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Abstract

In this paper, a new offline actor-critic learning algorithm is introduced: Sampled
Policy Gradient (SPG). SPG samples in the action space to calculate an approxi-
mated policy gradient by using the critic to evaluate the samples. This sampling
allows SPG to search the action-Q-value space more globally than deterministic
policy gradient (DPG), enabling it to theoretically avoid more local optima. SPG
is compared to Q-learning and the actor-critic algorithms CACLA and DPG in a
pellet collection task and a self play environment in the game Agar.io. The on-
line game Agar.io has become massively popular on the internet due to intuitive
game design and the ability to instantly compete against players around the world.
From the point of view of artificial intelligence this game is also very intriguing:
The game has a continuous input and action space and allows to have diverse
agents with complex strategies compete against each other. The experimental re-
sults show that Q-Learning and CACLA outperform a pre-programmed greedy
bot in the pellet collection task, but all algorithms fail to outperform this bot in
a fighting scenario. The SPG algorithm is analyzed to have great extendability
through offline exploration and it matches DPG in performance even in its basic
form without extensive sampling.

1 Introduction

Reinforcement learning (RL) is a machine learning paradigm which uses a reward function that
assigns a value to a specific state an agent is in as a supervision signal [20]. The idea is that the
agent finds out what actions to take in an environment to maximize the overall intake of this reward
signal. This is often done by having a critic network, which predicts the value of a state or of an
action in a state. The value is an estimation of the total expected reward that will be gained in the
future. This critic is then used to choose which action is best in a state: the one that has the highest
value.

RL agents are usually trained in simulations or games. This is for multiple reasons: the level of noise
can be directly controlled, the researcher has access to all relevant information and the simulation
can be sped up and parallelized. As algorithms become able to solve more and more complex and
noisy simulated environments they can also be employed for real-world tasks.
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The environment for this research is inspired by the game of Agar.io. In this game the player
controls circular cells in a 2D plane which follow the player’s mouse cursor. The player can split its
cells in half or eject mass out of cells. Cells of a player can eat either small food pellets or cells of
other smaller (human) online players to grow in size. The environment of Agar.io is very interesting
for RL research, as it is mainly formed by other players on the same plane, it is stochastic and
constantly changing. Also the output space is continuous, as the cells of the player move towards
the exact position of the mouse cursor. On top of that, the complexity of the game can be scaled by
introducing or removing additional features. This paper therefore studies how to use RL to train an
intelligent agent for this game.

In constructing this agent this research focuses especially on which algorithm to choose to optimize
the reward signal in the long run. Along with comparing three conventional algorithms, a new algo-
rithm called sampled policy gradient is introduced. This new algorithm builds a bridge between the
already existing algorithms DPG [18] and CACLA [22] and therefore enables a better comparison
between the two. Furthermore the algorithm shows promising results and can be heavily extended
because it can be used with offline exploration.

For most complex problems it is impossible to rely on tabular entries of state values. Therefore
RL research often makes use of artificial neural networks, which have been shown to be able to
approximate any continuous function to any degree of accuracy [3]. Tesauro was among the first
to show that super-human decision making could be learned in the large state space of the game
Backgammon through the use of a multi-layer perceptron (MLP) [21]. Over the years, this principle
has been extended through the use of convolutional neural networks (CNNs). While Tesauro’s
backgammon agent was still heavily reliant on high-level strategic state features of the game, CNNs
allow an agent to abstract its own features from raw sensory input, such as pixels. This has been
shown to achieve human level performance on a variety of Atari games [13], and even 3D first-
person shooter games like Doom [10].

Human-engineered vision grids are an intermediate step between raw pixel input and high-level
features that require expert knowledge to construct. Such vision grids contain low-level features to
encode the state. In research on the game Tron [9] multiple binary grids were used: one indicating
the presence of an opponent, one for the presence of walls, and one for the presence of the trails
made by the player itself. These vision grids have been used in more complex environments, such
as Starcraft [17]. In the research on Starcraft the vision grids indicated information such as weapon
range, danger and information on the terrain. Similar to the paper on Tron this research on Agar.io
will use vision grids to indicate the positions of cells and the wall.

