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ht, The NetherlandsAbstra
tWe study using reinfor
ement learning indynami
 environments. Su
h environmentsmay 
ontain many dynami
 obje
ts whi
hmakes optimal planning hard. One way ofusing information about all dynami
 obje
tsis to expand the state des
ription, but this re-sults in a high dimensional poli
y spa
e. Ourapproa
h is to instantiate information aboutdynami
 obje
ts in the model of the environ-ment and to replan using model-based rein-for
ement learning whenever this information
hanges. Furthermore, our approa
h is 
om-bined with an a-priori model of the 
hangingparts of the environment, whi
h enables theagent to optimally plan a 
ourse of a
tion.Results on a navigation task with multipledynami
 hostile agents show that our systemis able to learn good solutions minimizing therisk of hitting hostile agents.1. Introdu
tionReinfor
ement learning. Reinfor
ement learning(Sutton & Barto, 1998; Kaelbling et al., 1996) 
anbe used to learn to 
ontrol an agent by letting theagent intera
t with its environment and learn fromthe obtained feedba
k (reward signals). Using atrial-and-error pro
ess, a reinfor
ement learning (RL)agent is able to learn a poli
y (or plan) whi
h opti-mizes the 
umulative reward intake of the agent overtime. Reinfor
ement learning has been applied su
-
essfully in parti
ular stationary environments su
h asin ba
kgammon (Tesauro, 1992). RL has only beenused few times in single agent non-stationary envi-ronments. Path-planning problems in non-stationaryenvironments are in fa
t partially observable Markovde
ision problems (POMDPs) (Lovejoy, 1991), whi
hare known to be hard to solve exa
tly. Dayan andSejnowski (1996) 
on
entrate themselves on the ex-ploration problem of dete
ting 
hanges in a 
hanging

environment. Boyan and Littman (2001) use a tem-poral model to take 
hanges of the environment intoa

ount when 
omputing a poli
y. In this paper we areinterested in applying RL to learn to 
ontrol agents indynami
 environments.Dynami
 environments. Learning in dynami
 en-vironments is hard, sin
e the agent needs to stay in-formed about the status of all dynami
 obje
ts in theenvironment. This 
an be done by augmenting thestate spa
e with a des
ription of the status of all dy-nami
 obje
ts, but this may qui
kly 
ause a state spa
eexplosion. Furthermore, the agent may not exa
tlyknow the status of an obje
t and therefore has to dealwith un
ertain information. Using un
ertain informa-tion as part of the state spa
e is hard, sin
e it makesthe state spa
e 
ontinuous and high dimensional.Instantiating information in the model. Thereexists another method for using knowledge about dy-nami
 obje
ts: instantiate the information about thedynami
 obje
ts in the world model and then use therevised world model to 
ompute a new poli
y. E.g. ifa door 
an be open or 
losed, and we know whetherthe door is 
losed, we 
an set new transition proba-bilities between states in the world model su
h thatthis information 
an be used by the agent. On
e themodel is updated using the 
urrently available infor-mation, dynami
 programming-like algorithms (Bell-man, 1961; Moore & Atkeson, 1993) 
an be used to
ompute a new poli
y. In this way, we have an adap-tive agent whi
h takes 
urrently known informationinto a

ount for 
omputing a
tions, and whi
h replanson
e the dynami
 information 
hanges.Using prior knowledge. Usually, reinfor
ementlearning is used to learn 
ontrol knowledge froms
rat
h, i.e. without using a-priori knowledge. Some-times, however, the use of some kind of a-priori knowl-edge is 
learly bene�
ial, e.g. if parti
ular a
tions areheavily punished we do not want to explore those a
-tions, but rather reason about the 
onsequen
es ofthese a
tions using an a-priori designed model. A-



