
Reinforement Learning in Dynami Environmentsusing Instantiated InformationMaro A. Wiering maro�s.uu.nlUtreht University, Intelligent Systems Group, ICS, Padualaan 14, 3508 TB Utreht, The NetherlandsAbstratWe study using reinforement learning indynami environments. Suh environmentsmay ontain many dynami objets whihmakes optimal planning hard. One way ofusing information about all dynami objetsis to expand the state desription, but this re-sults in a high dimensional poliy spae. Ourapproah is to instantiate information aboutdynami objets in the model of the environ-ment and to replan using model-based rein-forement learning whenever this informationhanges. Furthermore, our approah is om-bined with an a-priori model of the hangingparts of the environment, whih enables theagent to optimally plan a ourse of ation.Results on a navigation task with multipledynami hostile agents show that our systemis able to learn good solutions minimizing therisk of hitting hostile agents.1. IntrodutionReinforement learning. Reinforement learning(Sutton & Barto, 1998; Kaelbling et al., 1996) anbe used to learn to ontrol an agent by letting theagent interat with its environment and learn fromthe obtained feedbak (reward signals). Using atrial-and-error proess, a reinforement learning (RL)agent is able to learn a poliy (or plan) whih opti-mizes the umulative reward intake of the agent overtime. Reinforement learning has been applied su-essfully in partiular stationary environments suh asin bakgammon (Tesauro, 1992). RL has only beenused few times in single agent non-stationary envi-ronments. Path-planning problems in non-stationaryenvironments are in fat partially observable Markovdeision problems (POMDPs) (Lovejoy, 1991), whihare known to be hard to solve exatly. Dayan andSejnowski (1996) onentrate themselves on the ex-ploration problem of deteting hanges in a hanging

environment. Boyan and Littman (2001) use a tem-poral model to take hanges of the environment intoaount when omputing a poliy. In this paper we areinterested in applying RL to learn to ontrol agents indynami environments.Dynami environments. Learning in dynami en-vironments is hard, sine the agent needs to stay in-formed about the status of all dynami objets in theenvironment. This an be done by augmenting thestate spae with a desription of the status of all dy-nami objets, but this may quikly ause a state spaeexplosion. Furthermore, the agent may not exatlyknow the status of an objet and therefore has to dealwith unertain information. Using unertain informa-tion as part of the state spae is hard, sine it makesthe state spae ontinuous and high dimensional.Instantiating information in the model. Thereexists another method for using knowledge about dy-nami objets: instantiate the information about thedynami objets in the world model and then use therevised world model to ompute a new poliy. E.g. ifa door an be open or losed, and we know whetherthe door is losed, we an set new transition proba-bilities between states in the world model suh thatthis information an be used by the agent. One themodel is updated using the urrently available infor-mation, dynami programming-like algorithms (Bell-man, 1961; Moore & Atkeson, 1993) an be used toompute a new poliy. In this way, we have an adap-tive agent whih takes urrently known informationinto aount for omputing ations, and whih replansone the dynami information hanges.Using prior knowledge. Usually, reinforementlearning is used to learn ontrol knowledge fromsrath, i.e. without using a-priori knowledge. Some-times, however, the use of some kind of a-priori knowl-edge is learly bene�ial, e.g. if partiular ations areheavily punished we do not want to explore those a-tions, but rather reason about the onsequenes ofthese ations using an a-priori designed model. A-