To produce continuous actions an actor network is required, which maps states to actions. This paper
will compare two existing methods that make use of such an actor network: continuous actor critic
learning automaton (CACLA) [22] and deterministic policy gradient (DPG) [18]. Both approaches
rely on a critic network, which maps states or state-action pairs to quality values: how much reward
is to be expected in the long term. This critic is comparable to the network used in Q-learning and
it is trained in a similar manner. The actor training in CACLA analyzes a transition from an action
in a state to a produced reward and a new state. If this action positively surprises the critic because
it gives an unexpectedly good reward or leads to an unexpectedly good new state, then it will be
reinforced in the future by being made more likely to be predicted by the actor network.

The actor training of DPG on the other hand is not dependent on transitions, it only requires a valid
state of the environment. By applying backpropagation through the critic network, it is calculated
in what direction the action input of the critic needs to change, to maximize the output of the critic.
Then DPG tunes the weights of the actor to change its output in this previously determined direction.

1.1 Contributions of this Paper

This paper focuses on multiple contributions:

1. The construction of a reinforcement learning agent that learns to play the game Agar.io will
be investigated. This will be done by assessing what state representation can be used, what
reward function is appropriate, and what learning algorithm performs best.

2. A new continuous-action actor-critic algorithm is introduced: Sampled Policy Gradient
(SPG). Also, a first step towards an offline exploration strategy for SPG is investigated.
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3. In many RL problems requiring continuous actions DPG is used. This paper therefore ex-
plores whether this is also warranted for the game of Agar.io and compares its performance
to CACLA and SPG.

4. Lastly, it is investigated whether a discretization of the action space enables Q-learning to
get to a similar performance as the actor-critic algorithms despite its lack in precision.

1.2 Outline of this Paper

Section 2 explains the background knowledge on RL. Section 3 introduces sampled policy gradi-
ent. Section 4 explains the Agar.io game more in depth together with the used state representation.
Section 5 shows the experimental results on pellet collection and on fighting a preprogrammed bot.
Section 6 presents the conclusions and describes some directions for future work.

2 Reinforcement Learning

This paper follows the general conventions [20] to model the reinforcement learning (RL) problem
as a Markov decision process (MDP). In a Markov Decision Process, an agent takes an action in a
state to get to a new state, where the transition probabilities from the state to the new state have the
Markov property: stochastic transition probabilities between states depend only on the current state
and action. To model the RL problem as an MDP, at first, we represent a state which contains the
features that are relevant to the decision of the agent. The transition between a state and an action to
a new state is handled by the game engine. The aim of the agent is to select the best possible action
in a state according to some performance metric, also called the reward function.

In RL there must be some function that maps a state (or state-action pair) to a reward, also called the
reward function. The aim of the agent in RL is to maximize the total expected reward that the agent
receives in the long run through this reward function, also called the gain (G):

G =

∞∑
t=0

rt · γt (1)

rt indicates the reward the agent receives at time t and γ is the discount factor. This discount factor
is a number between 0 and 1 and controls how much future rewards are discounted and therefore
how much immediate rewards are preferred.

2.1 Q-learning and Experience Replay

Q-learning [23] is the most often used RL algorithm and learns to predict the quality/Q-value of an
action in a specific state. By iterating through all possible actions in state, the algorithm picks the
action with the highest Q-value as the action that the agent should take in that state. The Q-value
indicates how much reward in the long term, or how much gain, the agent can expect to receive
when choosing action at in state st at time step t. This prediction is updated over time by shifting
it towards the reward that the agent got for taking that action and the predicted value of the best
possible action in the next state.

To predict the Q-value for an action in a state a multi-layer perceptron (MLP) is used, which is
trained through backpropagation. The target for backpropagation for a state-action tuple st, at of a
transition (st, at, rt, st+1) is:

Target(st, at) = rt + γ ·max
a

Q(st+1, a)

It is necessary to explore the action space throughout training to avoid being stuck in local optima
as much as possible. For Q-learning the ε-greedy exploration [20] was chosen due to its simplicity.
The ε value indicates how likely it is that a random action is chosen, instead of choosing greedily
the action with the highest Q-value. For this research the ε value is annealed exponentially from 1
to a specific value close to 0 over the course of training. This allows the agent to progress steadily
while exploring alternative actions over the course of training.

To stabilize Q-learning combined with artificial neural networks, Mnih et al. [13] introduced target
networks. As the training of Q-learning maximizes over all possible actions taken in the next state,
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the combination of this training method with function approximators can lead to the deadly triad
[20]. This deadly triad leads to a high probability of the Q-function to diverge from the true value
function over the course of training through a positive feedback loop. A possible remedy to this
problem is Double-Q-learning [5], which uses two Q-value networks. For the training of one net-
work, the other network is used to calculate the Q-value of the best action in the next state to avoid
the positive feedback loop of the deadly triad. Mnih et al. simplify this approach by introducing a
target network in addition to the Q-value network. The parameters of the Q-value network are copied
to the target network sporadically. This way there is no need to introduce a new separate network,
as the prediction of the maximal Q-values is still done by a slightly different network, mitigating the
deadly triad effect.

