -10, and other stepsare rewarded by -1.Parameters. The disount fator when using the model is set to 0.99999whih was used to make almost optimal use of the model possible. The disountfator without spider model whih worked best is 0.99. The exploration ruleMax-Random is used where the probability of seleting a random ation isannealed from 0.5 to 0.0. The maximum number of updates per step is 50,000.The auray parameter � is set to 0.5.Simulation set-up. We perform 10 simulations with eah system. Thenumber of steps in a simulation is 200,000. After eah 1,000 steps the systemsare tested a single trial using a maximum number of 10,000 test ations. Thus,in total there are 200 tests. For these tests we ompute the total number oftimes the goal has been found and the number of times one of the spiders is hit.Results. Table 2 shows the number of times the goal has been found andthe number of times a spider has been hit for di�erent noise levels when Pstayis set to 0.4. The table learly shows that using the spider model leads tomany fewer hits with the spider. The number of hits with a spider is reduedby a fator of 3 when the spider model is used. It is lear that the agent isable to disover spider nests and to use the aquired information to plan pathswhih irumvent going through loations with a large probability of ontaininga spider. We an again observe that more randomness does not lead to worse12

x x

x x x x x x x x x x

xxxx

x x

xxx

x x x x x xx x

x

S

G

Figure 3: The large maze environment ontaining 30 spider nests (indiated byan X in the shaded area) and 5 ative spiders. Blak �elds denote impassablewalls. Dark grey �elds denote penalty �elds.results when the spider model is used (the agent irumvents dangerous regionsaltogether), whereas the results beome muh worse when the spider model isnot used.Table 2: Results for the system with and without using the spider model. Noiserefers to the amount of noise in the ation exeution. Spider hits refers to thenumber of test trials resulting in a hit with the spider.System Noise Goal hits Spider hitsWith Model 0.0 173 � 3 9 � 2With Model 0.1 173 � 5 12 � 4With Model 0.25 173 � 5 11 � 3No Model 0.0 163 � 6 26 � 6No Model 0.1 160 � 6 31 � 7No Model 0.25 152 � 7 42 � 7Table 3 shows the number of times the goal has been found and the numberof times a spider has been hit for values of Pstay where the noise is set to0. It shows that our approah works better when the environment is morepreditable. This indiates that the agent makes eÆient use of the model.Both systems �nd very good solutions to the more deterministi task in whih13

spiders only move around their same unique nests.Table 3: Results for the system with using the spider model for di�erent valuesof the Pstay parameter. Evidently, using a larger value for Pstay leads to morepreditable environments so that the spider model is more aurate.Model (Pstay) Goal hits Spider hits Time (min)With (0.1) 167 � 6 12 � 5 122 � 25With (0.4) 173 � 3 9 � 2 117 � 21With (0.9) 183 � 3 4 � 2 84 � 6With (1.0) 196 � 2 0 � 0 31 � 15No (0.1) 165 � 5 23 � 5 0.5 � 0.2No (0.4) 163 � 6 26 � 6 0.5 � 0.2No (0.9) 168 � 5 19 � 7 0.5 � 0.3No (1.0) 184 � 4 4 � 2 0.2 � 0.0Although instantiating information and replanning works very well, theomputational time is signi�antly larger, sine after eah trial large portionsof the poliy have to be updated. We have not explored using other learn-ing parameters to speed up the learning time, however. In the seond set ofexperiments we study time omplexity issues in more detail.We �nally performed experiments with di�erent numbers of spiders. Table4 show the results for both ompetitors when there are 5, 10, or 20 spiders,Pstay = 0:9 and the randomness in the ation seletion is 0.1.Table 4: Results for the systems for di�erent numbers of spiders.Model Nr. of spiders Goal hits Spider hitsWith 5 190 � 4 4 � 2With 10 169 � 5 16 � 3With 20 132 � 6 37 � 5No 5 164 � 3 29 � 5No 10 121 � 41 69 � 35No 20 85 � 14 112 � 14Table 4 shows that when the spider model is used, the agent an irumventhitting one of the moving spiders in a muh better way than when the modelis not used. This is also true with a large amount of dynami hostile agents.4.2 Wumpus IIIIn the seond set of experiments we study omplexity issues of the updatingalgorithm in more detail. For this we use an agent with a limited sensor forobserving spiders whih are lose to the agent. When the sensor range is en-larged, the agents reeives more information. A sensor range of 5 means thatthe agent observes the spider when the Manhattan distane is less than 5. If aspider is seen, the state and its neighboring states are assumed to be oupied14

with 20% probability. This information is then instantiated in the model. Weagain use the large maze from Figure 3, and the same parameters as in theprevious experiment. The number of spider agents in these experiments is setto 20. We omputed the number of Bellman bakups performed per time stepwith prioritized sweeping and the number of items (hanged states) whih areinstantiated per time step. For plotting �gure 4, we performed one simulationwith one sensor range (from 5 to 35) in whih only 50,000 steps were exeuted.
0