priori knowledge ould also be used to model a dy-nami environment so that this knowledge ould bepresented to the RL agent. This enables the agent toreason about the dynamis of the environment whihmay be neessary to solve the problem. In this paper,we study using a-priori knowledge for learning to solveproblems in dynami environments.Outline of this paper. We will desribe model-basedRL in setion 2. Then using instantiated informa-tion is desribed in setion 3. Then we desribe theexperimental setup and results in setion 4. Setion5 provides a disussion whih relates our frameworkto POMDPs and desribes the limitations of the ap-proah. Finally, setion 6 onludes this paper.2. Model-Based ReinforementLearning2.1 Markov Deision ProblemsAs a model of the environment and task we use theMarkov deision problem (MDP) framework. We on-sider a �nite set of states S = fS1; S2; : : : ; Sng, a �niteset of ations A, and disrete time steps t = 1; 2; 3; : : :.Let st denote the state at time t, and at = �(st)the ation, where � represents the agent's poliy map-ping states to ations. The transition funtion P withelements Pij(a) := p(st+1 = jjst = i; at = a) fori; j 2 S de�nes the transition probability to the nextstate st+1 given st and at. A reward funtion R mapsstate/ation pairs (SAPs) (i; a; j) 2 S�A�S to salarreinforement signals R(i; a; j) 2 IR. A disount fator 2 [0; 1℄ disounts later against immediate rewards.The agent's goal is to selet ations whih maximizethe expeted long-term umulative disounted rein-forement, given an arbitrary initial state 2 S. Thevalue V �(i) is a predition of the expeted disountedumulative reward to be reeived in the future, giventhat the agent is urrently in state i and poliy � willbe used in the future:V �(i) = E(1Xk=0 kR(sk;�(sk); sk+1)js0 = i)Ation evaluation funtions (Q-funtions) Q�(i; a) re-turn the expeted future disounted reward for selet-ing ation a in state i, and subsequently exeuting pol-iy �:Q�(i; a) =Xj Pij(a)(R(i; a; j) + V �(j))where V � is de�ned as: V �(i) = maxaQ�(i; a). Bysetting �(i) = argmaxaQ�(i; a) for all states i we theniteratively improve the poliy.

2.2 Estimating a ModelIn reinforement learning we do not initially possess amodel ontaining the transition and the reward fun-tions, and therefore we have to learn these from theobservations reeived during the interation with theenvironment. Induing a model from experienes anbe done by ounting the frequeny of observed experi-enes. For this the agent uses the following variables:Cij(a) := number of transitions from state i to j af-ter exeuting ation a. Ci (a) := number of times theagent has exeuted ation a in state i. Rij(a) := sumof all immediate rewards reeived after exeuting a-tion a in state i and stepping to state j.A maximum likelihood model (MLM) is omputed as:P̂ij(a) := Cij(a)Ci(a) and R̂(i; a; j) := Rij(a)Cij(a) (1)After eah experiene the variables are adjusted andthe MLM is updated.2.3 Prioritized Sweeping (PS)Dynami programming (DP) tehniques (Bellman,1961) ould immediately be applied to the estimatedmodel, but online DP tends to be omputationally veryexpensive. To speed up DP algorithms, some sort of ef-�ient update-step management should be performed.Our Prioritized Sweeping:1) Promote the most reent state k to thetop of the priority queue2) 8 a do:3 Q(k; a) :=Pj P̂kj(a)(R̂(k; a; j) + V (j))4) While n < Umax AND the queue is not empty5 Remove the top state s from the queue6 �(s) := 07 8 Predeessor states i of s do:8 V 0(i) := V (i)9 8 a do:10 Q(i; a) :=Pj P̂ij(a)(R̂(i; a; j)+V (j))11 V (i) := maxaQ(i; a)12 �(i) := �(i) + V (i)� V 0(i)13 If j�(i)j > �14 Promote i to priority j�(i)j15 n := n+ 1This an be done by prioritized sweeping (PS) (Moore& Atkeson, 1993) whih assigns priorities to updatingthe Q-values of di�erent state/ation pairs (SAPs) a-ording to their relative update sizes. Following theupdate of a state-value, the state's predeessors areinserted in a priority queue. Then the priority queue