priori knowledge 
ould also be used to model a dy-nami
 environment so that this knowledge 
ould bepresented to the RL agent. This enables the agent toreason about the dynami
s of the environment whi
hmay be ne
essary to solve the problem. In this paper,we study using a-priori knowledge for learning to solveproblems in dynami
 environments.Outline of this paper. We will des
ribe model-basedRL in se
tion 2. Then using instantiated informa-tion is des
ribed in se
tion 3. Then we des
ribe theexperimental setup and results in se
tion 4. Se
tion5 provides a dis
ussion whi
h relates our frameworkto POMDPs and des
ribes the limitations of the ap-proa
h. Finally, se
tion 6 
on
ludes this paper.2. Model-Based Reinfor
ementLearning2.1 Markov De
ision ProblemsAs a model of the environment and task we use theMarkov de
ision problem (MDP) framework. We 
on-sider a �nite set of states S = fS1; S2; : : : ; Sng, a �niteset of a
tions A, and dis
rete time steps t = 1; 2; 3; : : :.Let st denote the state at time t, and at = �(st)the a
tion, where � represents the agent's poli
y map-ping states to a
tions. The transition fun
tion P withelements Pij(a) := p(st+1 = jjst = i; at = a) fori; j 2 S de�nes the transition probability to the nextstate st+1 given st and at. A reward fun
tion R mapsstate/a
tion pairs (SAPs) (i; a; j) 2 S�A�S to s
alarreinfor
ement signals R(i; a; j) 2 IR. A dis
ount fa
tor
 2 [0; 1℄ dis
ounts later against immediate rewards.The agent's goal is to sele
t a
tions whi
h maximizethe expe
ted long-term 
umulative dis
ounted rein-for
ement, given an arbitrary initial state 2 S. Thevalue V �(i) is a predi
tion of the expe
ted dis
ounted
umulative reward to be re
eived in the future, giventhat the agent is 
urrently in state i and poli
y � willbe used in the future:V �(i) = E( 1Xk=0 
kR(sk;�(sk); sk+1)js0 = i)A
tion evaluation fun
tions (Q-fun
tions) Q�(i; a) re-turn the expe
ted future dis
ounted reward for sele
t-ing a
tion a in state i, and subsequently exe
uting pol-i
y �:Q�(i; a) =Xj Pij(a)(R(i; a; j) + 
V �(j))where V � is de�ned as: V �(i) = maxaQ�(i; a). Bysetting �(i) = argmaxaQ�(i; a) for all states i we theniteratively improve the poli
y.

2.2 Estimating a ModelIn reinfor
ement learning we do not initially possess amodel 
ontaining the transition and the reward fun
-tions, and therefore we have to learn these from theobservations re
eived during the intera
tion with theenvironment. Indu
ing a model from experien
es 
anbe done by 
ounting the frequen
y of observed experi-en
es. For this the agent uses the following variables:Cij(a) := number of transitions from state i to j af-ter exe
uting a
tion a. Ci (a) := number of times theagent has exe
uted a
tion a in state i. Rij(a) := sumof all immediate rewards re
eived after exe
uting a
-tion a in state i and stepping to state j.A maximum likelihood model (MLM) is 
omputed as:P̂ij(a) := Cij(a)Ci(a) and R̂(i; a; j) := Rij(a)Cij(a) (1)After ea
h experien
e the variables are adjusted andthe MLM is updated.2.3 Prioritized Sweeping (PS)Dynami
 programming (DP) te
hniques (Bellman,1961) 
ould immediately be applied to the estimatedmodel, but online DP tends to be 
omputationally veryexpensive. To speed up DP algorithms, some sort of ef-�
ient update-step management should be performed.Our Prioritized Sweeping:1) Promote the most re
ent state k to thetop of the priority queue2) 8 a do:3 Q(k; a) :=Pj P̂kj(a)(R̂(k; a; j) + 
V (j))4) While n < Umax AND the queue is not empty5 Remove the top state s from the queue6 �(s) := 07 8 Prede
essor states i of s do:8 V 0(i) := V (i)9 8 a do:10 Q(i; a) :=Pj P̂ij(a)(R̂(i; a; j)+
V (j))11 V (i) := maxaQ(i; a)12 �(i) := �(i) + V (i)� V 0(i)13 If j�(i)j > �14 Promote i to priority j�(i)j15 n := n+ 1This 
an be done by prioritized sweeping (PS) (Moore& Atkeson, 1993) whi
h assigns priorities to updatingthe Q-values of di�erent state/a
tion pairs (SAPs) a
-
ording to their relative update sizes. Following theupdate of a state-value, the state's prede
essors areinserted in a priority queue. Then the priority queue



