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ription, but this results in a high di-mensional poli
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e. Our approa
h is to instantiate information aboutdynami
 obje
ts in the model of the environment and to replan usingmodel-based reinfor
ement learning whenever this information 
hanges.Furthermore, our approa
h 
an be 
ombined with an a-priori model of the
hanging parts of the environment, whi
h enables the agent to optimallyplan a 
ourse of a
tion. Results on a navigation task in a Wumpus-likeenvironment with multiple dynami
 hostile spider agents show that oursystem is able to learn good solutions minimizing the risk of hitting spi-der agents. Further experiments show that the time 
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tionReinfor
ement learning. Reinfor
ement learning (Sutton and Barto, 1998;Kaelbling et al., 1996) 
an be used to learn to 
ontrol an agent by letting theagent intera
t with its environment and learn from the obtained feedba
k (re-ward signals). Using a trial-and-error pro
ess, a reinfor
ement-learning (RL)agent is able to learn a poli
y (or plan) whi
h optimizes the 
umulative rewardintake of the agent over time. Reinfor
ement learning has been applied su

ess-fully in parti
ular stationary environments su
h as in 
he
kers (Samuel, 1959),ba
kgammon (Tesauro, 1992), and 
hess (Baxter et al., 1997). Reinfor
ementlearning has also been applied to �nd good solutions for diÆ
ult multi-agentproblems su
h as elevator 
ontrol (Crites and Barto, 1996), network routing(Littman and Boyan, 1993), and traÆ
 light 
ontrol (Wiering, 2000). RL hasonly been used few times in single agent non-stationary environments, however.1



Path-planning problems in non-stationary environments are in fa
t partiallyobservable Markov de
ision problems (POMDPs) (Lovejoy, 1991), whi
h areknown to be hard to solve exa
tly. Dayan and Sejnowski (1996) 
on
entratethemselves on the dual 
ontrol or exploration problem where there is the needof dete
ting 
hanges in a 
hanging environment, while the agent should a
t togain as mu
h reward as possible. Boyan and Littman (2001) use a temporalmodel to take 
hanges of the environment into a

ount when 
omputing a pol-i
y. In this paper we are interested in applying RL to learn to 
ontrol agentsin dynami
 environments.Dynami
 environments. Learning in dynami
 environments is hard,sin
e the agent needs to stay informed about the status of all dynami
 ob-je
ts in the environment. This 
an be done by augmenting the state spa
e witha des
ription of the status of all dynami
 obje
ts, but this may qui
kly 
ause astate spa
e explosion. Furthermore, the agent may not exa
tly know the statusof an obje
t and therefore has to deal with un
ertain information. Using un-
ertain information as part of the state spa
e is hard, sin
e it makes the statespa
e 
ontinuous and high dimensional.Instantiating information in the model. There exists another methodfor using knowledge about dynami
 obje
ts: instantiate the information aboutthe dynami
 obje
ts in the world model and then use the revised world modelto 
ompute a new poli
y. E.g. if a door 
an be open or 
losed, and we knowwhether the door is 
losed, we 
an set new transition probabilities betweenstates in the world model su
h that this information 
an be used by the agent.On
e the model is updated using the 
urrently available information, dynami
programming-like algorithms (Bellman, 1957; Moore and Atkeson, 1993) 
anbe used to 
ompute a new poli
y. In this way, we have an adaptive agentwhi
h takes 
urrently known information into a

ount for 
omputing a
tions,and whi
h replans on
e the dynami
 information 
hanges. This is hard to dowith other planning methods, espe
ially for 
losed loop 
ontrol in sto
hasti
 dy-nami
 environments. Furthermore, the agent 
ould also instantiate informationre
eived by 
ommuni
ation whi
h 
an be useful for multi-agent reinfor
ementlearning. Although sharing poli
ies (Tan, 1993) is one way for 
ooperativemulti-agent learning, 
ommuni
ation with instantiating information 
an alsobe used for non-
ooperative or semi 
ooperative environments.Using prior knowledge. Often reinfor
ement learning is used to learn
ontrol knowledge from s
rat
h, i.e. without using a-priori knowledge. Weknow, however, that the use of some kind of a-priori knowledge 
an be verybene�
ial. For example, if parti
ular a
tions are heavily punished we do notwant to explore those a
tions, but rather reason about the 
onsequen
es of thesea
tions using an a-priori designed model. A-priori knowledge 
an also be used tomodel a dynami
 environment so that this knowledge 
an be presented to the RLagent. This enables the agent to reason about the dynami
s of the environmentwhi
h may be ne
essary to solve a parti
ular problem, where problems mayarise one after the other. As an example think about an agent whi
h is walkingin a 
ity and uses RL to learn a map of the 
ity. After some time, the agent mayhave the desire to drink something in a bar. On
e the agent enters some bar,it 
ould use an a-priori model of bars to understand whi
h dynami
 entities,2