is used reursively for bakpropagating the update ofthe states with highest priority. Our implementation(Wiering, 1999) uses a set of predeessor lists Preds(j)ontaining all predeessor states of state j. We denotethe priority of state i by j�(i)j, where the value �(i)equals the hange of V (i) sine the last time it wasproessed by the priority queue. To alulate it, weonstantly update all Q-values of predeessor states ofurrently proessed states, and trak hanges of V (i).The details are given above. The parameter Umax isthe maximal number of updates to be performed perupdate-sweep. The parameter � 2 IR+ ontrols updateauray.3. Instantiating InformationFor partiular environments with dynami objets, theagent should have information about the status (e.g.position) of these objets. One way of using this infor-mation is to expand the state spae to inlude the stateof all dynami objets. However, suppose that we pos-sess information about a dynami objet in the formof oupany probabilities. Clearly it is not desirableto inlude these oupany probabilities in the statespae, sine this would result in a high dimensionalontinuous state spae whih makes planning and theuse of dynami programming-like algorithms hard.Instantiating information. Another way is to in-stantiate the information about the dynami objet inthe world model. E.g. if we have information aboutoupany probabilities of robots in a soer game, wemay adjust the model's transition probabilities to a-ount for possible hits with obstales. Thus, expetedoupany probabilities of a hostile agent an be usedfor setting transition probabilities to a (possibly ter-minal) enounter with the hostile agent.An example of instantiating information. Sup-pose that the agent reeives new information that thehostile agent has probability p(j) to oupy a spei�state j. If the agent makes a step after whih she meetsthe hostile agent, she dies. How do we then hangethe model to inorporate the information about ou-pany probabilities of the hostile agent? Clearly wehave to reset the transition ounters and reward vari-ables, sine this is what our model onsists of. Wede�ne the transition ounter from state i to some ter-minal state (H for hit) whih is oupied by a hostileagent if ation A is exeuted as CiH (a). Now if somestate ation pair (i; a) an make a transition to statej with probability P̂ij(a) and we know the probabilitythat a hostile agent oupies state j is p(j), we set thetransition ounter for modelling transitions from i to

the terminal state H (hit) to:CiH (a) := p(j)P̂ij(a)(Coldi (a)� ColdiH (a))1� p(j)P̂ij(a)and Ci(a) := Coldi (a)� ColdiH (a) + CiH (a)In this way the new probability P̂iH(a) will beomep(j)P̂ij(a). We set the reward RiH(a) to Rhit.General algorithm. In ase an ation a from a statei an result in multiple states j all with a di�erentprobability of being oupied by the hostile agent, weannot set the transition ounter to one of these tran-sitions immediately, but have to add the transitionounter over all transitions to states whih may beoupied by a hostile agent. For this we �rst resetall ounters to hostile states to 0, and then reomputethe ounters using the oupany probabilities. Thefollowing algorithm does this:Instantiating information :1) For all state-ation pairs (i; a) whih arein a possible area of the hostile agent do:2) Ci(a) := Ci(a)� CiH (a)3) CiH(a) := 04) For all hostile areas D do:5) For all (i; a) pairs whih an lead tosome suessor state k in D do:6a) CH := 0; 6b) CT := 07) For all suessor states j of (i; a)8) If state j falls inside D9) CH := CH + Cij(a)p(j)10) CT := CT + Cij(a)11) pold := CiH (a)=Ci(a)12) pnew := P̂ij(a)CH=CT13) �C := Ci(a)�(pnew+pold)�CiH(a)(1�pnew�pold)14) CiH (a) := CiH (a) + �C15) Ci(a) := Ci(a) + �C16) R̂(i; a;H) := RhitThis algorithm exatly reomputes the desired proba-bilities for transitions from a state/ation pair to a hitwith some hostile agent (dynami obstale). Note thatrewards R̂(i; a;H) are set to Rhit whih is prede�nedin the reward funtion.Using prioritized sweeping to replan. After weinstantiated all newly available information, we storeall hanged states at the top of the priority queue anduse prioritized sweeping to reompute the poliy. Thisensures that the new information is immediately used.

