Reinforcement Learning in Dynamic Environments
using Instantiated Information

Marco A. Wiering

MARCOQCS.UU.NL

Utrecht University, Intelligent Systems Group, ICS, Padualaan 14, 3508 TB Utrecht, The Netherlands

Abstract

We study using reinforcement learning in
dynamic environments. Such environments
may contain many dynamic objects which
makes optimal planning hard. One way of
using information about all dynamic objects
is to expand the state description, but this re-
sults in a high dimensional policy space. Our
approach is to instantiate information about
dynamic objects in the model of the environ-
ment and to replan using model-based rein-
forcement learning whenever this information
changes. Furthermore, our approach is com-
bined with an a-priori model of the changing
parts of the environment, which enables the
agent to optimally plan a course of action.
Results on a navigation task with multiple
dynamic hostile agents show that our system
is able to learn good solutions minimizing the
risk of hitting hostile agents.

1. Introduction

Reinforcement learning. Reinforcement learning
(Sutton & Barto, 1998; Kaelbling et al., 1996) can
be used to learn to control an agent by letting the
agent interact with its environment and learn from
the obtained feedback (reward signals). Using a
trial-and-error process, a reinforcement learning (RL)
agent is able to learn a policy (or plan) which opti-
mizes the cumulative reward intake of the agent over
time. Reinforcement learning has been applied suc-
cessfully in particular stationary environments such as
in backgammon (Tesauro, 1992). RL has only been
used few times in single agent non-stationary envi-
ronments. Path-planning problems in non-stationary
environments are in fact partially observable Markov
decision problems (POMDPs) (Lovejoy, 1991), which
are known to be hard to solve exactly. Dayan and
Sejnowski (1996) concentrate themselves on the ex-
ploration problem of detecting changes in a changing

environment. Boyan and Littman (2001) use a tem-
poral model to take changes of the environment into
account when computing a policy. In this paper we are
interested in applying RL to learn to control agents in
dynamic environments.

Dynamic environments. Learning in dynamic en-
vironments is hard, since the agent needs to stay in-
formed about the status of all dynamic objects in the
environment. This can be done by augmenting the
state space with a description of the status of all dy-
namic objects, but this may quickly cause a state space
explosion. Furthermore, the agent may not exactly
know the status of an object and therefore has to deal
with uncertain information. Using uncertain informa-
tion as part of the state space is hard, since it makes
the state space continuous and high dimensional.

Instantiating information in the model. There
exists another method for using knowledge about dy-
namic objects: instantiate the information about the
dynamic objects in the world model and then use the
revised world model to compute a new policy. E.g. if
a door can be open or closed, and we know whether
the door is closed, we can set new transition proba-
bilities between states in the world model such that
this information can be used by the agent. Once the
model is updated using the currently available infor-
mation, dynamic programming-like algorithms (Bell-
man, 1961; Moore & Atkeson, 1993) can be used to
compute a new policy. In this way, we have an adap-
tive agent which takes currently known information
into account for computing actions, and which replans
once the dynamic information changes.

Using prior knowledge. Usually, reinforcement
learning is used to learn control knowledge from
scratch, i.e. without using a-priori knowledge. Some-
times, however, the use of some kind of a-priori knowl-
edge is clearly beneficial, e.g. if particular actions are
heavily punished we do not want to explore those ac-
tions, but rather reason about the consequences of
these actions using an a-priori designed model. A-

priori knowledge could also be used to model a dy-
namic environment so that this knowledge could be
presented to the RL agent. This enables the agent to
reason about the dynamics of the environment which
may be necessary to solve the problem. In this paper,
we study using a-priori knowledge for learning to solve
problems in dynamic environments.

Outline of this paper. We will describe model-based
RL in section 2. Then using instantiated informa-
tion is described in section 3. Then we describe the
experimental setup and results in section 4. Section
5 provides a discussion which relates our framework
to POMDPs and describes the limitations of the ap-
proach. Finally, section 6 concludes this paper.