Lin [12] introduced a technique named experience replay, which was also used by Minh et al. for
DQN [14] to further stabilize and improve the performance of Q-learning. In using experience replay
every transition tuple (st, at, rt, st+1) is stored in a buffer instead of being trained on directly. When
this buffer reaches its maximum capacity the oldest transitions in it get replaced. To train the value
network in every training step N random transitions from the buffer are extracted. For each of
these transitions the target for (st, at) is calculated and then the value network is trained on this
mini-batch.

One assumption of using backpropagation to train an MLP is that the samples that are used to train
in the mini-batches are independent and identically distributed. This assumption does not hold for
online Q-learning, as each new transition is a result of the previous transition. Therefore the random
sampling from a large buffer of transitions partially restores the validity of this assumption.

To improve experience replay, Schaul et al. [16] developed prioritized experience replay (PER). PER
does not sample uniformly from the replay buffer, to transition i it assigns the sampling probability:

P (i) =
TDEαi∑
k TDE

α
k

In this formula α determines how much prioritization is used, where α = 1 would mean full pri-
oritization. TDE stands for the temporal difference error of transition i and indicates how bad the
network is at predicting transition i:

TDEi = rt + γ ·max
a

Q(st+1, a)−Q(st, at)

This implies that transitions which the value network is bad at predicting will be replayed more
often, which was shown to lead to faster learning and better final performance in [16].

PER leads to more high TDE transitions to be replayed which skews the sample distribution, there-
fore Schaul et al. also introduce an importance sampling weight which decreases the magnitude
of the weight change in the MLP for transition i anti-proportionally to its TDEi. A weight wi is
applied to the weight changes induced by each transition i of magnitude:

wi = (
1

N
· 1

TDEi
)β

N is the size of the sampled batch and β controls the amount of importance sampling. In practice
the weights are used in the Q-Learning update by multiplying the prediction error for transition i,
used in backpropagation, by wi.

2.2 Continuous Action Space Learning Algorithms

In many applications it is not possible to discretize the action space to a sufficient degree, either
because fine-grained precision is needed in the actions or because the action space is so vast that
discretization would lead to an enormous amount of possible actions. If discretization is not feasible,
there is the need for the agent to output continuous actions. To achieve this, an approach in RL is
to have an actor map a state to an action. The output of the actor for this research will be two
numbers between 0 and 1, indicating the relative mouse position on the screen. A common method
to train this actor is through an actor-critic algorithm [15]. This method also includes a critic network
alongside the actor network, which is a value network as in Q-learning. The critic predicts the value
of states or state-action combinations and can therefore steer the actor towards choosing actions that
will maximize the gain.
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For exploration we apply Gaussian noise to the predicted action by the actor before the action is used
in the game environment. The standard deviation of the Gaussian noise starts at 1 and exponentially
decays towards a value close to zero over the course of training.

We will compare the three actor-critic learning methods Continuous Actor-Critic Learning Automa-
ton (CACLA) [22], Deterministic Policy Gradient (DPG) [18], and the new Sampled Policy Gradient
(SPG) with Q-learning. DPG is an off-policy actor-critic algorithm which calculates the policy gradi-
ent of the actor of a state by backpropagation through the critic. CACLA is an on-policy actor-critic
algorithm, which makes the actor more likely to take an action, if the action positively surprised the
critic. SPG is an off-policy variation of CACLA. To train the actor it samples actions in the action
space of a state and makes the best sampled action more likely to be predicted by the actor in that
state. This offers the advantage of being able to use offline exploration for training.

As DPG and SPG are both off-policy algorithms, they can directly make use of prioritized expe-
rience replay. Even though CACLA is an on-policy algorithm, it can still be used with prioritized
experience replay, which will be elaborated upon later. The TDE of the critics is taken as the priority
value for each transition in PER.