4. ExperimentsWumpus II. We have exeuted a number of experi-ments to validate the usefulness of our method. In the�rst experiment we have a small maze and one hostilespider agent, and in the seond experiment we havea larger maze and 5 moving spider agents. The agentneeds to �nd the goal in the least number of steps with-out hitting a spider. The agent annot see the spider,however. If the agent hits a spider it dies and knowsthe region where the spider was. A spider agent ou-pies a partiular nest and moves randomly around thenest so that all states surrounding the spider nest havethe same oupany probability. If the agent �nds anative nest, the agent an smell whether there is anative spider in the region or not. Figure 1 shows the�rst environment used in the experiments whih on-sists of two spider nests. For the region around thespider nest, we use 25 states. After a trial, the spi-der may move to a di�erent nest or goes to its urrentnest.
G

 S

X
X

Figure 1. The maze environment ontaining two spidernests X whih may be used by the spider. The start andgoal positions are indiated by S and G. The regions aroundthe spider nests denote whih states the spider may oupyif it uses a partiular nest. The agent and the spider anmove in 4 diretions.4.1 The Model of the EnvironmentThe agent knows her exat (X,Y) loation at all times,but annot observe the spider agent. She only knowsthe exat spider loation when she hits the spider, butthen she dies so that information is only partially use-ful, sine a new trial starts and the spider is reset tothe position of the new ative, possibly neighboring,spider nest. After eah trial the spider has a partiu-lar probability Pmove = 1� Pstay of moving to one ofthe neighboring nests.Modelling oupany probabilities. In the begin-ning the agent does not know where the spider nestsare. It has to disover these for itself, but one it hits a

spider nest, it remembers its loation in (X;Y) oordi-nates. The a-priori knowledge of the agent onsists ofits knowledge of the size of the region of a spider nestin whih the spider moves randomly, and the proba-bilities that the spider makes a transition to a newneighboring spider nest after eah trial1. The agentuses a probabilisti model of the spider's loation. Theoupany probabilities P (S spider) are omputed by:P (S spider) =Xi P (Ativei)P (S spiderjAtivei)Here, the agent uses for hostile area i the prob-abilities: P (Ativei) and the onditional probabili-ties P (S spiderjAtivei) to ompute the probabilitiesP (S spider). The probability P (S spiderjAtivei) isset to 1M for the M (25) states surrounding a spiderregion and 0 to other states. Note that we model thestationary distribution of the spider's loation.Computing ative nest probabilities. The �rstprobability P (Ativei) follows from the properties ofthe dynami stohasti system. There are several waysto get new information about the state of the system:(1) The agents �nds a nest and observes whether it isused or not, (2) The agent hits the spider around somenest, (3) A new trial starts, and the agent knows thatthe spider may have migrated to a neighboring nest.In ase the agent �nds a spider nest, it an see whetherthe nest is ative or not. In ase the nest is ative itsets the probability P (Ativei) to 1.0, and sets theprobabilities for the other nests to 0. If the nest is notative the agent sets the probability P (Ativei) to 0.0and renormalizes the probabilities of the other nests.Hitting the spider. In the same way, in ase theagent hits the spider, the agent knows that the regionin whih it was walking ontained the ative nest, andsets the probability P (Ativei) to 1.0 and the othernest probabilities to 0.0. After an enounter with thespider, the agent dies and a new trial is started.Transition probabilities between nests. Aftereah trial, the spider may hange its nest. In thesmall maze given above, the spider has probabilityPstay = 0:9 of staying in the same nest and proba-bility 0:1 of moving to the other nest after eah trial.Therefore we reompute the ative nest probabilitiesof the model after eah trial by:P (Ative1) = 0:9P (Ative1) + 0:1P (Ative2)And vie versa for the other nest.1Although learning this information is possible, it wouldrequire many interations with the spider or with spidernests and therefore take a very long time.