su
h as a barkeeper, other 
ustomers, tables and 
hairs et
. play a role in thebar-setting. So it 
an use this model, �ll in the a
tual situation using sensordata (e.g., vision) and 
ompute a poli
y (or plan) to attain its 
urrent goal. Ifthe agent dis
overs more information about parti
ular (dynami
) entities, it 
anagain instantiate this in the model of the 
urrent bar situation and re
omputea poli
y. In this way, the RL agent does not need to try all its a
tions, but 
aneÆ
iently 
ompute a parti
ular plan suited for the situation at hand. In thispaper, we will also study using a-priori knowledge for learning to solve problemsin dynami
 partially observable environments.Outline of this report. We will des
ribe model-based RL in Se
tion 2.Then using instantiated information is des
ribed in Se
tion 3. Then we des
ribethe experimental setup and results in Se
tion 4. Se
tion 5 provides a dis
ussionwhi
h relates our framework to POMDPs and des
ribes the limitations of the
urrent approa
h and proposes possible extensions. Finally, Se
tion 6 
on
ludesthis paper.2 Model-Based Reinfor
ement LearningIn this se
tion we des
ribe model-based reinfor
ement learning (MBRL), and inparti
ular prioritized sweeping (Moore and Atkeson, 1993; Wiering and S
hmid-huber, 1998) whi
h is used in our 
urrent experiments. The main reason forusing model-based RL is that instantiating information is possible with thesealgorithms, whereas it is not possible to 
ombine instantiating information withdire
t model-free RL algorithms su
h as Q-learning (Watkins, 1989). The rea-son for using prioritized sweeping is that this algorithm is very eÆ
ient inmanaging the ne
essary updates of the Q-fun
tion.2.1 Markov De
ision ProblemsAlthough we study dynami
 environments, we use the well-known Markov de-
ision pro
ess framework as a model of the environment and task. This meansthat poli
ies will be 
omputed based on the 
urrent state of the Markov de-
ision problem. If there are dynami
 
hanges in the environment, we 
hangethe underlying transition and reward fun
tions, and re
ompute the poli
y. Thiswill be explained in se
tion 3.We 
onsider a �nite set of states S = fS1; S2; : : : ; Sng, a �nite set of a
tionsA, and dis
rete time steps t = 1; 2; 3; : : :. Let st denote the state at timet, and at = �(st) the a
tion, where � represents the agent's poli
y mappingstates to a
tions. The transition fun
tion P with elements Pij(a) := p(st+1 =jjst = i; at = a) for i; j 2 S de�nes the transition probability to the nextstate st+1 given st and at. A reward fun
tion R maps state/a
tion/state tupels(i; a; j) 2 S �A� S to s
alar reinfor
ement signals R(i; a; j) 2 IR. A dis
ountfa
tor 
 2 [0; 1℄ dis
ounts later against immediate rewards. The agent's goal isto sele
t a
tions whi
h maximize the expe
ted long-term 
umulative dis
ountedreinfor
ement, given an arbitrary state 2 S. For this goal, the agent learnstwo di�erent value fun
tions. The value V �(i) is a predi
tion of the expe
ted3



dis
ounted 
umulative reward to be re
eived in the future, given that the agentis 
urrently in state i and poli
y � will be used in the future:V �(i) = E( 1Xk=0 
kR(sk;�(sk); sk+1)js0 = i)A
tion evaluation fun
tions (Q-fun
tions) Q�(i; a) return the expe
ted fu-ture dis
ounted reward for sele
ting a
tion a in state i, and subsequently exe-
uting poli
y �: Q�(i; a) =Xj Pij(a)(R(i; a; j) + 
V �(j))where V � is de�ned as: V �(i) = maxaQ�(i; a). By setting:�(i) = argmaxaQ�(i; a)for all states i we then iteratively improve the poli
y.2.2 Estimating a ModelIn reinfor
ement learning we often do not initially possess a model 
ontainingthe transition and the reward fun
tions, and therefore we have to learn thesefrom the observations re
eived during the intera
tion with the environment.Indu
ing a model from experien
es 
an be done by 
ounting the frequen
y ofobserved experien
es. For this the agent uses the variables:Cij(a) := number of transitions from state i to j after exe
uting a
tion a.Ci (a) := number of times the agent has exe
uted a
tion a in state i.Rij(a) := sum of all immediate rewards re
eived after exe
uting a
tion a instate i and stepping to state j.A maximum likelihood model (MLM) is 
omputed as:P̂ij(a) := Cij(a)Ci(a) and R̂(i; a; j) := Rij(a)Cij(a) (1)After ea
h experien
e the variables are adjusted and the MLM is updated. Indeterministi
 environments one experien
e per state/a
tion pair (SAP) is suÆ-
ient to infer the true underlying model. In sto
hasti
 environments, however,we need to explore the e�e
ts of an a
tion in a state ad in�nitum.2.3 Prioritized Sweeping (PS)Dynami
 programming (DP) te
hniques (Bellman, 1957) 
ould immediately beapplied to the estimated model, but online DP, whi
h updates the 
ompletevalue fun
tion with value iteration after ea
h step, tends to be 
omputationallyvery expensive. Although o�ine DP whi
h re
omputes the poli
y after a 
om-plete trial, would be more eÆ
ient, online updating is mu
h better for eÆ
ientexploration and is espe
ially needed in dynami
 environment. To speed up on-line DP algorithms in 
omplex environments, some sort of eÆ
ient update-stepmanagement should be performed. 4