50

100

150

200

10 20 30 40

In
st

an
tia

te
d

O
bs

er
va

tio
ns

Sensor size

Nr instantiations per time step

With Model

0

5000

10000

15000

20000

25000

30000

35000

0 30 60 90 120 150 180

U
pd

at
es

 p
er

 ti
m

e
st

ep

Instantiated Observations

Update complexity behaviors

With Model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 7000 14000 21000 28000 35000

T
im

e
(s

ec
on

ds
)

Updates per time step

Time complexity behavior

With Model

Figure 4: The omplexity results for the large maze when using a limited sen-sor. Results are shown per step (performed ation). (A) shows the number ofinstantiated items (hanged states) for di�erent ranges of the sensor. (B) showshow many updates are performed given the number of instantiated items. (C)shows the time needed to perform all updates per step.Figure 4 shows three �gures whih display two measured variables againsteah other. The variables are: (a) The size of the limited sensor, (b) the averagenumber of instantiated observations (hanged states) per step, () the averagenumber of updates performed per step, and (d) the average time (seonds)needed to perform the updates for one step.4 We an see three things: (1)With a larger sensor range, the number of instantiated items inreases fasterthan linearly. This an be explained by the fat that the number of stateswhih the agent observes sales quadratially with the sensor range. (2) Withmore instantiated items, the number of performed updates to reompute the4The simulations were run on a Ultra Spar 5, 333MHz.15

poliy inreases more or less linearly (although we should mention that themaximal number of updates is set to 50,000). (3) With more updates per step,the time inreases approximately linearly (sine it is the most important fatorin a simulation). The longest experiments take about 1.2 seonds per step onour omputer. Thus, the �gures show that the algorithm sales more or lesslinearly with more instantiated information.More detailed results are shown in Table 5. For these experiments we per-formed 10 simulations in whih 200,000 steps were exeuted. The table showsthat a larger sensor range than 10 does not need to lead to better performane,although the smallest sensor range of 5 performs worst. The reason why verylarge sensors do not work better, is that spiders move around, so it is hard toompute a path for a large number of steps without needing to revise it after-wards. Furthermore, the agent usually fouses on its urrent path. Thus, alimited sensor range an already perform quite well on its own. This is useful,sine a smaller sensor requires muh less omputational time. Finally, one anobserve that the agent still sometimes hits one of the spiders. The reason is thatsquares are only onsidered dangerous if they are the neighboring or urrentsquare of an observed spider. This an ause the agent to get trapped easily,espeially sine it performs 10% noisy ations.Table 5: Results for the system with using the spider model for di�erent sizes ofthe sensor range. The omplete simulation lasts for 200,000 steps. The numberof trials is the total number of test and learning trials.Sensor Range Goal hits Spider hits TrialsWith (5) 183�4 16�4 1335�47With (10) 190�5 9�5 1409�39With (15) 192�3 7�3 1362�103With (20) 192�2 7�2 1423�64With (25) 191�2 8�2 1518�52If we ompare it to using the spider model from the previous experiments(132 goal hits - 37 spider hits) in 200 trials versus (190 goal hits - 9 spider hits)in 200 trials with the sensor of range 10, we an see that the limited sensorperforms muh better than the a-priori reasoning module. The �rst problemwas muh harder, however, sine in the previous experiments spiders ould notbe seen at all, and the agent purely had to rely on previous enounters with aspider or spider nest. Still, both methods perform muh better than not usinginstantiating information at all (85 goal hits - 112 spider hits).5 DisussionPOMDPs. Path-planning problems in environments with dynami obstalesare partially observable Markov deision problems (POMDPs), sine the tran-sition and reward funtions are non-stationary, and there is unertainty aboutthe true state of the world. Usually POMDPs are solved by using a belief vetor16