Disovering nests. Sine the agent an only setprobabilities to non-zero for nests it has disovered andknows that the spider an only move between nestswhih are loser than a partiular distane Manhat-tan D (whih is set to 7 and de�nes the neighbour-hood relation between nests), the probability annotbe exatly omputed in ase the agent has not yetdisovered all spider nests. Therefore exploration isimportant to ensure all spider nests have been found.Using additional a-priori information. Finally,we use a-priori information in the form of an initialstate transition model. For eah ation in a state(X,Y), we set the transition ounter to 1 for the su-essor state (i.e. state (X+1,Y) for ation East) as ifations were deterministi and no states are bloked.This initial information an be easily obtained andused in ase of maze environments, and makes it easierto implement the instantiating information proedure(to deal with unvisited states whih may ontain a spi-der). Of ourse, initially the position of the goal andspider's nests are unknown and should be disoveredby the agent. Furthermore, in ase of maze-like envi-ronments as in the seond maze (see �gure 3), the ini-tial transition model in the maze is less helpful, sinemaze-loations may be oupied. For this maze, wetherefore initialize the transition ounters to 0.0001.4.2 Experiments with the Small MazeFirst we have exeuted experiments with the smallmaze given in �gure 1.Systems. We ompare using the a-priori spider modelusing instantiated information to using model-basedRL without using the spider model and instantiatedinformation. The seond algorithm omputes proba-bilities of hitting the spider based on previous experi-enes resulting in a onfrontation with the spider. Itdoes not use any kind of a-priori knowledge. Witheah system we perform 10 simulations.Problem desription. The reward for hitting thespider is -5000, the reward for reahing the goal stateis 1000. The reward for an individual step is -1. Weexperimented with a deterministi environment, with10% noise, and with 25% noise. If a noisy ation isexeuted, the agent has probability 25% of exeutingeah of its ations.Parameters. After a oarse searh through parame-ter spae to �nd the best learning parameters, we usedthe following setup: We use max-random explorationwith Pexp = 0:5 ! 0:0 (we anneal the explorationprobability). The disount fator when using thespider model is set to 0.9999, the disount fator with-

out spider model is set to 0.95. The update auray� is set to 1.0. Finally, the maximal number of up-dates Umax = 500000 (whih we used to make almostoptimal use of the instantiated information possible).

-40000

-20000

0

20000

40000

60000

80000

100000

120000

0 200 400 600 800 1000

A
ve

ra
ge

 r
ew

ar
d

Nr steps

No model 0.0
model 0.0

-20000

0

20000

40000

60000

80000

100000

120000

0 5000 10000 15000 20000

A
ve

ra
ge

 r
ew

ar
d

Nr steps

No model 0.0
Spider model 0.0

No Model 0.25
Spider model 0.25

Figure 2. The results for the small maze environment on-taining two spider nests. (A) shows learning results for the�rst 1000 steps. (B) shows the results for muh longersimulations.Results. Figure 2(A) shows the average umulativereward in 100 test trials after eah 50 steps duringthe �rst 1000 training steps in the deterministi en-vironment. Within 1000 steps, both methods havelearned to �nd good solutions, but using the modelresults quikly in near optimal performane. Figure2(B) shows the obtained umulative reward intake dur-ing eah 100 test trials after eah 1000 learning steps ofthe two di�erent algorithms for the small maze withdeterministi ations and with 25 % randomness inthe ation seletion. The �gure learly shows that us-ing the spider-model outperforms not using the model.Basially, the agent an reason about the spider's loa-tion and use its marginal information to ompute op-