This 
an be done by prioritized sweeping (PS) (Moore and Atkeson, 1993)whi
h assigns priorities to updating the Q-values of di�erent state/a
tion pairs(SAPs) a

ording to their relative update sizes. Following the update of astate-value, the state's prede
essors are inserted in a priority queue. Then thepriority queue is used re
ursively for ba
kpropagating the update of the stateswith highest priority.Moore and Atkeson's PS (M+A's PS) 
al
ulates the priority of some stateby 
he
king all transitions to updated su

essor states and identifying the onewhose update 
ontribution is largest. Our variant allows for 
omputing theexa
t size of updates of state values sin
e they have been used for updating theQ-values of their prede
essors, and yields more appropriate priorities. Unlikeour PS, M+A's PS 
annot dete
t large state-value 
hanges due to many smallupdate steps, and will forget to pro
ess the 
orresponding states.Our implementation (Wiering, 1999) uses a set of prede
essor lists Preds(j)
ontaining all prede
essor states of state j. We denote the priority of state iby j�(i)j, where the value �(i) equals the 
hange of V (i) sin
e the last time itwas pro
essed by the priority queue. To 
al
ulate it, we 
onstantly update allQ-values of prede
essor states of 
urrently pro
essed states, and tra
k 
hangesof V (i). The details are given below.Our Prioritized Sweeping:1) Promote the most re
ent state k to thetop of the priority queue2) 8 a do:3 Q(k; a) :=Pj P̂kj(a)(R̂(k; a; j) + 
V (j))4) While n < Umax AND the queue is not empty5 Remove the top state s from the queue6 �(s) := 07 8 Prede
essor states i of s do:8 V 0(i) := V (i)9 8 a do:10 Q(i; a) :=Pj P̂ij(a)(R̂(i; a; j) + 
V (j))11 V (i) := maxaQ(i; a)12 �(i) := �(i) + V (i)� V 0(i)13 If j�(i)j > �14 Promote i to priority j�(i)j15 n := n+ 1The parameter Umax is the maximal number of updates to be performedper update-sweep. The parameter � 2 IR+ 
ontrols update a

ura
y.3 Instantiating InformationFor parti
ular environments with dynami
 obje
ts, the agent should have in-formation about the status (e.g., position) of these obje
ts. One way of usingthis information is to expand the state spa
e to in
lude the state of all dynami
obje
ts. However, suppose that we possess information about a dynami
 obje
t5



in the form of o

upan
y probabilities. Clearly it is not desirable to in
ludethese o

upan
y probabilities in the state spa
e, sin
e this would result in ahigh dimensional 
ontinuous state spa
e whi
h makes planning and the use ofdynami
 programming-like algorithms hard.Instantiating information. Another way is to instantiate the informa-tion about the dynami
 obje
t in the world model. E.g. if we have informa-tion about o

upan
y probabilities of robots in a so

er game, we may adjustthe model's transition probabilities to a

ount for possible hits with obsta
les.Thus, expe
ted o

upan
y probabilities of a hostile agent 
an be used for set-ting transition probabilities to a (possibly terminal) en
ounter with the hostileagent. In this paper we only study replanning where 
ollision avoidan
e playsthe main role. Therefore we model all 
ollisions with other agents as highlypunished transitions to terminal states. In 
ase an agent 
ould pi
k up obje
tssu
h as a tool (e.g., a hammer) and 
an perform a
tions with that tool, theproblem be
omes more 
omplex. In that 
ase, we need to in
lude the obje
tsas part of the state spa
e, or we need to have multiple temporal bran
hes be-tween world models. This may qui
kly be
ome intra
table, and therefore inthis paper we only 
onsider terminal hits with dynami
 obje
ts.1An example of instantiating information. Suppose that the agentre
eives new information that the hostile agent has probability p(j) to o

upy aspe
i�
 state j. If the agent makes a step after whi
h she meets the hostile agent,she dies. How do we then 
hange the model to in
orporate the informationabout o

upan
y probabilities of the hostile agent? Clearly we have to reset thetransition 
ounters and reward variables, sin
e this is what our model 
onsistsof. We de�ne the transition 
ounter from state i to some terminal state (H forhit) whi
h is o

upied by a hostile agent if a
tion A is exe
uted as CiH(a). Nowif some state a
tion pair (i; a) 
an make a transition to state j with probabilityP̂ij(a) and we know the probability that a hostile agent o

upies state j is p(j),we set the transition 
ounter for modelling transitions from i to the terminalstate H (hit) to:2 CiH(a) := p(j)P̂ij(a)(Coldi (a)� ColdiH (a))1� p(j)P̂ij(a)and Ci(a) := Coldi (a)� ColdiH (a) +CiH(a)In this way the new probability P̂iH(a) will be
ome p(j)P̂ij(a). We set thereward RiH(a) to Rhit.General algorithm. In 
ase an a
tion a from a state i 
an result in mul-tiple states j all with a di�erent probability of being o

upied by the hostileagent, we 
annot set the transition 
ounter to one of these transitions imme-diately, but have to sum the transition 
ounter over all transitions to stateswhi
h may be o

upied by a hostile agent. For this we �rst reset all 
ounters1In prin
iple any state transition 
ould be modelled, as long as there are not novel obje
tsinvolved whi
h were not already in
luded in the state des
ription.2If p(j)P̂ij(a) = 1, we set the transition 
ounter to a very large number.6



to hostile states to 0, and then re
ompute the 
ounters using the o

upan
yprobabilities. The following algorithm does this:Instantiating information :1) For all state-a
tion pairs (i; a) whi
h are in apossible area of the hostile agent do:2) Ci(a) := Ci(a)� CiH(a)3) CiH(a) := 04) For all hostile areas D do:5) For all (i; a) pairs whi
h 
an lead tosome su