is used re
ursively for ba
kpropagating the update ofthe states with highest priority. Our implementation(Wiering, 1999) uses a set of prede
essor lists Preds(j)
ontaining all prede
essor states of state j. We denotethe priority of state i by j�(i)j, where the value �(i)equals the 
hange of V (i) sin
e the last time it waspro
essed by the priority queue. To 
al
ulate it, we
onstantly update all Q-values of prede
essor states of
urrently pro
essed states, and tra
k 
hanges of V (i).The details are given above. The parameter Umax isthe maximal number of updates to be performed perupdate-sweep. The parameter � 2 IR+ 
ontrols updatea

ura
y.3. Instantiating InformationFor parti
ular environments with dynami
 obje
ts, theagent should have information about the status (e.g.position) of these obje
ts. One way of using this infor-mation is to expand the state spa
e to in
lude the stateof all dynami
 obje
ts. However, suppose that we pos-sess information about a dynami
 obje
t in the formof o

upan
y probabilities. Clearly it is not desirableto in
lude these o

upan
y probabilities in the statespa
e, sin
e this would result in a high dimensional
ontinuous state spa
e whi
h makes planning and theuse of dynami
 programming-like algorithms hard.Instantiating information. Another way is to in-stantiate the information about the dynami
 obje
t inthe world model. E.g. if we have information abouto

upan
y probabilities of robots in a so

er game, wemay adjust the model's transition probabilities to a
-
ount for possible hits with obsta
les. Thus, expe
tedo

upan
y probabilities of a hostile agent 
an be usedfor setting transition probabilities to a (possibly ter-minal) en
ounter with the hostile agent.An example of instantiating information. Sup-pose that the agent re
eives new information that thehostile agent has probability p(j) to o

upy a spe
i�
state j. If the agent makes a step after whi
h she meetsthe hostile agent, she dies. How do we then 
hangethe model to in
orporate the information about o

u-pan
y probabilities of the hostile agent? Clearly wehave to reset the transition 
ounters and reward vari-ables, sin
e this is what our model 
onsists of. Wede�ne the transition 
ounter from state i to some ter-minal state (H for hit) whi
h is o

upied by a hostileagent if a
tion A is exe
uted as CiH (a). Now if somestate a
tion pair (i; a) 
an make a transition to statej with probability P̂ij(a) and we know the probabilitythat a hostile agent o

upies state j is p(j), we set thetransition 
ounter for modelling transitions from i to

the terminal state H (hit) to:CiH (a) := p(j)P̂ij(a)(Coldi (a)� ColdiH (a))1� p(j)P̂ij(a)and Ci(a) := Coldi (a)� ColdiH (a) + CiH (a)In this way the new probability P̂iH(a) will be
omep(j)P̂ij(a). We set the reward RiH(a) to Rhit.General algorithm. In 
ase an a
tion a from a statei 
an result in multiple states j all with a di�erentprobability of being o

upied by the hostile agent, we
annot set the transition 
ounter to one of these tran-sitions immediately, but have to add the transition
ounter over all transitions to states whi
h may beo

upied by a hostile agent. For this we �rst resetall 
ounters to hostile states to 0, and then re
omputethe 
ounters using the o

upan
y probabilities. Thefollowing algorithm does this:Instantiating information :1) For all state-a
tion pairs (i; a) whi
h arein a possible area of the hostile agent do:2) Ci(a) := Ci(a)� CiH (a)3) CiH(a) := 04) For all hostile areas D do:5) For all (i; a) pairs whi
h 
an lead tosome su