The target networks used for these algorithms are not updated fully every fixed number of steps.
Instead the weights of the target network are slowly trailing behind the critic and the actor network,
by shifting the weights a bit more towards the weights of the non-target networks in every step, as
done in [11]. The τ parameter determines how quickly the weights of the target networks wtarget
shift towards the real weight values wreal:

wtargett+1 = τ · wreal + (1− τ) · wtargett

2.2.1 Continuous Actor-Critic Learning Automaton (CACLA)

CACLA as an actor-critic algorithm has both an actor and a critic. The actor is an MLP that gets a
state representation as an input and outputs an action. The critic for CACLA is an MLP as well and
also has the state representation as an input. The output of the critic is one value which indicates
the total expected reward of the input state. Therefore this critic does not predict a Q-value of a
state-action combination, it predicts how good a specific state st is. The formula to train this critic
on a transition tuple (st, at, rt, st+1) using backpropagation is:

Targetcritic(st) = rt + γ ∗ V (st+1)

In this formula V (s) refers to the prediction of the CACLA critic of state s and is trained with
temporal difference learning [19]. It can be seen that the action at is not incorporated into the
update of the critic, so for the critic the action is treated as a part of the environment. Therefore the
critic does not learn the optimal value function. It learns to predict the value function for the current
policy, so it is on-policy.

To train the actor, a critic is required to calculate the temporal-difference error (TDE) of a transition.
The magnitude of the TDE indicates how surprised the critic is by the result of the action at in state
st and the sign of the TDE indicates whether the critic is positively or negatively surprised:

TDE(st, rt, st+1) = Targetcritic(st)− V (st)

If the critic was positively surprised by the action at of transition i then this action is made more
likely to be predicted by the actor through backpropagation with the target:

If TDE(st, rt, st+1) > 0 : Targetactor(st) = at

The on-policy algorithm CACLA also makes use of experience replay. For every transition, CACLA
evaluates whether the action taken in that transition led to a better result than the result the critic
would have expected the current policy to achieve. So even for transitions that are not generated by
the policy that CACLA currently approximates, the algorithm learns correctly whether the current
policy should be moved in the direction of the observed policy.

CACLA also has an extension named CACLA+Var [22]. This extension allows CACLA to train
multiple times on a transition if that transition was especially positively surprising. CACLA+var
keeps track of the running variance of the TDE:

vart+1 = (1− β) · vart + β ∗ TDE(st, rt, st+1)
2
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The number of updates of the actor for action at of transition i is then:

Number of Updates = ceil(
TDE(st, rt, st+1)√

vart
)

2.2.2 Deterministic Policy Gradient (DPG)

Instead of having a value network as a critic, the DPG algorithm has a Q-value network. This
network is trained in the same way as the network in Q-learning. The actor in DPG is equivalent to
the actor in CACLA: it is an MLP that maps a state to an action.

DPG gets its name from its way of training the actor: the gradient of the policy (the actor) is cal-
culated deterministically for a state st. Instead of analyzing if the action after state st was good or
better than expected, DPG uses backpropagation to calculate how to change the weights of the actor
network in such a way that the output action of the actor will lead to a higher Q-value of the critic
for state st. With α as the learning rate the backpropagation target for the actor network would be:

Targetactor(st) = α · ∇aQ(s, a)|s=st,a=π(st) + π(st)

We implement this by feeding the output of the actor directly into the critic to create a merged
network. In this merged network the weights of the critic are frozen (cannot be changed) so that
the critic won’t change its weights to output a value as big as possible. This allows us to set the
combined network a Q-value target which is a bit higher than what it currently predicts. The only
way for this network to get closer to this target is by modifying the weights of the actor network.

Changing the weights of the actor directly through the critic is a very fast and direct way to assess
the local policy gradient. However, rapidly adapting to the critic in a hill-climbing manner has the
disadvantage of potentially getting stuck in a local optimum.

3 Sampled Policy Gradient (SPG)

The idea of sampled policy gradient is simple: instead of calculating the weight changes of the
actor deterministically through backpropagation, SPG samples actions from the action space for a
specific state. These actions are made more likely to occur, if they are better than the action that
the actor would predict currently for that state. The actor and critic network architectures in SPG
are exactly the same as in DPG. On policy CACLA is limited to training on the actions taken in the
transitions in the experience replay buffer, whereas SPG applies offline exploration to find a good
action. Therefore, SPG is an off-policy version of CACLA, because it can probe any action of the
action space, and move towards them if they are good.

To calculate the backpropagation target for the actor, SPG compares the evaluation of the action of a
transitionQ(st, at) to the evaluation of the action predicted by the actorQ(st, π(st)). π(st) denotes
the actor prediction for state st:

If Q(st, at) > Q(st, π(st)) : Target(st) = at (2)

Additionally to using the action of a transition, SPG allows the application of any search algorithm
to find sampled actions with a better evaluation than Q(st, π(st)).