essor state k in D do:6) For all su

essor states j of (i; a)7) If state j falls inside D with prob.p(j)8) CH := Cij(a)p(j)9) CT := Cij(a)10) pold := CiH(a)=Ci(a)11) pnew := P̂ij(a)CH=CT12) �C := Ci(a)�(pnew+pold)�CiH(a)(1�pnew�pold)13) CiH(a) := CiH(a) + �C14) Ci(a) := Ci(a) + �C15) R̂(i; a;H) := RhitThis algorithm exa
tly re
omputes the desired probabilities:P (Hji; a) =Xs P (i; a; s)P (Hjs)for transitions from a state/a
tion pair to a hit with some hostile agent (dynami
obsta
le) and renormalized the other probabilities. Note that rewards R̂(i; a;H)are set to Rhit whi
h is prede�ned in the reward fun
tion.Using prioritized sweeping to replan. After we instantiated all newlyavailable information, we store all 
hanged states at the top of the priorityqueue and use prioritized sweeping to re
ompute the poli
y. This ensures thatthe new information is immediately used.4 ExperimentsWe have exe
uted two sets of experiments (Wumpus II and Wumpus III) tovalidate the usefulness of our method. In both experiments we have to dealwith partial observability of the dynami
 hostile spider agents. In the �rst setof experiments, the agent uses an a-priori model to reason where the dynami
hostile agents might be. In the se
ond set of experiments the agent uses alimited sensor to observe where the hostile agents are. For the se
ond set ofexperiments we also study time 
omplexity issues for updating the model afterinstantiating new information. 7



4.1 Wumpus IIThe �rst set of experiments 
onsists of a number of di�erent experiments. In the�rst experiment we have a small maze and one hostile spider agent, and in these
ond experiment we have a larger maze and 5 (10 or 20) moving spider agents.The agent needs to �nd the goal in the least number of steps without hittinga spider. The agent 
annot see the spider, however. If the agent hits a spiderit dies and knows the region where the spider was. A spider agent o

upies aparti
ular nest and moves randomly around the nest so that all states in theregion of an a
tive spider nest have the same o

upan
y probability. If the agent�nds an a
tive nest, the agent 
an smell whether there is an a
tive spider inthe region or not. Figure 1 shows the �rst environment used in the experimentswhi
h 
onsists of two spider nests. For the region around the spider nest, weuse 25 states. During a trial, the spider moves randomly in the region aroundthe nest. After a trial, the spider may move to a di�erent nest or goes to its
urrent nest.
G

 S

X
X

Figure 1: The maze environment 
ontaining two spider nests X whi
h may beused by the spider. The start and goal positions are indi
ated by S and G. Theregions around the spider nests denote whi
h states the spider may o

upy if ituses a parti
ular nest. The agent and the spider 
an move in 4 dire
tions.4.1.1 The Model of the EnvironmentThe agent knows its exa
t (X;Y ) lo
ation at all times, but 
annot observethe spider agent. It only knows the exa
t spider lo
ation when it hits thespider, but then it dies so that information is only partially useful, sin
e a newtrial starts and the spider is reset to the position of the new a
tive, possiblyneighboring, spider nest. After ea
h trial the spider has a parti
ular probabilityPmove = 1� Pstay of moving to one of the neighboring nests.Modelling o

upan
y probabilities. In the beginning the agent doesnot know where the spider nests are. It has to dis
over these for itself, buton
e it hits a spider nest, it remembers its lo
ation in (X;Y ) 
oordinates. The8



a-priori knowledge of the agent 
onsists of its knowledge of the size of the regionof a spider nest in whi
h the spider moves randomly, and the probabilities thatthe spider makes a transition to a new neighboring spider nest after ea
h trial3.The agent uses a probabilisti
 model of the spider's lo
ation. The o

upan
yprobabilities P (S spider) are 
omputed by:P (S spider) =Xi P (A
tivei)P (S spiderjA
tivei)Here, the agent uses for hostile area i the probabilities: P (A
tivei) and the 
on-ditional probabilitiesP (S spiderjA
tivei) to 
ompute the probabilitiesP (S spider).The probability P (S spiderjA
tivei), that a spider o

upies a spe
i�
 state ifit travels through an a
tive region, is set to 1M for the M (25) states surround-ing a spider region and 0 to other states. Note that we model the stationarydistribution of the spider's lo
ation.Computing a
tive nest probabilities. The �rst probability P (A
tivei)models the probability that a spider agent o

upies a parti
ular region i andfollows from the properties of the dynami
 sto
hasti
 system. There are severalways to get new information about the state of the system: (1) The agents �ndsa nest and observes whether it is used by a spider or not, (2) The agent hitsthe spider around some nest, (3) A new trial starts, and the agent knows thatthe spider may have migrated to a neighboring nest. In 
ase the agent �ndsa spider nest, it 
an see whether the nest is a
tive or not. In 
ase the nest isa
tive it sets the probability P (A
tivei) to 1.0, and sets the probabilities forthe other nests to 0. If the nest is not a
tive the agent sets the probabilityP (A
tivei) to 0.0 and renormalizes the probabilities of the other nests.Hitting the spider. In the same way, in 
ase the agent hits the spider,the agent knows that the region in whi
h it was walking 
ontained the a
tivenest, and sets the probability P (A
tivei) to 1.0 and the other nest probabilitiesto 0.0. After an en
ounter with the spider, the agent dies and a new trial isstarted.Transition probabilities between nests. After ea
h trial, the spidermay 
hange its nest. In the small maze given above, the spider has probabilityPstay = 0:9 of staying in the same nest and probability 0:1 of moving to theother nest after ea
h trial. Therefore we re
ompute the a
tive nest probabilitiesof the model after ea
h trial by:P (A
tive1) = 0:9P (A
tive1) + 0:1P (A
tive2)And vi
e versa for the other nest.Dis
overing nests. Sin
e the agent 
an only set probabilities to non-zerofor nests it has dis
overed and knows that the spider 
an only move betweennests whi
h are 
loser than a parti
ular distan
e Manhattan D (whi
h is set to 7and de�nes the neighbourhood relation between nests), the probability 
annotbe exa
tly 
omputed in 
ase the agent has not yet dis
overed all spider nests.Therefore exploration is important to ensure all spider nests have been found.3Although learning this information is possible, it would require many intera
tions withthe spider or with spider nests and therefore take a very long time.9