essor state k in D do:6a) CH := 0; 6b) CT := 07) For all su

essor states j of (i; a)8) If state j falls inside D9) CH := CH + Cij(a)p(j)10) CT := CT + Cij(a)11) pold := CiH (a)=Ci(a)12) pnew := P̂ij(a)CH=CT13) �C := Ci(a)�(pnew+pold)�CiH(a)(1�pnew�pold)14) CiH (a) := CiH (a) + �C15) Ci(a) := Ci(a) + �C16) R̂(i; a;H) := RhitThis algorithm exa
tly re
omputes the desired proba-bilities for transitions from a state/a
tion pair to a hitwith some hostile agent (dynami
 obsta
le). Note thatrewards R̂(i; a;H) are set to Rhit whi
h is prede�nedin the reward fun
tion.Using prioritized sweeping to replan. After weinstantiated all newly available information, we storeall 
hanged states at the top of the priority queue anduse prioritized sweeping to re
ompute the poli
y. Thisensures that the new information is immediately used.



4. ExperimentsWumpus II. We have exe
uted a number of experi-ments to validate the usefulness of our method. In the�rst experiment we have a small maze and one hostilespider agent, and in the se
ond experiment we havea larger maze and 5 moving spider agents. The agentneeds to �nd the goal in the least number of steps with-out hitting a spider. The agent 
annot see the spider,however. If the agent hits a spider it dies and knowsthe region where the spider was. A spider agent o

u-pies a parti
ular nest and moves randomly around thenest so that all states surrounding the spider nest havethe same o

upan
y probability. If the agent �nds ana
tive nest, the agent 
an smell whether there is ana
tive spider in the region or not. Figure 1 shows the�rst environment used in the experiments whi
h 
on-sists of two spider nests. For the region around thespider nest, we use 25 states. After a trial, the spi-der may move to a di�erent nest or goes to its 
urrentnest.
G

 S

X
X

Figure 1. The maze environment 
ontaining two spidernests X whi
h may be used by the spider. The start andgoal positions are indi
ated by S and G. The regions aroundthe spider nests denote whi
h states the spider may o

upyif it uses a parti
ular nest. The agent and the spider 
anmove in 4 dire
tions.4.1 The Model of the EnvironmentThe agent knows her exa
t (X,Y) lo
ation at all times,but 
annot observe the spider agent. She only knowsthe exa
t spider lo
ation when she hits the spider, butthen she dies so that information is only partially use-ful, sin
e a new trial starts and the spider is reset tothe position of the new a
tive, possibly neighboring,spider nest. After ea
h trial the spider has a parti
u-lar probability Pmove = 1� Pstay of moving to one ofthe neighboring nests.Modelling o

upan
y probabilities. In the begin-ning the agent does not know where the spider nestsare. It has to dis
over these for itself, but on
e it hits a

spider nest, it remembers its lo
ation in (X;Y ) 
oordi-nates. The a-priori knowledge of the agent 
onsists ofits knowledge of the size of the region of a spider nestin whi
h the spider moves randomly, and the proba-bilities that the spider makes a transition to a newneighboring spider nest after ea
h trial1. The agentuses a probabilisti
 model of the spider's lo
ation. Theo