timal dynami poliies. Thus, the agent always prefersto go through the region with the smallest probabilityof ontaining the spider. This is impossible to learnwithout using the spider model, although it is learlybene�ial in partiular dynami environments. Thesimulation for 20,000 trials osts 358 seonds for usingthe spider model and 12 seonds for not using it.Table 1 shows the total number of goal hits and spiderhits in a total of 2000 test trials (100 test trials aftereah 1000 steps in a 20,000 step simulation) and theaverage reward intake during the last 100 test trials.Table 1. Results for the systems with (With) and with-out (No) the spider model. Noise refers to the amount ofnoise in the ation exeution. Goal/Spider hit refers to thenumber of test trials resulting in a hit with the goal/spider.Final R denotes average reward of the last 100 test trials.Model (noise) Goal hit Spider hit Final RWith (0.0) 1927 � 8 73 � 8 79K � 10KWith (0.1) 1917 � 12 83 � 12 68K � 9KWith (0.25) 1910 � 41 80 � 19 76K � 11KNo (0.0) 1802 � 20 198 � 20 44K � 31KNo (0.1) 1782 � 20 218 � 20 36K � 23KNo (0.25) 1717 � 24 283 � 24 7K � 25KThe table learly shows that using the spider modelleads to fewer hits (4% vs. 11%) with the spider(and therefore a larger number of times the goal wasreahed). It should be mentioned that it is impossi-ble to avoid spider hits ompletely | the position ofthe spider an never remain ompletely known. Whatthe table also shows, however, is that when the spidermodel is used, additional randomness does not leadto more hits with the spider. The reason is that theagent learns to irumvent the dangerous region, andtherefore does not su�er from random ations whih letthe agent stay there longer. An interesting phenom-ena when using the spider model is that in partiularsimulations, the agent has learned a path traversingthe spider nest's loation so that it is able to get moreinformation whether the urrent path is safe (nest isnot ative). If not, the agent plans a new path.4.3 Experiments with a Large Maze withMultiple SpidersWe have also experimented with a larger maze of size50 � 50 (see �gure 3) ontaining 30 possible loationsfor spider nests, and 5 spiders traversing 30% of themaze. The maze also ontains about 20% randomlydistributed bloked states and 20% penalty states.Reward funtion. For hitting the goal, the agentreeives a reward of 2500. For hitting the spider, the

x x

x x x x x x x x x x

xxxx

x x

xxx

x x x x x xx x

x

S

G

Figure 3. The large maze environment ontaining 30 spi-der nests (indiated by an X in the shaded area) and 5ative spiders. Blak �elds denote impassable walls. Darkgrey �elds denote penalty �elds.reward is -10,000. For hitting a bloked state, thereward is -2, for hitting a penalty state, the reward is-10, and other steps are rewarded by -1.Parameters. The disount fator when using themodel is set to 0.99999 whih was used to make al-most optimal use of the model possible. The disountfator without spider model whih worked best is 0.99.The exploration rule Max-Random is used where theprobability of seleting a random ation is annealedfrom 0.5 to 0.0. The maximum number of updates is50,000. The auray parameter � is set to 0.5.Simulation set-up. The number of steps in a simu-lation is 200,000. After eah 1,000 steps the systemsare tested a single trial using a maximum number of10,000 test ations. Thus, in total there are 200 tests.For these tests we ompute the total number of timesthe goal has been found and the number of times oneof the spiders is hit.Results. Table 2 shows the number of times the goalhas been found and the number of times a spider hasbeen hit for di�erent noise levels when Pstay is setto 0.4. The table learly shows that using the spi-der model leads to many fewer hits with the spider.The number of hits with a spider is redued by a fa-tor of 3 when the spider model is used. It is lear thatthe agent is able to disover spider nests and to usethe aquired information to plan paths whih irum-vent going through loations with a large probability