Using additional a-priori information. Finally, we use a-priori infor-mation in the form of an initial state transition model. For ea
h a
tion in astate (X;Y ), we set the transition 
ounter to 1 for the su

essor state (i.e. state(X + 1; Y ) for a
tion East) as if a
tions were deterministi
 and no states areblo
ked. This initial information 
an be easily obtained and used in 
ase ofmaze environments, and makes it easier to implement the instantiating infor-mation pro
edure (to deal with unvisited states whi
h may 
ontain a spider).Of 
ourse, initially the position of the goal and spider's nests are unknown andshould be dis
overed by the agent. Furthermore, in 
ase of maze-like environ-ments as in the se
ond maze (see Figure 3), the initial transition model in themaze is less helpful, sin
e maze-lo
ations may be o

upied. For this maze, wetherefore initialize the transition 
ounters to 0.0001.4.1.2 Experiments with the Small MazeFirst we have exe
uted experiments with the small maze given in Figure 1.Systems. We 
ompare using the a-priori spider model using instantiatedinformation to using model-based RL without using the spider model and in-stantiated information. The se
ond algorithm 
omputes probabilities of hittingthe spider based on previous experien
es resulting in a 
onfrontation with thespider. It does not use any kind of a-priori knowledge. With ea
h system weperform 10 simulations. The algorithm using prior knowledge has a

ess to thefollowing information: the number of states in a spider region, the distan
e Dbetween neighboring spider nests, the probability Pmove = 1 � Pstay of spidertransitions between nests, the knowledge that a spider moves randomly in itsa
tive region, and �nally the initial state transition information to navigate indeterministi
 empty mazes. Using this information, it keeps tra
k of the spidermodel whi
h after a 
hange in spider o

upan
y probabilities is instantiated inthe agent's world model.Problem des
ription. The reward for hitting the spider is -5000, thereward for rea
hing the goal state is 1000. The reward for an individual stepis -1. We experimented with a deterministi
 environment, with 10% noise, andwith 25% noise. If a noisy a
tion is exe
uted, the agent has probability 25% ofexe
uting ea
h of its a
tions. Spiders move randomly to neighboring squaresand 
an 
ross blo
ked states (ex
ept for the borders of the maze of 
ourse).Parameters. After a 
oarse sear
h through parameter spa
e to �nd thebest learning parameters, we used the following setup: We use max-randomexploration with Pexp = 0:5 ! 0:0 (we anneal the exploration probability).The dis
ount fa
tor 
 when using the spider model is set to 0.9999, the dis
ountfa
tor without spider model is set to 0.95. The update a

ura
y � is set to 1.0.Finally, the maximal number of updates Umax = 500000 (whi
h we used tomake almost optimal use of the instantiated information possible).Results. Figure 2(A) shows the average 
umulative reward in 100 test tri-als after ea
h 50 steps during the �rst 1000 training steps in the deterministi
environment. Within 1000 steps, both methods have learned to �nd good solu-tions, but using the model results qui
kly in near optimal performan
e. Figure2(B) shows the obtained 
umulative reward intake during ea
h 100 test trials10
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Figure 2: The results for the small maze environment 
ontaining two spidernests. (A) shows learning results for the �rst 1000 steps. (B) shows the resultsfor mu
h longer simulations. Results are averages over 10 simulations.after ea
h 1000 learning steps of the two di�erent algorithms for the small mazewith deterministi
 a
tions and with 25% randomness in the a
tion sele
tion.The �gure 
learly shows that using the spider-model outperforms not using themodel. Basi
ally, the agent 
an reason about the spider's lo
ation and use itsmarginal information to 
ompute optimal dynami
 poli
ies. Thus, the agentalways prefers to go through the region with the smallest probability of 
on-taining the spider. This is impossible to learn without using the spider model,although it is 
learly bene�
ial in parti
ular dynami
 environments. The sim-ulation for 20,000 steps 
osts 358 se
onds for using the spider model and 12se
onds for not using it.Table 1: Results for the systems with (With) and without (No) the spidermodel. Noise refers to the amount of noise in the a
tion exe
ution. Goal/Spiderhit refers to the number of test trials resulting in a hit with the goal/spider.Final reward denotes average reward of the last 100 test trials.Model (noise) Goal hit Spider hit Final rewardWith (0.0) 1927 � 8 73 � 8 79K � 10KWith (0.1) 1917 � 12 83 � 12 68K � 9KWith (0.25) 1910 � 41 80 � 19 76K � 11KNo (0.0) 1802 � 20 198 � 20 44K � 31KNo (0.1) 1782 � 20 218 � 20 36K � 23KNo (0.25) 1717 � 24 283 � 24 7K � 25KTable 1 shows the total number of goal hits and spider hits in a total of 2000test trials (100 test trials after ea
h 1000 steps in a 20,000 step simulation) and11