upan
y probabilities P (S spider) are 
omputed by:P (S spider) =Xi P (A
tivei)P (S spiderjA
tivei)Here, the agent uses for hostile area i the prob-abilities: P (A
tivei) and the 
onditional probabili-ties P (S spiderjA
tivei) to 
ompute the probabilitiesP (S spider). The probability P (S spiderjA
tivei) isset to 1M for the M (25) states surrounding a spiderregion and 0 to other states. Note that we model thestationary distribution of the spider's lo
ation.Computing a
tive nest probabilities. The �rstprobability P (A
tivei) follows from the properties ofthe dynami
 sto
hasti
 system. There are several waysto get new information about the state of the system:(1) The agents �nds a nest and observes whether it isused or not, (2) The agent hits the spider around somenest, (3) A new trial starts, and the agent knows thatthe spider may have migrated to a neighboring nest.In 
ase the agent �nds a spider nest, it 
an see whetherthe nest is a
tive or not. In 
ase the nest is a
tive itsets the probability P (A
tivei) to 1.0, and sets theprobabilities for the other nests to 0. If the nest is nota
tive the agent sets the probability P (A
tivei) to 0.0and renormalizes the probabilities of the other nests.Hitting the spider. In the same way, in 
ase theagent hits the spider, the agent knows that the regionin whi
h it was walking 
ontained the a
tive nest, andsets the probability P (A
tivei) to 1.0 and the othernest probabilities to 0.0. After an en
ounter with thespider, the agent dies and a new trial is started.Transition probabilities between nests. Afterea
h trial, the spider may 
hange its nest. In thesmall maze given above, the spider has probabilityPstay = 0:9 of staying in the same nest and proba-bility 0:1 of moving to the other nest after ea
h trial.Therefore we re
ompute the a
tive nest probabilitiesof the model after ea
h trial by:P (A
tive1) = 0:9P (A
tive1) + 0:1P (A
tive2)And vi
e versa for the other nest.1Although learning this information is possible, it wouldrequire many intera
tions with the spider or with spidernests and therefore take a very long time.



Dis
overing nests. Sin
e the agent 
an only setprobabilities to non-zero for nests it has dis
overed andknows that the spider 
an only move between nestswhi
h are 
loser than a parti
ular distan
e Manhat-tan D (whi
h is set to 7 and de�nes the neighbour-hood relation between nests), the probability 
annotbe exa
tly 
omputed in 
ase the agent has not yetdis
overed all spider nests. Therefore exploration isimportant to ensure all spider nests have been found.Using additional a-priori information. Finally,we use a-priori information in the form of an initialstate transition model. For ea
h a
tion in a state(X,Y), we set the transition 
ounter to 1 for the su
-
essor state (i.e. state (X+1,Y) for a
tion East) as ifa
tions were deterministi
 and no states are blo
ked.This initial information 
an be easily obtained andused in 
ase of maze environments, and makes it easierto implement the instantiating information pro
edure(to deal with unvisited states whi
h may 
ontain a spi-der). Of 
ourse, initially the position of the goal andspider's nests are unknown and should be dis
overedby the agent. Furthermore, in 
ase of maze-like envi-ronments as in the se
ond maze (see �gure 3), the ini-tial transition model in the maze is less helpful, sin
emaze-lo
ations may be o

upied. For this maze, wetherefore initialize the transition 
ounters to 0.0001.4.2 Experiments with the Small MazeFirst we have exe
uted experiments with the smallmaze given in �gure 1.Systems. We 
ompare using the a-priori spider modelusing instantiated information to using model-basedRL without using the spider model and instantiatedinformation. The se
ond algorithm 
omputes proba-bilities of hitting the spider based on previous experi-en
es resulting in a 
onfrontation with the spider. Itdoes not use any kind of a-priori knowledge. Withea
h system we perform 10 simulations.Problem des
ription. The reward for hitting thespider is -5000, the reward for rea
hing the goal stateis 1000. The reward for an individual step is -1. Weexperimented with a deterministi
 environment, with10% noise, and with 25% noise. If a noisy a
tion isexe
uted, the agent has probability 25% of exe
utingea
h of its a
tions.Parameters. After a 
oarse sear
h through parame-ter spa
e to �nd the best learning parameters, we usedthe following setup: We use max-random explorationwith Pexp = 0:5 ! 0:0 (we anneal the explorationprobability). The dis
ount fa
tor 
 when using thespider model is set to 0.9999, the dis
ount fa
tor with-