2. Model-Based Reinforcement
Learning

2.1 Markov Decision Problems

As a model of the environment and task we use the
Markov decision problem (MDP) framework. We con-
sider a finite set of states S = {S1, Sa,...,Sn}, a finite
set of actions A, and discrete time steps t = 1,2,3,
Let s; denote the state at time ¢, and a; = TI(s;)
the action, where II represents the agent’s policy map-
ping states to actions. The transition function P with
elements P;j(a) := p(sg1 = jlst = 4,a; = a) for
1,7 € S defines the transition probability to the next
state s;11 given s; and a;. A reward function R maps
state/action pairs (SAPs) (i,a,j) € Sx Ax S to scalar
reinforcement signals R(i, a, j) € IR. A discount factor
v € [0,1] discounts later against immediate rewards.
The agent’s goal is to select actions which maximize
the expected long-term cumulative discounted rein-
forcement, given an arbitrary initial state € S. The
value V(i) is a prediction of the expected discounted
cumulative reward to be received in the future, given
that the agent is currently in state ¢ and policy II will
be used in the future:

= E()_ v*R(sk,TI(sx), s6.41)]50 = i)

Action evaluation functions (Q-functions) Q™ (i, a) re-
turn the expected future discounted reward for select-
ing action a in state i, and subsequently executing pol-

icy II:
a) = Zpij(a)(R

where V1 is defined as: V(i) = max, Q"(i,a). By
setting I1(i) = argmaz,Q™ (i, a) for all states i we then
iteratively improve the policy.

(i,a,5) + V()

2.2 Estimating a Model

In reinforcement learning we do not initially possess a
model containing the transition and the reward func-
tions, and therefore we have to learn these from the
observations received during the interaction with the
environment. Inducing a model from experiences can
be done by counting the frequency of observed experi-
ences. For this the agent uses the following variables:
C;j(a) := number of transitions from state i to j af-
ter executing action a. C; (a) := number of times the
agent has executed action a in state i. R;;(a) := sum
of all immediate rewards received after executing ac-
tion a in state ¢+ and stepping to state j.

A maximum likelihood model (MLM) is computed as:

Rij(a)

Pij(a) = & O

and R(i,a,j) =

After each experience the variables are adjusted and
the MLM is updated.

2.3 Prioritized Sweeping (PS)

Dynamic programming (DP) techniques (Bellman,
1961) could immediately be applied to the estimated
model, but online DP tends to be computationally very
expensive. To speed up DP algorithms, some sort of ef-
ficient update-step management should be performed.

Our Prioritized Sweeping:

1) Promote the most recent state k to the
top of the priority queue

2) V a do:
8 Q(k,a) := X, Pij(a) (R(k,a,5) + V()

4) While n < Umaz AND the queue is not empty
5 Remove the top state s from the queue

6 A(s) :=
7 V Predecessor states ¢ of s do:
8 V'(i) == V(i)
9V a do:
10 Q(i,) Z] Py (a)(R(iya, §) +7V (7))
11 V(i) := max, Q(i,a)

12 A() = A() 4 V() - V()
13 If |A®)] > e

14 Promote 4 to priority |A(i)]
15 n:=n+1

This can be done by prioritized sweeping (PS) (Moore
& Atkeson, 1993) which assigns priorities to updating
the Q-values of different state/action pairs (SAPs) ac-
cording to their relative update sizes. Following the
update of a state-value, the state’s predecessors are
inserted in a priority queue. Then the priority queue

is used recursively for backpropagating the update of
the states with highest priority. Our implementation
(Wiering, 1999) uses a set of predecessor lists Preds(j)
containing all predecessor states of state j. We denote
the priority of state i by |A(4)|, where the value A(7)
equals the change of V(i) since the last time it was
processed by the priority queue. To calculate it, we
constantly update all Q-values of predecessor states of
currently processed states, and track changes of V(7).
The details are given above. The parameter U,,q; is
the maximal number of updates to be performed per
update-sweep. The parameter e € IR controls update
accuracy.

3. Instantiating Information

For particular environments with dynamic objects, the
agent should have information about the status (e.g.
position) of these objects. One way of using this infor-
mation is to expand the state space to include the state
of all dynamic objects. However, suppose that we pos-
sess information about a dynamic object in the form
of occupancy probabilities. Clearly it is not desirable
to include these occupancy probabilities in the state
space, since this would result in a high dimensional
continuous state space which makes planning and the
use of dynamic programming-like algorithms hard.

Instantiating information. Another way is to in-
stantiate the information about the dynamic object in
the world model. E.g. if we have information about
occupancy probabilities of robots in a soccer game, we
may adjust the model’s transition probabilities to ac-
count for possible hits with obstacles. Thus, expected
occupancy probabilities of a hostile agent can be used
for setting transition probabilities to a (possibly ter-
minal) encounter with the hostile agent.