whih models the probabilities an agent is in eah of the possible states. In aseof an environment with dynami agents, we an use a belief vetor modellingprobabilities of being in eah possible world (with loations of other agents).Solving POMDPs exatly an be done by partiular dynami programming al-gorithms (Lovejoy, 1991; Kaelbling et al., 1998; Littman, 1996) whih omputethe best ation given eah possible belief vetor. However, this approah isintratable when the number of possible worlds is quite large (as in our seondexperimental environment).Using the underlying MDP. There exist a number of heuristi algo-rithms trying to �nd sub-optimal solutions to POMDPs more quikly. Themost relevant to our urrent algorithm is the QMDP value method (Littmanet al., 1995). Here, �rst the MDP is solved, and then the optimal ation isseleted by omputing the sum of the Q-values of possible states times the o-upany probabilities. This algorithm an perform very well (Littman et al.,1995), but is not able to perform ations to obtain information.Our approah. We model the POMDP using a single MDP (possibleworld). Although the dynami agents may be at di�erent plaes, and in realitythere are multiple possible worlds, we use the ertainty equivalene assumptionand set transition probabilities to aount for all possible worlds. In this waywe an use dynami programming tehniques on the single world, otherwisewe would need to solve eah possible world, whih would beome quikly in-tratable. As with QMDP , our method does not take into aount that ationsan be used for gaining information about the environment. In priniple, theMDP is unhanged as long as no additional information is aquired.Computing information values. We an extend our algorithm so thatinformation gains an be omputed and used by the agent. We an omputethe information value of going to a state by instantiating the possible outomesof an observation reeived in this state in the MDP. Given one suh possibleinstantiation, our urrent poliy would obtain a reward whih an be omputedby poliy evaluation. By taking into aount the instantiated information andreomputing the poliy afterwards (by value iteration), we would reeive thereward reeived with the optimal poliy given the observation. By subtratingthe value of the urrent poliy (found by poliy evaluation) of the value of theoptimal poliy (found by value iteration) and weighing these values over allpossible observations, we an ompute the information value of going to thisstate. This will be 0 if no hange to the poliy is made, and large if the urrentpoliy would behave quite bad ompared to the optimal poliy. Then, thisinformation value an be instantiated in the reward funtion for this state, andthe agent an at to gain information. Unfortunately this beomes intratableif the agent wants to explore sequenes of observations.Dual Control. Dayan and Sejnowski (1996) fous on the exploration prob-lem in whih barriers may blok the shortest path with some probability. Theyalso hanged the transition and reward funtions to aount for the dynamiprobabilities of the existene of eah barrier. After this, they used DP toompute a new poliy. Although their approah is similar, our algorithm wasdesigned for modelling dynami agents moving around in the environment andwas made muh more eÆient by using prioritized sweeping. Our algorithm an17

also instantiate information aquired by sensors, ommuniation, or reasoningin the transition and reward funtions, so that the approah is more general.Instantiating Information. Instantiating information is a very usefulproedure for dealing with dynami environments suh as the Wumpus envi-ronments or multi agent systems. We also used instantiating information in(Wiering, 2000) where traÆ light ontrollers ommuniated with eah otherand with ars to determine paths through the traÆ network ontaining theleast number of waiting ars. Here, the number of ars waiting at a next traÆlight was ommuniated and instantiated to ompute the probabilities of endingup at a spei� plae in a queue of ars at the next traÆ light.Dynami Replanning. Multiple researhers have designed dynami re-planning algorithms. Most relevant to our researh is the D� algorithm (Stentz,1995), whih uses A� planning in a dynami way and a fousing tehnique tobakpropagate the e�ets of hanged parts of the environment. Stentz ran ex-periments in deterministi 100�100 and 1000�1000 mazes and found a largeimprovement for only bakpropagating partial state-update values whih mayhange the agent's plan. His method used an heuristi to �nd the goal, however,and annot deal with probabilisti information.Using a-priori knowledge. A-priori knowledge an be used with RL indi�erent ways. It an be used for onstruting the initial behavior to quiklygenerate useful learning experienes. It an also be used for designing thestruture of a funtion approximator, so that instead of having to solve boththe strutural and temporal redit assignment problems, only the temporalredit assignment problem has to be solved. A priori knowledge an be usedfor modelling the deision proess or as a model for solving POMDPs. In thispaper we have studied a new way of using a model of dynami hostile agentsand ompared it to using limited sensors.6 ConlusionWe developed a new adaptive dynami replanning method using reinforementlearning. Our method an learn a model of the environment, and replan ifit observes that the environment has hanged. The method uses model-basedreinforement learning and instantiates dynami information about the envi-ronment in the model so that the agent an reason about the urrent environ-mental state. For eÆieny reasons, we used prioritized sweeping to reomputethe poliy. Our method was suessfully tested on maze problems with partiallyobservable dynami obstales. We �rst used an a-priori reasoning module toreason about possible loations of the hostile spider agents. This method wasshown to be very e�etive in avoiding hitting hostile agents in a partially observ-able path-planning problem. Additional experiments show that the omplexityof the algorithm sales well with the number of items whih is instantiated inthe model. Furthermore, they also show that our method an be ombinede�etively with a limited sensor for observing hostile agents.Future work. For very fast hanging environments, we may need to in-lude time in the state desription (Boyan and Littman, 2001), and our urrent18