out spider model is set to 0.95. The update a

ura
y� is set to 1.0. Finally, the maximal number of up-dates Umax = 500000 (whi
h we used to make almostoptimal use of the instantiated information possible).
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Figure 2. The results for the small maze environment 
on-taining two spider nests. (A) shows learning results for the�rst 1000 steps. (B) shows the results for mu
h longersimulations.Results. Figure 2(A) shows the average 
umulativereward in 100 test trials after ea
h 50 steps duringthe �rst 1000 training steps in the deterministi
 en-vironment. Within 1000 steps, both methods havelearned to �nd good solutions, but using the modelresults qui
kly in near optimal performan
e. Figure2(B) shows the obtained 
umulative reward intake dur-ing ea
h 100 test trials after ea
h 1000 learning steps ofthe two di�erent algorithms for the small maze withdeterministi
 a
tions and with 25 % randomness inthe a
tion sele
tion. The �gure 
learly shows that us-ing the spider-model outperforms not using the model.Basi
ally, the agent 
an reason about the spider's lo
a-tion and use its marginal information to 
ompute op-



timal dynami
 poli
ies. Thus, the agent always prefersto go through the region with the smallest probabilityof 
ontaining the spider. This is impossible to learnwithout using the spider model, although it is 
learlybene�
ial in parti
ular dynami
 environments. Thesimulation for 20,000 trials 
osts 358 se
onds for usingthe spider model and 12 se
onds for not using it.Table 1 shows the total number of goal hits and spiderhits in a total of 2000 test trials (100 test trials afterea
h 1000 steps in a 20,000 step simulation) and theaverage reward intake during the last 100 test trials.Table 1. Results for the systems with (With) and with-out (No) the spider model. Noise refers to the amount ofnoise in the a
tion exe
ution. Goal/Spider hit refers to thenumber of test trials resulting in a hit with the goal/spider.Final R denotes average reward of the last 100 test trials.Model (noise) Goal hit Spider hit Final RWith (0.0) 1927 � 8 73 � 8 79K � 10KWith (0.1) 1917 � 12 83 � 12 68K � 9KWith (0.25) 1910 � 41 80 � 19 76K � 11KNo (0.0) 1802 � 20 198 � 20 44K � 31KNo (0.1) 1782 � 20 218 � 20 36K � 23KNo (0.25) 1717 � 24 283 � 24 7K � 25KThe table 
learly shows that using the spider modelleads to fewer hits (4% vs. 11%) with the spider(and therefore a larger number of times the goal wasrea
hed). It should be mentioned that it is impossi-ble to avoid spider hits 
ompletely | the position ofthe spider 
an never remain 
ompletely known. Whatthe table also shows, however, is that when the spidermodel is used, additional randomness does not leadto more hits with the spider. The reason is that theagent learns to 
ir
umvent the dangerous region, andtherefore does not su�er from random a
tions whi
h letthe agent stay there longer. An interesting phenom-ena when using the spider model is that in parti
ularsimulations, the agent has learned a path traversingthe spider nest's lo
ation so that it is able to get moreinformation whether the 
urrent path is safe (nest isnot a
tive). If not, the agent plans a new path.4.3 Experiments with a Large Maze withMultiple SpidersWe have also experimented with a larger maze of size50 � 50 (see �gure 3) 
ontaining 30 possible lo
ationsfor spider nests, and 5 spiders traversing 30% of themaze. The maze also 
ontains about 20% randomlydistributed blo
ked states and 20% penalty states.Reward fun
tion. For hitting the goal, the agentre
eives a reward of 2500. For hitting the spider, the
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Figure 3. The large maze environment 
ontaining 30 spi-der nests (indi
ated by an X in the shaded area) and 5a
tive spiders. Bla
k �elds denote impassable walls. Darkgrey �elds denote penalty �elds.reward is -10,000. For hitting a blo
ked state, thereward is -2, for hitting a penalty state, the reward is-10, and other steps are rewarded by -1.Parameters. The dis
ount fa
tor when using themodel is set to 0.99999 whi
h was used to make al-most optimal use of the model possible. The dis
ountfa
tor without spider model whi
h worked best is 0.99.The exploration rule Max-Random is used where theprobability of sele
ting a random a
tion is annealedfrom 0.5 to 0.0. The maximum number of updates is50,000. The a