An example of instantiating information. Sup-
pose that the agent receives new information that the
hostile agent has probability p(j) to occupy a specific
state j. If the agent makes a step after which she meets
the hostile agent, she dies. How do we then change
the model to incorporate the information about occu-
pancy probabilities of the hostile agent? Clearly we
have to reset the transition counters and reward vari-
ables, since this is what our model consists of. We
define the transition counter from state i to some ter-
minal state (H for hit) which is occupied by a hostile
agent if action A is executed as C;i(a). Now if some
state action pair (7,a) can make a transition to state
j with probability ﬁij (a) and we know the probability
that a hostile agent occupies state j is p(j), we set the
transition counter for modelling transitions from 4 to

the terminal state H (hit) to:

p(j)ﬁij(a)(cfld(fl)— G ()
1—p(j)Pij(a)

C,H(a) =

and
Ci(a) := C{"(a) — CHf (a) + Cin(a)

In this way the new probability piH(a) will become
p(j)Psj(a). We set the reward R;p(a) to Rpit.

General algorithm. In case an action a from a state
1 can result in multiple states j all with a different
probability of being occupied by the hostile agent, we
cannot set the transition counter to one of these tran-
sitions immediately, but have to add the transition
counter over all transitions to states which may be
occupied by a hostile agent. For this we first reset
all counters to hostile states to 0, and then recompute
the counters using the occupancy probabilities. The
following algorithm does this:

Instantiating information :

1) For all state-action pairs (i,a) which are
in a possible area of the hostile agent do:
2) Ci(a) := Ci(a) — Cir(a)
3) C,H(a) =0
4) For all hostile areas D do:
5) For all (i,a) pairs which can lead to
some successor state k in D do:
6a) Cg:=0; 6b) Cr:=0
7) For all successor states j of (i,a)
8) If state j falls inside D
9) Cg :=Cqg + Cij(a)p(y)
10) Cr :=Cr + C;j(a)
11) pota := Cim(a)/Ci(a)
12) prew = Pij(a)Cr/Cr
13) AC = Gilelelpncutpois)Cin(e)
14) Cig(a) := Cig(a) + AC
15) C’l(a) = C’l(a) + AC
16) R(i,a,H) = Ruu

This algorithm exactly recomputes the desired proba-
bilities for transitions from a state/action pair to a hit
with some hostile agent (dynamic obstacle). Note that
rewards R(z, a, H) are set to Rp;; which is predefined
in the reward function.

Using prioritized sweeping to replan. After we
instantiated all newly available information, we store
all changed states at the top of the priority queue and
use prioritized sweeping to recompute the policy. This
ensures that the new information is immediately used.

4. Experiments

Wumpus II. We have executed a number of experi-
ments to validate the usefulness of our method. In the
first experiment we have a small maze and one hostile
spider agent, and in the second experiment we have
a larger maze and 5 moving spider agents. The agent
needs to find the goal in the least number of steps with-
out hitting a spider. The agent cannot see the spider,
however. If the agent hits a spider it dies and knows
the region where the spider was. A spider agent occu-
pies a particular nest and moves randomly around the
nest so that all states surrounding the spider nest have
the same occupancy probability. If the agent finds an
active nest, the agent can smell whether there is an
active spider in the region or not. Figure 1 shows the
first environment used in the experiments which con-
sists of two spider nests. For the region around the
spider nest, we use 25 states. After a trial, the spi-
der may move to a different nest or goes to its current
nest.

Figure 1. The maze environment containing two spider
nests X which may be used by the spider. The start and
goal positions are indicated by S and G. The regions around
the spider nests denote which states the spider may occupy
if it uses a particular nest. The agent and the spider can
move in 4 directions.

4.1 The Model of the Environment

The agent knows her exact (X,Y) location at all times,
but cannot observe the spider agent. She only knows
the exact spider location when she hits the spider, but
then she dies so that information is only partially use-
ful, since a new trial starts and the spider is reset to
the position of the new active, possibly neighboring,
spider nest. After each trial the spider has a particu-
lar probability Ppope = 1 — Pstqy of moving to one of
the neighboring nests.