of ontaining a spider.Table 2. Results for the system with and without usingthe spider model. Noise refers to the amount of noise inthe ation exeution. Spider hits refers to the number oftest trials resulting in a hit with the spider.System Noise Goal hits Spider hitsWith Model 0.0 173 � 3 9 � 2With Model 0.1 173 � 5 12 � 4With Model 0.25 173 � 5 11 � 3No Model 0.0 163 � 6 26 � 6No Model 0.1 160 � 6 31 � 7No Model 0.25 152 � 7 42 � 7Table 3 shows the number of times the goal has beenfound and the number of times a spider has been hit forvalues of Pstay where the noise is set to 0. It shows thatour approah works better when the environment ismore preditable. This indiates that the agent makeseÆient use of the model. Both systems �nd very goodsolutions to the deterministi task.Table 3. Results for the system with using the spidermodel for di�erent values of the Pstay parameter. Evi-dently, using a larger value for Pstay leads to more pre-ditable environments so that the spider model is moreaurate.Model (Pstay) Goal hits Spider hits Time (min)With (0.1) 167 � 6 12 � 5 122 � 25With (0.4) 173 � 3 9 � 2 117 � 21With (0.9) 183 � 3 4 � 2 84 � 6With (1.0) 196 � 2 0 � 0 31 � 15No (0.1) 165 � 5 23 � 5 0.5 � 0.2No (0.4) 163 � 6 26 � 6 0.5 � 0.2No (0.9) 168 � 5 19 � 7 0.5 � 0.3No (1.0) 184 � 4 4 � 2 0.2 � 0.0Although instantiating information and replanningworks very well, the omputational time is signi�antlylarger, sine after eah trial large portions of the pol-iy have to be updated. We have not explored us-ing other learning parameters to speed up the learn-ing time, however. We are urrently studying moreeÆient heuristi algorithms whih reompute smallerparts of the poliy.5. DisussionPOMDPs. Path-planning problems in environ-ments with dynami obstales are partially observableMarkov deision problems (POMDPs), sine the tran-

sition and reward funtions are non-stationary, andthere is unertainty about the true state of the world.Usually POMDPs are solved by using a belief vetorwhih models the probabilities an agent is in eah ofthe possible states. In ase of an environment with dy-nami agents, we use a belief vetor modelling proba-bilities of being in eah possible world (with loationsof other agents). Solving POMDPs exatly an bedone by partiular dynami programming algorithms(Lovejoy, 1991) whih ompute the best ation giveneah possible belief vetor. However, this approah isintratable when the number of possible worlds is quitelarge (as in our seond environment).Using the underlying MDP. There exist a numberof heuristi algorithms trying to �nd sub-optimal so-lutions to POMDPs more quikly. The most relevantto our urrent algorithm is the QMDP value method(Littman et al., 1995). Here, �rst the MDP is solved,and then the optimal ation is seleted by omputingthe sum of the Q-values of possible states times theoupany probabilities. This algorithm an performquite well (Littman et al., 1995), but is not able toperform ations to obtain information.Our approah. We model the POMDP using a singleMDP (possible world). Although the dynami agentsmay be at di�erent plaes, and in reality there are mul-tiple possible worlds, we use the ertainty equivaleneassumption and set transition probabilities to aountfor all possible worlds. In this way we an use DP onthe single world, otherwise we would need to solve eahpossible world, whih would be quikly intratable. Aswith QMDP , our method does not take into aountthat ations an be used for gaining information aboutthe environment. In priniple, the MDP is unhangedas long as no additional information is aquired.Computing information values. We an extendour algorithm so that information gains an be om-puted. We an ompute the information value of goingto a state by instantiating the possible outomes of anobservation reeived in this state in the MDP. Our ur-rent poliy would obtain a reward whih an be om-puted by poliy evaluation. By taking into aountthe instantiated information and reomputing the pol-iy afterwards (by value iteration), we would reeivethe reward reeived with the optimal poliy given theobservation. By subtrating the value of the urrentpoliy (found by poliy evaluation) of the value of theoptimal poliy (found by value iteration) and weighingthese values over all possible observations, we an om-pute the information value of going to this state. Thiswill be 0 if no hange to the poliy is made, and largeif the urrent poliy would behave quite bad ompared