ura
y parameter � is set to 0.5.Simulation set-up. The number of steps in a simu-lation is 200,000. After ea
h 1,000 steps the systemsare tested a single trial using a maximum number of10,000 test a
tions. Thus, in total there are 200 tests.For these tests we 
ompute the total number of timesthe goal has been found and the number of times oneof the spiders is hit.Results. Table 2 shows the number of times the goalhas been found and the number of times a spider hasbeen hit for di�erent noise levels when Pstay is setto 0.4. The table 
learly shows that using the spi-der model leads to many fewer hits with the spider.The number of hits with a spider is redu
ed by a fa
-tor of 3 when the spider model is used. It is 
lear thatthe agent is able to dis
over spider nests and to usethe a
quired information to plan paths whi
h 
ir
um-vent going through lo
ations with a large probability



of 
ontaining a spider.Table 2. Results for the system with and without usingthe spider model. Noise refers to the amount of noise inthe a
tion exe
ution. Spider hits refers to the number oftest trials resulting in a hit with the spider.System Noise Goal hits Spider hitsWith Model 0.0 173 � 3 9 � 2With Model 0.1 173 � 5 12 � 4With Model 0.25 173 � 5 11 � 3No Model 0.0 163 � 6 26 � 6No Model 0.1 160 � 6 31 � 7No Model 0.25 152 � 7 42 � 7Table 3 shows the number of times the goal has beenfound and the number of times a spider has been hit forvalues of Pstay where the noise is set to 0. It shows thatour approa
h works better when the environment ismore predi
table. This indi
ates that the agent makeseÆ
ient use of the model. Both systems �nd very goodsolutions to the deterministi
 task.Table 3. Results for the system with using the spidermodel for di�erent values of the Pstay parameter. Evi-dently, using a larger value for Pstay leads to more pre-di
table environments so that the spider model is morea

urate.Model (Pstay) Goal hits Spider hits Time (min)With (0.1) 167 � 6 12 � 5 122 � 25With (0.4) 173 � 3 9 � 2 117 � 21With (0.9) 183 � 3 4 � 2 84 � 6With (1.0) 196 � 2 0 � 0 31 � 15No (0.1) 165 � 5 23 � 5 0.5 � 0.2No (0.4) 163 � 6 26 � 6 0.5 � 0.2No (0.9) 168 � 5 19 � 7 0.5 � 0.3No (1.0) 184 � 4 4 � 2 0.2 � 0.0Although instantiating information and replanningworks very well, the 
omputational time is signi�
antlylarger, sin
e after ea
h trial large portions of the pol-i
y have to be updated. We have not explored us-ing other learning parameters to speed up the learn-ing time, however. We are 
urrently studying moreeÆ
ient heuristi
 algorithms whi
h re
ompute smallerparts of the poli
y.5. Dis
ussionPOMDPs. Path-planning problems in environ-ments with dynami
 obsta
les are partially observableMarkov de
ision problems (POMDPs), sin
e the tran-

sition and reward fun
tions are non-stationary, andthere is un
ertainty about the true state of the world.Usually POMDPs are solved by using a belief ve
torwhi
h models the probabilities an agent is in ea
h ofthe possible states. In 
ase of an environment with dy-nami
 agents, we use a belief ve
tor modelling proba-bilities of being in ea
h possible world (with lo
ationsof other agents). Solving POMDPs exa
tly 
an bedone by parti
ular dynami
 programming algorithms(Lovejoy, 1991) whi
h 
ompute the best a
tion givenea
h possible belief ve
tor. However, this approa
h isintra
table when the number of possible worlds is quitelarge (as in our se
ond environment).Using the underlying MDP. There exist a numberof heuristi
 algorithms trying to �nd sub-optimal so-lutions to POMDPs more qui
kly. The most relevantto our 
urrent algorithm is the QMDP value method(Littman et al., 1995). Here, �rst the MDP is solved,and then the optimal a
tion is sele
ted by 
omputingthe sum of the Q-values of possible states times theo