Modelling occupancy probabilities. In the begin-
ning the agent does not know where the spider nests
are. It has to discover these for itself, but once it hits a

spider nest, it remembers its location in (X,Y") coordi-
nates. The a-priori knowledge of the agent consists of
its knowledge of the size of the region of a spider nest
in which the spider moves randomly, and the proba-
bilities that the spider makes a transition to a new
neighboring spider nest after each trial'. The agent
uses a probabilistic model of the spider’s location. The
occupancy probabilities P(S_spider) are computed by:

P(S_spider) = Z P(Active;) P(S_spider|Active;)

Here, the agent uses for hostile area i the prob-
abilities: P(Active;) and the conditional probabili-
ties P(S_spider|Active;) to compute the probabilities
P(S_spider). The probability P(S_spider|Active;) is
set to 77 for the M (25) states surrounding a spider
region and 0 to other states. Note that we model the
stationary distribution of the spider’s location.

Computing active nest probabilities. The first
probability P(Active;) follows from the properties of
the dynamic stochastic system. There are several ways
to get new information about the state of the system:
(1) The agents finds a nest and observes whether it is
used or not, (2) The agent hits the spider around some
nest, (3) A new trial starts, and the agent knows that
the spider may have migrated to a neighboring nest.
In case the agent finds a spider nest, it can see whether
the nest is active or not. In case the nest is active it
sets the probability P(Active;) to 1.0, and sets the
probabilities for the other nests to 0. If the nest is not
active the agent sets the probability P(Active;) to 0.0
and renormalizes the probabilities of the other nests.

Hitting the spider. In the same way, in case the
agent hits the spider, the agent knows that the region
in which it was walking contained the active nest, and
sets the probability P(Active;) to 1.0 and the other
nest probabilities to 0.0. After an encounter with the
spider, the agent dies and a new trial is started.

Transition probabilities between nests. After
each trial, the spider may change its nest. In the
small maze given above, the spider has probability
Pstoy = 0.9 of staying in the same nest and proba-
bility 0.1 of moving to the other nest after each trial.
Therefore we recompute the active nest probabilities
of the model after each trial by:

P(Active;) = 0.9P(Activer) + 0.1P(Actives)

And vice versa for the other nest.

! Although learning this information is possible, it would
require many interactions with the spider or with spider
nests and therefore take a very long time.

Discovering nests. Since the agent can only set
probabilities to non-zero for nests it has discovered and
knows that the spider can only move between nests
which are closer than a particular distance Manhat-
tan D (which is set to 7 and defines the neighbour-
hood relation between nests), the probability cannot
be exactly computed in case the agent has not yet
discovered all spider nests. Therefore exploration is
important to ensure all spider nests have been found.

Using additional a-priori information. Finally,
we use a-priori information in the form of an initial
state transition model. For each action in a state
(X,Y), we set the transition counter to 1 for the suc-
cessor state (i.e. state (X+1,Y) for action East) as if
actions were deterministic and no states are blocked.
This initial information can be easily obtained and
used in case of maze environments, and makes it easier
to implement the instantiating information procedure
(to deal with unvisited states which may contain a spi-
der). Of course, initially the position of the goal and
spider’s nests are unknown and should be discovered
by the agent. Furthermore, in case of maze-like envi-
ronments as in the second maze (see figure 3), the ini-
tial transition model in the maze is less helpful, since
maze-locations may be occupied. For this maze, we
therefore initialize the transition counters to 0.0001.

4.2 Experiments with the Small Maze

First we have executed experiments with the small
maze given in figure 1.

Systems. We compare using the a-priori spider model
using instantiated information to using model-based
RL without using the spider model and instantiated
information. The second algorithm computes proba-
bilities of hitting the spider based on previous experi-
ences resulting in a confrontation with the spider. It
does not use any kind of a-priori knowledge. With
each system we perform 10 simulations.

Problem description. The reward for hitting the
spider is -5000, the reward for reaching the goal state
is 1000. The reward for an individual step is -1. We
experimented with a deterministic environment, with
10% noise, and with 25% noise. If a noisy action is
executed, the agent has probability 256% of executing
each of its actions.

Parameters. After a coarse search through parame-
ter space to find the best learning parameters, we used
the following setup: We use max-random exploration
with Pezp, = 0.5 — 0.0 (we anneal the exploration
probability). The discount factor v when using the
spider model is set to 0.9999, the discount factor with-

out spider model is set to 0.95. The update accuracy
€ is set to 1.0. Finally, the maximal number of up-
dates Upaz = 500000 (which we used to make almost
optimal use of the instantiated information possible).