the average reward intake during the last 100 test trials. The table 
learlyshows that using the spider model leads to fewer hits (4% vs. 11%) with thespider (and therefore a larger number of times the goal was rea
hed). It shouldbe mentioned that during the initial trials most hits with spiders are made,and that it is impossible to avoid spider hits 
ompletely | the position ofthe spider 
an never remain 
ompletely known. The table also shows thatadditional randomness does not lead to signi�
antly more hits with the spiderwhen the spider model is used, The reason is that the agent learns to 
ir
umventthe dangerous region in most trials, and therefore does not su�er mu
h fromrandom a
tions whi
h let the agent stay there longer. Additional randomnessde
reases the performan
e of the RL agent without spider model drasti
ally,however. An interesting phenomena when using the spider model is that inparti
ular simulations, the agent has learned a path traversing the spider nest'slo
ation so that it is able to get more information whether the 
urrent path issafe (nest is not a
tive). If not, the agent plans a new path. In our 
urrentwork we have not exploited this information gain, however, see 
hapter 5 for apossible extension of the algorithm whi
h 
an be used for dual 
ontrol.4.1.3 Experiments with a Large Maze with Multiple SpidersWe have also experimented with a larger maze of size 50 � 50 (see Figure 3)
ontaining 30 possible lo
ations for spider nests, and 5 spiders traversing 30%of the maze. The maze also 
ontains about 20% randomly distributed blo
kedstates and 20% penalty states.Reward fun
tion. For hitting the goal, the agent re
eives a reward of2500. For hitting the spider, the reward is -10,000. For hitting a blo
ked state,the reward is -2, for hitting a penalty state, the reward is -10, and other stepsare rewarded by -1.Parameters. The dis
ount fa
tor when using the model is set to 0.99999whi
h was used to make almost optimal use of the model possible. The dis
ountfa
tor without spider model whi
h worked best is 0.99. The exploration ruleMax-Random is used where the probability of sele
ting a random a
tion isannealed from 0.5 to 0.0. The maximum number of updates per step is 50,000.The a

ura
y parameter � is set to 0.5.Simulation set-up. We perform 10 simulations with ea
h system. Thenumber of steps in a simulation is 200,000. After ea
h 1,000 steps the systemsare tested a single trial using a maximum number of 10,000 test a
tions. Thus,in total there are 200 tests. For these tests we 
ompute the total number oftimes the goal has been found and the number of times one of the spiders is hit.Results. Table 2 shows the number of times the goal has been found andthe number of times a spider has been hit for di�erent noise levels when Pstayis set to 0.4. The table 
learly shows that using the spider model leads tomany fewer hits with the spider. The number of hits with a spider is redu
edby a fa
tor of 3 when the spider model is used. It is 
lear that the agent isable to dis
over spider nests and to use the a
quired information to plan pathswhi
h 
ir
umvent going through lo
ations with a large probability of 
ontaininga spider. We 
an again observe that more randomness does not lead to worse12
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Figure 3: The large maze environment 
ontaining 30 spider nests (indi
ated byan X in the shaded area) and 5 a
tive spiders. Bla
k �elds denote impassablewalls. Dark grey �elds denote penalty �elds.results when the spider model is used (the agent 
ir
umvents dangerous regionsaltogether), whereas the results be
ome mu
h worse when the spider model isnot used.Table 2: Results for the system with and without using the spider model. Noiserefers to the amount of noise in the a
tion exe
ution. Spider hits refers to thenumber of test trials resulting in a hit with the spider.System Noise Goal hits Spider hitsWith Model 0.0 173 � 3 9 � 2With Model 0.1 173 � 5 12 � 4With Model 0.25 173 � 5 11 � 3No Model 0.0 163 � 6 26 � 6No Model 0.1 160 � 6 31 � 7No Model 0.25 152 � 7 42 � 7Table 3 shows the number of times the goal has been found and the numberof times a spider has been hit for values of Pstay where the noise is set to0. It shows that our approa
h works better when the environment is morepredi
table. This indi
ates that the agent makes eÆ
ient use of the model.Both systems �nd very good solutions to the more deterministi
 task in whi
h13



spiders only move around their same unique nests.Table 3: Results for the system with using the spider model for di�erent valuesof the Pstay parameter. Evidently, using a larger value for Pstay leads to morepredi
table environments so that the spider model is more a

urate.Model (Pstay) Goal hits Spider hits Time (min)With (0.1) 167 � 6 12 � 5 122 � 25With (0.4) 173 � 3 9 � 2 117 � 21With (0.9) 183 � 3 4 � 2 84 � 6With (1.0) 196 � 2 0 � 0 31 � 15No (0.1) 165 � 5 23 � 5 0.5 � 0.2No (0.4) 163 � 6 26 � 6 0.5 � 0.2No (0.9) 168 � 5 19 � 7 0.5 � 0.3No (1.0) 184 � 4 4 � 2 0.2 � 0.0Although instantiating information and replanning works very well, the
omputational time is signi�
antly larger, sin
e after ea
h trial large portionsof the poli
y have to be updated. We have not explored using other learn-ing parameters to speed up the learning time, however. In the se
ond set ofexperiments we study time 
omplexity issues in more detail.We �nally performed experiments with di�erent numbers of spiders. Table4 show the results for both 
ompetitors when there are 5, 10, or 20 spiders,Pstay = 0:9 and the randomness in the a
tion sele
tion is 0.1.Table 4: Results for the systems for di�erent numbers of spiders.Model Nr. of spiders Goal hits Spider hitsWith 5 190 � 4 4 � 2With 10 169 � 5 16 � 3With 20 132 � 6 37 � 5No 5 164 � 3 29 � 5No 10 121 � 41 69 � 35No 20 85 � 14 112 � 14Table 4 shows that when the spider model is used, the agent 
an 
ir
umventhitting one of the moving spiders in a mu
h better way than when the modelis not used. This is also true with a large amount of dynami
 hostile agents.4.2 Wumpus IIIIn the se
ond set of experiments we study 
omplexity issues of the updatingalgorithm in more detail. For this we use an agent with a limited sensor forobserving spiders whi
h are 
lose to the agent. When the sensor range is en-larged, the agents re
eives more information. A sensor range of 5 means thatthe agent observes the spider when the Manhattan distan
e is less than 5. If aspider is seen, the state and its neighboring states are assumed to be o