to the optimal poliy. Then, this information value anbe instantiated in the reward funtion for this state,and the agent an at to gain information. Unfortu-nately this beomes intratable if the agent wants toexplore sequenes of observations.Dual Control. Dayan and Sejnowski (1996) fous onthe exploration problem in whih barriers may blokthe shortest path with some probability. They alsohanged the transition and reward funtions to a-ount for the dynami probabilities of the existeneof eah barrier. After this, they used DP to om-pute a new poliy. Although their approah is simi-lar, our algorithm was designed for modelling dynamiagents moving around in the environment and wasmade muh more eÆient by using prioritized sweep-ing. Our algorithm an also instantiate informationaquired by sensors, ommuniation, or reasoning inthe transition and reward funtions, so that the ap-proah is more general. We did not study explorationissues in this paper, however.We also used instantiating information in (Wiering,2000) where traÆ light ontrollers ommuniatedwith eah other to determine paths through the traÆnetwork ontaining the least number of waiting ars.Dynami Replanning. Multiple researhers havedesigned dynami replanning algorithms. Most rel-evant to our researh is the D� algorithm (Stentz,1995), whih uses A� planning in a dynami way anda fousing tehnique to bakpropagate the e�ets ofhanged parts of the environment. Stentz ran experi-ments in deterministi 100�100 and 1000�1000 mazesand found a large improvement for only bakpropagat-ing partial state-update values whih may hange theagent's plan. His method used an heuristi to �ndthe goal, however, and annot deal with probabilistiinformation.6. ConlusionWe developed a new adaptive dynami replanningmethod using reinforement learning. Our method anlearn a model of the environment, and replan if it ob-serves that the environment has hanged. The methoduses model-based reinforement learning and instanti-ates dynami information about the environment inthe model so that the agent an reason about the ur-rent environmental state. Our method was suess-fully tested on maze problems with dynami obstales.Future work. For very fast hanging environments,we may need to inlude time in the state desription(Boyan & Littman, 2001), and our urrent methodmay need too muh omputation. Therefore we need

to make Prioritized Sweeping's update managementsmarter, taking into aount the position and plan ofthe agent. Then, we want to test our method on robotsoer and forest �re ontrol.ReferenesBellman, R. (1961). Adaptive ontrol proesses. Prine-ton University Press.Boyan, J., & Littman, M. (2001). Exat solutions totime-dependent MDPs. Neural Information Proess-ing Systems (in press).. MIT Press.Dayan, P., & Sejnowski, T. J. (1996). Explorationbonuses and dual ontrol. Mahine Learning, 25,5{22.Kaelbling, L. P., Littman, M. L., & Moore, A. W.(1996). Reinforement learning: A survey. Journalof Arti�ial Intelligene Researh, 4, 237{285.Littman, M. L., Cassandra, A. R., & Kaelbling, L. P.(1995). Learning poliies for partially observable en-vironments: Saling up. Mahine Learning: Pro-eedings of the Twelfth International Conferene(pp. 362{370). Morgan Kaufmann Publishers, SanFraniso, CA.Lovejoy, W. S. (1991). A survey of algorithms methodsfor partially observable Markov deision proesses.Annals of Operations Researh, 28, 47{66.Moore, A. W., & Atkeson, C. G. (1993). Prioritizedsweeping: Reinforement learning with less data andless time. Mahine Learning, 13, 103{130.Stentz, A. (1995). The foussed D* algorithm for real-time replanning. Proeedings of the InternationalJoint Conferene on Arti�ial Intelligene.Sutton, R. S., & Barto, A. G. (1998). Reinforementlearning: An introdution. The MIT press, Cam-bridge MA, A Bradford Book.Tesauro, G. (1992). Pratial issues in temporal dif-ferene learning. Advanes in Neural InformationProessing Systems 4 (pp. 259{266). San Mateo,CA: Morgan Kaufmann.Wiering, M. A. (1999). Explorations in eÆient rein-forement learning. Dotoral dissertation, Univer-sity of Amsterdam.Wiering, M. A. (2000). Multi-agent reinforementlearning for traÆ light ontrol. Proeedings of theSeventeenth International Conferene on MahineLearning (pp. 1151{1158).