method may need too muh omputation. Therefore we need to make Priori-tized Sweeping's update management smarter, taking into aount the positionand plan of the agent. Then, we want to implement and test our novel algo-rithm for omputing information gains for more e�etive exploration and dualontrol.ReferenesBaxter, J., Tridgell, A., and Weaver, L. (1997). Knightap: A hess programthat learns by ombining TD(�) with minimax searh. Tehnial report,Australian National University, Canberra.Bellman, R. (1957). Dynami Programming. Prineton University Press, Prine-ton, New Jersey.Boyan, J. and Littman, M. (2001). Exat solutions to time-dependent MDPs.In Neural Information Proessing Systems (in press). MIT Press.Crites, R. H. and Barto, A. G. (1996). Improving elevator performane usingreinforement learning. In Touretzky, D., Mozer, M., and Hasselmo, M.,editors, Advanes in Neural Information Proessing Systems 8, pages 1017{1023, Cambridge MA. MIT Press.Dayan, P. and Sejnowski, T. J. (1996). Exploration bonuses and dual ontrol.Mahine Learning, 25:5{22.Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning andating in partially observable stohasti domains. Arti�ial Intelligene,101(1-2):99{134.Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforementlearning: A survey. Journal of Arti�ial Intelligene Researh, 4:237{285.Littman, M. L. (1996). Algorithms for Sequential Deision Making. PhD thesis,Brown University, Providene, Rhode Island.Littman, M. L. and Boyan, J. A. (1993). A distributed reinforement learningsheme for network routing. In Alspetor, J., Goodman, R., and Brown, T.,editors, Proeedings of the First International Workshop on Appliationsof Neural Networks to Teleommuniation, pages 45{51, Hillsdale, NewJersey.Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995). Learning poli-ies for partially observable environments: Saling up. In Prieditis, A. andRussell, S., editors, Mahine Learning: Proeedings of the Twelfth Inter-national Conferene, pages 362{370. Morgan Kaufmann Publishers, SanFraniso, CA.Lovejoy, W. S. (1991). A survey of algorithms methods for partially observableMarkov deision proesses. Annals of Operations Researh, 28:47{66.19

Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforementlearning with less data and less time. Mahine Learning, 13:103{130.Samuel, A. L. (1959). Some studies in mahine learning using the game ofhekers. IBM Journal on Researh and Development, 3:210{229.Stentz, A. (1995). The foussed D* algorithm for real-time replanning. InProeedings of the International Joint Conferene on Arti�ial Intelligene.Sutton, R. S. and Barto, A. G. (1998). Reinforement Learning: An Introdu-tion. The MIT press, Cambridge MA, A Bradford Book.Tan, M. (1993). Multi-agent reinforement learning: Independent vs. oop-erative agents. In Proeedings of the Tenth International Conferene onMahine Learning, pages 330{337.http://www.s.brandeis.edu/~aeg/papers/tan.ML93.ps.Tesauro, G. (1992). Pratial issues in temporal di�erene learning. In Lippman,D. S., Moody, J. E., and Touretzky, D. S., editors, Advanes in NeuralInformation Proessing Systems 4, pages 259{266. San Mateo, CA: MorganKaufmann.Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis,King's College, Cambridge, England.Wiering, M. A. (1999). Explorations in EÆient Reinforement Learning. PhDthesis, University of Amsterdam, Amsterdam, The Netherlands.Wiering, M. A. (2000). Multi-agent reinforement learning for traÆ light on-trol. In Langley, P., editor, Proeedings of the Seventeenth InternationalConferene on Mahine Learning, pages 1151{1158.Wiering, M. A. and Shmidhuber, J. H. (1998). EÆient model-based explo-ration. In Meyer, J. A. and Wilson, S. W., editors, Proeedings of theSixth International Conferene on Simulation of Adaptive Behavior: FromAnimals to Animats 6, pages 223{228. MIT Press/Bradford Books.

20