120000 N5 odel 60 ——
model 0.0 -
100000 R
80000
% 60000 -
5 40000 r
5
T 20000 |
<
0 L
-20000
-40000
0 200 400 600 800 1000
Nr steps
120000 T T .
No model 0.0 ——
Spider model 0.0 -
100000 + No Model 0.25 - B
Spider model 0.25 -
80000
el
8
$ 60000 -
5
% 40000
>
<
20000 | / -
0r :’_:“‘ R
*
-20000 : o
0 5000 10000 15000 20000
Nr steps

Figure 2. The results for the small maze environment con-
taining two spider nests. (A) shows learning results for the
first 1000 steps. (B) shows the results for much longer
simulations.

Results. Figure 2(A) shows the average cumulative
reward in 100 test trials after each 50 steps during
the first 1000 training steps in the deterministic en-
vironment. Within 1000 steps, both methods have
learned to find good solutions, but using the model
results quickly in near optimal performance. Figure
2(B) shows the obtained cumulative reward intake dur-
ing each 100 test trials after each 1000 learning steps of
the two different algorithms for the small maze with
deterministic actions and with 25 % randomness in
the action selection. The figure clearly shows that us-
ing the spider-model outperforms not using the model.
Basically, the agent can reason about the spider’s loca-
tion and use its marginal information to compute op-

timal dynamic policies. Thus, the agent always prefers
to go through the region with the smallest probability
of containing the spider. This is impossible to learn
without using the spider model, although it is clearly
beneficial in particular dynamic environments. The
simulation for 20,000 trials costs 358 seconds for using
the spider model and 12 seconds for not using it.

Table 1 shows the total number of goal hits and spider
hits in a total of 2000 test trials (100 test trials after
each 1000 steps in a 20,000 step simulation) and the
average reward intake during the last 100 test trials.

Table 1. Results for the systems with (With) and with-
out (No) the spider model. Noise refers to the amount of
noise in the action execution. Goal/Spider hit refers to the
number of test trials resulting in a hit with the goal/spider.
Final R denotes average reward of the last 100 test trials.

Model (noise) Goal hit Spider hit Final R
With (0.0) 1927+ 8 73+ 8 79K * 10K
With (0.1) 1017 + 12 83 + 12 68K + 9K

Wlth (0.25) 1910 £41 80 £ 19 76K + 11K
No (0.0) 1802 + 20 198 +£ 20 44K + 31K

No (0.1) 1782 £20 218 + 20 36K + 23K

No (0.25) 1717 £ 24 283 + 24 7K + 25K

The table clearly shows that using the spider model
leads to fewer hits (4% vs. 11%) with the spider
(and therefore a larger number of times the goal was
reached). It should be mentioned that it is impossi-
ble to avoid spider hits completely — the position of
the spider can never remain completely known. What
the table also shows, however, is that when the spider
model is used, additional randomness does not lead
to more hits with the spider. The reason is that the
agent learns to circumvent the dangerous region, and
therefore does not suffer from random actions which let
the agent stay there longer. An interesting phenom-
ena when using the spider model is that in particular
simulations, the agent has learned a path traversing
the spider nest’s location so that it is able to get more
information whether the current path is safe (nest is
not active). If not, the agent plans a new path.

4.3 Experiments with a Large Maze with
Multiple Spiders

We have also experimented with a larger maze of size
50 x 50 (see figure 3) containing 30 possible locations
for spider nests, and 5 spiders traversing 30% of the
maze. The maze also contains about 20% randomly
distributed blocked states and 20% penalty states.

Reward function. For hitting the goal, the agent
receives a reward of 2500. For hitting the spider, the

Figure 3. The large maze environment containing 30 spi-
der nests (indicated by an X in the shaded area) and 5
active spiders. Black fields denote impassable walls. Dark
grey fields denote penalty fields.

reward is -10,000. For hitting a blocked state, the
reward is -2, for hitting a penalty state, the reward is
-10, and other steps are rewarded by -1.

Parameters. The discount factor when using the
model is set to 0.99999 which was used to make al-
most optimal use of the model possible. The discount
factor without spider model which worked best is 0.99.
The exploration rule Max-Random is used where the
probability of selecting a random action is annealed
from 0.5 to 0.0. The maximum number of updates is
50,000. The accuracy parameter € is set to 0.5.