upan
y probabilities. This algorithm 
an performquite well (Littman et al., 1995), but is not able toperform a
tions to obtain information.Our approa
h. We model the POMDP using a singleMDP (possible world). Although the dynami
 agentsmay be at di�erent pla
es, and in reality there are mul-tiple possible worlds, we use the 
ertainty equivalen
eassumption and set transition probabilities to a

ountfor all possible worlds. In this way we 
an use DP onthe single world, otherwise we would need to solve ea
hpossible world, whi
h would be qui
kly intra
table. Aswith QMDP , our method does not take into a

ountthat a
tions 
an be used for gaining information aboutthe environment. In prin
iple, the MDP is un
hangedas long as no additional information is a
quired.Computing information values. We 
an extendour algorithm so that information gains 
an be 
om-puted. We 
an 
ompute the information value of goingto a state by instantiating the possible out
omes of anobservation re
eived in this state in the MDP. Our 
ur-rent poli
y would obtain a reward whi
h 
an be 
om-puted by poli
y evaluation. By taking into a

ountthe instantiated information and re
omputing the pol-i
y afterwards (by value iteration), we would re
eivethe reward re
eived with the optimal poli
y given theobservation. By subtra
ting the value of the 
urrentpoli
y (found by poli
y evaluation) of the value of theoptimal poli
y (found by value iteration) and weighingthese values over all possible observations, we 
an 
om-pute the information value of going to this state. Thiswill be 0 if no 
hange to the poli
y is made, and largeif the 
urrent poli
y would behave quite bad 
ompared



to the optimal poli
y. Then, this information value 
anbe instantiated in the reward fun
tion for this state,and the agent 
an a
t to gain information. Unfortu-nately this be
omes intra
table if the agent wants toexplore sequen
es of observations.Dual Control. Dayan and Sejnowski (1996) fo
us onthe exploration problem in whi
h barriers may blo
kthe shortest path with some probability. They also
hanged the transition and reward fun
tions to a
-
ount for the dynami
 probabilities of the existen
eof ea
h barrier. After this, they used DP to 
om-pute a new poli
y. Although their approa
h is simi-lar, our algorithm was designed for modelling dynami
agents moving around in the environment and wasmade mu
h more eÆ
ient by using prioritized sweep-ing. Our algorithm 
an also instantiate informationa
quired by sensors, 
ommuni
ation, or reasoning inthe transition and reward fun
tions, so that the ap-proa
h is more general. We did not study explorationissues in this paper, however.We also used instantiating information in (Wiering,2000) where traÆ
 light 
ontrollers 
ommuni
atedwith ea
h other to determine paths through the traÆ
network 
ontaining the least number of waiting 
ars.Dynami
 Replanning. Multiple resear
hers havedesigned dynami
 replanning algorithms. Most rel-evant to our resear
h is the D� algorithm (Stentz,1995), whi
h uses A� planning in a dynami
 way anda fo
using te
hnique to ba
kpropagate the e�e
ts of
hanged parts of the environment. Stentz ran experi-ments in deterministi
 100�100 and 1000�1000 mazesand found a large improvement for only ba
kpropagat-ing partial state-update values whi
h may 
hange theagent's plan. His method used an heuristi
 to �ndthe goal, however, and 
annot deal with probabilisti
information.6. Con
lusionWe developed a new adaptive dynami
 replanningmethod using reinfor
ement learning. Our method 
anlearn a model of the environment, and replan if it ob-serves that the environment has 
hanged. The methoduses model-based reinfor
ement learning and instanti-ates dynami
 information about the environment inthe model so that the agent 
an reason about the 
ur-rent environmental state. Our method was su

ess-fully tested on maze problems with dynami
 obsta
les.Future work. For very fast 
hanging environments,we may need to in
lude time in the state des
ription(Boyan & Littman, 2001), and our 
urrent methodmay need too mu
h 
omputation. Therefore we need

to make Prioritized Sweeping's update managementsmarter, taking into a

ount the position and plan ofthe agent. Then, we want to test our method on robotso

er and forest �re 
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