SPG with offline Gaussian exploration (SPG-OffGE) further extends SPG. SPG-OffGE creates a
new sampled action S times by applying Gaussian noise to the best action found so far. If the
evaluation of the new sampled action Q(st, sampled action) is better than the evaluation of the best
action found so far Q(st, best action so far), then this sampled action becomes the new best action.
Initially, the best action is the action predicted by the actor π(st) and the first sampled action is the
action at of the transition i. If the evaluation of the best action is better than the evaluation of the
action that the actor would take currently, then that best action is made more likely to be predicted
by the actor in state st. The pseudocode for SPG-OffGE is given in Algorithm 1.

The standard deviation of the Gaussian noise for offline exploration decreases exponentially towards
a value close to zero during training. The lower the standard deviation of this noise, the more
probable it is that the algorithm finds a better action than the current action, although this action
could be only marginally better.
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Algorithm 1 Pseudocode for the target calculation of the actor training of the Sampled Policy Gra-
dient Algorithm with offline Gaussian exploration (SPG-OffGE)

input = batch of N tuples (st, at, rt, st+1)
for (st, at) of transition i in input do

best← π(st)
if Q(st, at) > Q(st, π(st)) then

best← at
end if
for count in 1,...,S do

sampled← applyGaussian(best)
if Q(st, sampled) > Q(st, best) then

best← sampled
end if

end for
if Q(st, best) > Q(st, π(st)) then

Targeti = best
end if

end for

The performance of SPG heavily relies on an accurate critic. The critic in DPG needs to be accurate
in the region of action space around the action that the actor currently predicts, π(st), to calculate
a correct policy gradient. Due to the Gaussian exploration around π(st), the action space region is
generally well explored, which makes the critic accurate in this region. The sampling of SPG can be
non-local from π(st), especially if it is supposed to escape local optima that DPG gets trapped in.
Therefore, SPG requires extensive exploration and a good critic to maximize its performance.

Two additions of SPG-OffGE are investigated in this paper. Storing the Best Sampled Action found
(SBA) in a transition is an offline exploration method that changes the action from the last training
iteration on a transition. Online Gaussian Exploration (OnGE) uses sampling to select an action.
Instead of just adding Gaussian noise to the output of the actor, the OnGE method samples N times
around the output of the actor using Gaussian noise. With enough samples, the OnGE approach
approximates the maximization operation over all actions used in Q-learning. The critic evaluates
the samples and then Gaussian noise is added to the sample with the best evaluation, which is
then used as the action. This extension makes the action selection more greedy towards the critic
evaluation and it could be used in any off-policy actor-critic algorithm.

4 The Agar.io Game and RL

Agar.io is a multi-player online game in which the player controls one or more cells. The game has
a top-down perspective on the map of which the size of the visible area of the player is based on the
mass and count of their cells. The goal of the game is to grow as much as possible by having the
player’s cell absorb food pellets, viruses, or other smaller enemy player’s cells. The game itself has
no end. Players can join an ongoing game at any point in time. Players start the game as a single
small cell in an environment with other players’ cells of all sizes. When all the cells of a player are
eaten, that player loses and it can choose to re-enter the game.

Every cell in the game loses a small percentage of its mass in every time step. This makes it harder
for large cells to grow quickly and it punishes inaction or hesitation. The game has simple controls.
The cursor’s position on the screen determines the direction all of the player’s cells move towards.
The player also has the option to ’split’, in which case every player cell (given the cell has enough
mass) splits into two cells of the same mass, both with half the mass of the original cells. One of
these cells is shot in the direction of the cursor with a given momentum. Furthermore, the player has
an option to have every cell ’eject’ a small mass blob, which can be eaten by other cells or viruses.

The game, although having relatively simple core mechanics, has a complex and dynamic range of
environments. The more massive a given cell is, the slower it moves. This forces players to employ
strategies with long-term risks and rewards. A large player might decide to split in order to shoot
a cell towards a small opponent which it might otherwise not be able to catch, but this makes them
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vulnerable to other large players who can eat the smaller cells. Similarly, a small player has to
navigate an environment of larger players while avoiding getting cornered and eaten.