Simulation set-up. The number of steps in a simu-
lation is 200,000. After each 1,000 steps the systems
are tested a single trial using a maximum number of
10,000 test actions. Thus, in total there are 200 tests.
For these tests we compute the total number of times
the goal has been found and the number of times one
of the spiders is hit.

Results. Table 2 shows the number of times the goal
has been found and the number of times a spider has
been hit for different noise levels when Py, is set
to 0.4. The table clearly shows that using the spi-
der model leads to many fewer hits with the spider.
The number of hits with a spider is reduced by a fac-
tor of 3 when the spider model is used. It is clear that
the agent is able to discover spider nests and to use
the acquired information to plan paths which circum-
vent going through locations with a large probability

of containing a spider.

Table 2. Results for the system with and without using
the spider model. Noise refers to the amount of noise in
the action execution. Spider hits refers to the number of
test trials resulting in a hit with the spider.

System Noise Goal hits Spider hits
With Model 0.0 173 +£ 3 942
With Model 0.1 173 £ 5 12+ 4
With Model 0.25 173 £ 5 11+ 3

No Model 0.0 163 + 6 26 + 6
No Model 0.1 160 £ 6 31+ 7
No Model 0.25 152 £ 7 42 + 7

Table 3 shows the number of times the goal has been
found and the number of times a spider has been hit for
values of Ps4, where the noise is set to 0. It shows that
our approach works better when the environment is
more predictable. This indicates that the agent makes
efficient use of the model. Both systems find very good
solutions to the deterministic task.

Table 3. Results for the system with using the spider
model for different values of the Ps:, parameter. Evi-
dently, using a larger value for Ps:., leads to more pre-
dictable environments so that the spider model is more
accurate.

Model (Psiqy) Goal hits Spider hits Time (min)
With (0.1) 167 £ 6 12+5 122 + 25
With (0.4) 173 £ 3 9+2 117+l
With (0.9) 183 + 3 1+2 S1E 6
With (1.0) 196 + 2 0+0 31 + 15

No (0.1) 165 + 5 23+5 05+ 0.2
No (0.4) 163 £ 6 26 + 6 0.5 £0.2
No (0.9) 168 + 5 19+7 05+03
No (1.0) 184 + 4 4+ 2 0.2 £0.0

Although instantiating information and replanning
works very well, the computational time is significantly
larger, since after each trial large portions of the pol-
icy have to be updated. We have not explored us-
ing other learning parameters to speed up the learn-
ing time, however. We are currently studying more
efficient heuristic algorithms which recompute smaller
parts of the policy.

5. Discussion

POMDPs. Path-planning problems in environ-
ments with dynamic obstacles are partially observable
Markov decision problems (POMDPs), since the tran-

sition and reward functions are non-stationary, and
there is uncertainty about the true state of the world.
Usually POMDPs are solved by using a belief vector
which models the probabilities an agent is in each of
the possible states. In case of an environment with dy-
namic agents, we use a belief vector modelling proba-
bilities of being in each possible world (with locations
of other agents). Solving POMDPs exactly can be
done by particular dynamic programming algorithms
(Lovejoy, 1991) which compute the best action given
each possible belief vector. However, this approach is
intractable when the number of possible worlds is quite
large (as in our second environment).

Using the underlying MDP. There exist a number
of heuristic algorithms trying to find sub-optimal so-
lutions to POMDPs more quickly. The most relevant
to our current algorithm is the Qupp value method
(Littman et al., 1995). Here, first the MDP is solved,
and then the optimal action is selected by computing
the sum of the Q-values of possible states times the
occupancy probabilities. This algorithm can perform
quite well (Littman et al., 1995), but is not able to
perform actions to obtain information.

Our approach. We model the POMDP using a single
MDP (possible world). Although the dynamic agents
may be at different places, and in reality there are mul-
tiple possible worlds, we use the certainty equivalence
assumption and set transition probabilities to account
for all possible worlds. In this way we can use DP on
the single world, otherwise we would need to solve each
possible world, which would be quickly intractable. As
with Qarpp, our method does not take into account
that actions can be used for gaining information about
the environment. In principle, the MDP is unchanged
as long as no additional information is acquired.