upied14



with 20% probability. This information is then instantiated in the model. Weagain use the large maze from Figure 3, and the same parameters as in theprevious experiment. The number of spider agents in these experiments is setto 20. We 
omputed the number of Bellman ba
kups performed per time stepwith prioritized sweeping and the number of items (
hanged states) whi
h areinstantiated per time step. For plotting �gure 4, we performed one simulationwith one sensor range (from 5 to 35) in whi
h only 50,000 steps were exe
uted.
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Figure 4: The 
omplexity results for the large maze when using a limited sen-sor. Results are shown per step (performed a
tion). (A) shows the number ofinstantiated items (
hanged states) for di�erent ranges of the sensor. (B) showshow many updates are performed given the number of instantiated items. (C)shows the time needed to perform all updates per step.Figure 4 shows three �gures whi
h display two measured variables againstea
h other. The variables are: (a) The size of the limited sensor, (b) the averagenumber of instantiated observations (
hanged states) per step, (
) the averagenumber of updates performed per step, and (d) the average time (se
onds)needed to perform the updates for one step.4 We 
an see three things: (1)With a larger sensor range, the number of instantiated items in
reases fasterthan linearly. This 
an be explained by the fa
t that the number of stateswhi
h the agent observes s
ales quadrati
ally with the sensor range. (2) Withmore instantiated items, the number of performed updates to re
ompute the4The simulations were run on a Ultra Spar
 5, 333MHz.15



poli
y in
reases more or less linearly (although we should mention that themaximal number of updates is set to 50,000). (3) With more updates per step,the time in
reases approximately linearly (sin
e it is the most important fa
torin a simulation). The longest experiments take about 1.2 se
onds per step onour 
omputer. Thus, the �gures show that the algorithm s
ales more or lesslinearly with more instantiated information.More detailed results are shown in Table 5. For these experiments we per-formed 10 simulations in whi
h 200,000 steps were exe
uted. The table showsthat a larger sensor range than 10 does not need to lead to better performan
e,although the smallest sensor range of 5 performs worst. The reason why verylarge sensors do not work better, is that spiders move around, so it is hard to
ompute a path for a large number of steps without needing to revise it after-wards. Furthermore, the agent usually fo
uses on its 
urrent path. Thus, alimited sensor range 
an already perform quite well on its own. This is useful,sin
e a smaller sensor requires mu
h less 
omputational time. Finally, one 
anobserve that the agent still sometimes hits one of the spiders. The reason is thatsquares are only 
onsidered dangerous if they are the neighboring or 
urrentsquare of an observed spider. This 
an 
ause the agent to get trapped easily,espe
ially sin
e it performs 10% noisy a
tions.Table 5: Results for the system with using the spider model for di�erent sizes ofthe sensor range. The 
omplete simulation lasts for 200,000 steps. The numberof trials is the total number of test and learning trials.Sensor Range Goal hits Spider hits TrialsWith (5) 183�4 16�4 1335�47With (10) 190�5 9�5 1409�39With (15) 192�3 7�3 1362�103With (20) 192�2 7�2 1423�64With (25) 191�2 8�2 1518�52If we 
ompare it to using the spider model from the previous experiments(132 goal hits - 37 spider hits) in 200 trials versus (190 goal hits - 9 spider hits)in 200 trials with the sensor of range 10, we 
an see that the limited sensorperforms mu
h better than the a-priori reasoning module. The �rst problemwas mu
h harder, however, sin
e in the previous experiments spiders 
ould notbe seen at all, and the agent purely had to rely on previous en
ounters with aspider or spider nest. Still, both methods perform mu
h better than not usinginstantiating information at all (85 goal hits - 112 spider hits).5 Dis
ussionPOMDPs. Path-planning problems in environments with dynami
 obsta
lesare partially observable Markov de
ision problems (POMDPs), sin
e the tran-sition and reward fun
tions are non-stationary, and there is un
ertainty aboutthe true state of the world. Usually POMDPs are solved by using a belief ve
tor16



whi
h models the probabilities an agent is in ea
h of the possible states. In 
aseof an environment with dynami
 agents, we 
an use a belief ve
tor modellingprobabilities of being in ea
h possible world (with lo
ations of other agents).Solving POMDPs exa
tly 
an be done by parti
ular dynami
 programming al-gorithms (Lovejoy, 1991; Kaelbling et al., 1998; Littman, 1996) whi
h 
omputethe best a
tion given ea
h possible belief ve
tor. However, this approa
h isintra
table when the number of possible worlds is quite large (as in our se
ondexperimental environment).Using the underlying MDP. There exist a number of heuristi
 algo-rithms trying to �nd sub-optimal solutions to POMDPs more qui
kly. Themost relevant to our 
urrent algorithm is the QMDP value method (Littmanet al., 1995). Here, �rst the MDP is solved, and then the optimal a
tion issele
ted by 
omputing the sum of the Q-values of possible states times the o
-
upan
y probabilities. This algorithm 
an perform very well (Littman et al.,1995), but is not able to perform a
tions to obtain information.Our approa
h. We model the POMDP using a single MDP (possibleworld). Although the dynami
 agents may be at di�erent pla
es, and in realitythere are multiple possible worlds, we use the 
ertainty equivalen
e assumptionand set transition probabilities to a

ount for all possible worlds. In this waywe 
an use dynami
 programming te
hniques on the single world, otherwisewe would need to solve ea
h possible world, whi
h would be
ome qui
kly in-tra
table. As with QMDP , our method does not take into a

ount that a
tions
an be used for gaining information about the environment. In prin
iple, theMDP is un
hanged as long as no additional information is a
quired.Computing information values. We 
an extend our algorithm so thatinformation gains 
an be 
omputed and used by the agent. We 
an 
omputethe information value of going to a state by instantiating the possible out
omesof an observation re
eived in this state in the MDP. Given one su
h possibleinstantiation, our 
urrent poli
y would obtain a reward whi
h 
an be 
omputedby poli
y evaluation. By taking into a

ount the instantiated information andre
omputing the poli
y afterwards (by value iteration), we would re
eive thereward re
eived with the optimal poli
y given the observation. By subtra
tingthe value of the 
urrent poli
y (found by poli
y evaluation) of the value of theoptimal poli
y (found by value iteration) and weighing these values over allpossible observations, we 
an 
ompute the information value of going to thisstate. This will be 0 if no 
hange to the poli
y is made, and large if the 
urrentpoli
y would behave quite bad 
ompared to the optimal poli
y. Then, thisinformation value 
an be instantiated in the reward fun
tion for this state, andthe agent 
an a
t to gain information. Unfortunately this be
omes intra
tableif the agent wants to explore sequen
es of observations.Dual Control. Dayan and Sejnowski (1996) fo
us on the exploration prob-lem in whi
h barriers may blo
k the shortest path with some probability. Theyalso 
hanged the transition and reward fun
tions to a

ount for the dynami
probabilities of the existen
e of ea
h barrier. After this, they used DP to
ompute a new poli
y. Although their approa
h is similar, our algorithm wasdesigned for modelling dynami
 agents moving around in the environment andwas made mu
h more eÆ
ient by using prioritized sweeping. Our algorithm 
an17



also instantiate information a
quired by sensors, 
ommuni
ation, or reasoningin the transition and reward fun
tions, so that the approa
h is more general.Instantiating Information. Instantiating information is a very usefulpro
edure for dealing with dynami
 environments su
h as the Wumpus envi-ronments or multi agent systems. We also used instantiating information in(Wiering, 2000) where traÆ
 light 
ontrollers 
ommuni
ated with ea
h otherand with 
ars to determine paths through the traÆ
 network 
ontaining theleast number of waiting 
ars. Here, the number of 
ars waiting at a next traÆ
light was 
ommuni
ated and instantiated to 
ompute the probabilities of endingup at a spe
i�
 pla
e in a queue of 
ars at the next traÆ
 light.Dynami
 Replanning. Multiple resear
hers have designed dynami
 re-planning algorithms. Most relevant to our resear
h is the D� algorithm (Stentz,1995), whi
h uses A� planning in a dynami
 way and a fo
using te
hnique toba
kpropagate the e�e
ts of 
hanged parts of the environment. Stentz ran ex-periments in deterministi
 100�100 and 1000�1000 mazes and found a largeimprovement for only ba
kpropagating partial state-update values whi
h may
hange the agent's plan. His method used an heuristi
 to �nd the goal, however,and 
annot deal with probabilisti
 information.Using a-priori knowledge. A-priori knowledge 
an be used with RL indi�erent ways. It 
an be used for 
onstru
ting the initial behavior to qui
klygenerate useful learning experien
es. It 
an also be used for designing thestru
ture of a fun
tion approximator, so that instead of having to solve boththe stru
tural and temporal 
redit assignment problems, only the temporal
redit assignment problem has to be solved. A priori knowledge 
an be usedfor modelling the de
ision pro
ess or as a model for solving POMDPs. In thispaper we have studied a new way of using a model of dynami
 hostile agentsand 
ompared it to using limited sensors.6 Con
lusionWe developed a new adaptive dynami
 replanning method using reinfor
ementlearning. Our method 
an learn a model of the environment, and replan ifit observes that the environment has 
hanged. The method uses model-basedreinfor
ement learning and instantiates dynami
 information about the envi-ronment in the model so that the agent 
an reason about the 
urrent environ-mental state. For eÆ
ien
y reasons, we used prioritized sweeping to re
omputethe poli
y. Our method was su

essfully tested on maze problems with partiallyobservable dynami
 obsta
les. We �rst used an a-priori reasoning module toreason about possible lo
ations of the hostile spider agents. This method wasshown to be very e�e
tive in avoiding hitting hostile agents in a partially observ-able path-planning problem. Additional experiments show that the 
omplexityof the algorithm s
ales well with the number of items whi
h is instantiated inthe model. Furthermore, they also show that our method 
an be 
ombinede�e
tively with a limited sensor for observing hostile agents.Future work. For very fast 
hanging environments, we may need to in-
lude time in the state des
ription (Boyan and Littman, 2001), and our 
urrent18



method may need too mu
h 
omputation. Therefore we need to make Priori-tized Sweeping's update management smarter, taking into a

ount the positionand plan of the agent. Then, we want to implement and test our novel algo-rithm for 
omputing information gains for more e�e
tive exploration and dual
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