Computing information values. We can extend
our algorithm so that information gains can be com-
puted. We can compute the information value of going
to a state by instantiating the possible outcomes of an
observation received in this state in the MDP. Our cur-
rent policy would obtain a reward which can be com-
puted by policy evaluation. By taking into account
the instantiated information and recomputing the pol-
icy afterwards (by value iteration), we would receive
the reward received with the optimal policy given the
observation. By subtracting the value of the current
policy (found by policy evaluation) of the value of the
optimal policy (found by value iteration) and weighing
these values over all possible observations, we can com-
pute the information value of going to this state. This
will be 0 if no change to the policy is made, and large
if the current policy would behave quite bad compared

to the optimal policy. Then, this information value can
be instantiated in the reward function for this state,
and the agent can act to gain information. Unfortu-
nately this becomes intractable if the agent wants to
explore sequences of observations.

Dual Control. Dayan and Sejnowski (1996) focus on
the exploration problem in which barriers may block
the shortest path with some probability. They also
changed the transition and reward functions to ac-
count for the dynamic probabilities of the existence
of each barrier. After this, they used DP to com-
pute a new policy. Although their approach is simi-
lar, our algorithm was designed for modelling dynamic
agents moving around in the environment and was
made much more efficient by using prioritized sweep-
ing. Our algorithm can also instantiate information
acquired by sensors, communication, or reasoning in
the transition and reward functions, so that the ap-
proach is more general. We did not study exploration
issues in this paper, however.

We also used instantiating information in (Wiering,
2000) where traffic light controllers communicated
with each other to determine paths through the traffic
network containing the least number of waiting cars.

Dynamic Replanning. Multiple researchers have
designed dynamic replanning algorithms. Most rel-
evant to our research is the D* algorithm (Stentz,
1995), which uses A* planning in a dynamic way and
a focusing technique to backpropagate the effects of
changed parts of the environment. Stentz ran experi-
ments in deterministic 100x 100 and 1000x 1000 mazes
and found a large improvement for only backpropagat-
ing partial state-update values which may change the
agent’s plan. His method used an heuristic to find
the goal, however, and cannot deal with probabilistic
information.

6. Conclusion

We developed a new adaptive dynamic replanning
method using reinforcement learning. Our method can
learn a model of the environment, and replan if it ob-
serves that the environment has changed. The method
uses model-based reinforcement learning and instanti-
ates dynamic information about the environment in
the model so that the agent can reason about the cur-
rent environmental state. Our method was success-
fully tested on maze problems with dynamic obstacles.

Future work. For very fast changing environments,
we may need to include time in the state description
(Boyan & Littman, 2001), and our current method
may need too much computation. Therefore we need

to make Prioritized Sweeping’s update management
smarter, taking into account the position and plan of
the agent. Then, we want to test our method on robot
soccer and forest fire control.

References

Bellman, R. (1961). Adaptive control processes. Prince-
ton University Press.

Boyan, J., & Littman, M. (2001). Exact solutions to
time-dependent MDPs. Neural Information Process-
ing Systems (in press).. MIT Press.

Dayan, P., & Sejnowski, T. J. (1996). Exploration
bonuses and dual control. Machine Learning, 25,
5-22.

Kaelbling, L. P.; Littman, M. L., & Moore, A. W.
(1996). Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, 237-285.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P.
(1995). Learning policies for partially observable en-
vironments: Scaling up. Machine Learning: Pro-
ceedings of the Twelfth International Conference
(pp. 362-370). Morgan Kaufmann Publishers, San
Francisco, CA.

Lovejoy, W. S. (1991). A survey of algorithms methods
for partially observable Markov decision processes.
Annals of Operations Research, 28, 47—66.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized
sweeping: Reinforcement learning with less data and
less time. Machine Learning, 13, 103—130.

Stentz, A. (1995). The focussed D* algorithm for real-
time replanning. Proceedings of the International
Joint Conference on Artificial Intelligence.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. The MIT press, Cam-
bridge MA, A Bradford Book.

Tesauro, G. (1992). Practical issues in temporal dif-
ference learning. Advances in Neural Information
Processing Systems 4 (pp. 259-266). San Mateo,
CA: Morgan Kaufmann.

Wiering, M. A. (1999). Ezplorations in efficient rein-
forcement learning. Doctoral dissertation, Univer-
sity of Amsterdam.

Wiering, M. A. (2000). Multi-agent reinforcement
learning for traffic light control. Proceedings of the
Seventeenth International Conference on Machine
Learning (pp- 1151-1158).