For the purpose of this research, the game was simplified to fit the available computational re-
sources. The version of the game used has viruses disabled and is run with only one or two players.
Furthermore, ejecting and splitting actions were disabled for the current experiments. Ejecting is
only useful for very advanced strategies, and splitting requires tracking of when the player’s cells
are able to merge back together over long time intervals. The use of these actions would require
recurrent neural networks such as LSTMs [7] which are outside of the scope of this research. Figure
1 shows a screenshot of the clone of Agar.io used for this research.

Agar.io has the Markov property when the splitting functionality is disabled and the regular moving
cells do not have any momentum and can change the direction of movement in any state, independent
of previous states. Solving the MDP is slightly modified for this research by using frame skipping
[1, 13]. In frame skipping a certain number of frames, or states, are skipped and a chosen action is
repeated during all of these skipped frames, and the rewards during these skipped frames are summed
up. Rewards are therefore larger and quickly propagated in state-action space. Frame skipping offers
a direct computational advantage, as the agent does not have to calculate the best action in every
frame and leads to successive states different from each other. Having greater differences between
successive states makes it easier for a function approximator to differentiate them.

An agent has the aim to maximize its combined overall mass of all its cells in the shortest amount of
time possible in order to grow as big as possible. This leads to the idea of the reward being the change
in mass between the previous state and the current state. If the agent dies, then the punishment is
equivalent to the agent’s mass one step before dying. Dying is not completely equivalent to just
losing mass, as the agent also has to go through the struggle of starting completely anew. Thus,
dying has a fixed punishment. But, dying with a large mass is also worse than dying with a low
mass. While these two reward adjustments are not necessary for an agent to learn to play the game,
the agent has a more human-like play style, as it fears death more, especially when it is very big.
The reward function for the agent with mt being the mass at time t is the following:

rt =

{
mt −mt−1, if alivet
(mt−1 · (−1.4))− 40, otherwise

An alternative to giving the change in mass as a reward is to simply give the agent the total cell mass
in a state as a reward. Preliminary tests showed that this reward function also enables the agent to
learn, but we opted for the change in mass as a reward function because this reward function is more
likely to induce natural exploration.

Figure 1: A clone of the game Agar.io used for this research. The player has one cell in the center of
the screen. This player is in danger of being eaten by the Greedy bot seen on the top left, the other
cells have a similar size as the player’s cell and therefore pose no danger. The little colored dots are
pellets that can be consumed to grow in mass.
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We compare the RL agents against each other and introduce a ’Greedy’ bot to the game. This bot is
preprogrammed to move towards the cell with the highest cell mass

distance to greedy bot ratio. It ignores cells with
a mass above its biggest own cell’s absorption threshold. The bot also has no splitting or ejecting
behavior. This relatively naive heuristic, outperforms human players at early stages of the game. On
the other hand, the heuristic can be outperformed by abusing its lack of path planning and general
world knowledge later in the game.

4.1 The Action and State Representation

The continuous action RL algorithms output two values between 0 and 1 that determine the relative
mouse position where the player’s cells will move to. However, as Q-learning iterates over all
possible actions in a state, the action space cannot be continuous. Therefore we discretize the action
space by laying a grid over the screen. Every center point of a square in the grid indicates a possible
mouse position that the algorithm can choose. For example if the grid size per side is 2 the possible
actions are: (0.25, 0.25), (0.75, 0.25), (0.25, 0.75), (0.75, 0.75). The resolution used in this paper
is 5x5, resulting in 25 actions. Preliminary results showed that resolutions of 3x3 to 10x10 perform
similarly well.

It has been shown by DeepMind [14], Lample [10], and others that learning from pure pixel input is
possible even in non-trivial environments. The convolutional neural network (CNN) learns to extract
the relevant state features itself. However, by using a CNN, the artificial neural network grows in
size, number of hyperparameters, and general complexity. This leads to much longer training times
and requires higher processing power per training step. On top of that, if we use pixel input for an
image of size 84x84 with three color channels, we get 84x84x3 floating point numbers of around
4 bytes. For DQN [14] and DDPG [11] experience replay buffer sizes of 106 are used, of which
every single experience contains two states. So we get 84 · 84 · 3 · 4 · 2 · 106 ≈ 1.69 · 1011 bytes
≈ 169 Gigabytes. Unfortunately, nowadays most people do not have access to 170 Gigabytes of
RAM required by this computation.

Instead, we make use of semantic vision grids similarly to Knegt et al. [9]. These vision grids
contain semantic information that could be extracted by hand-crafted preprocessing. For pure pellet
collection only one grid for the pellets is used. When the agent trains against enemies, two more
grids are added: a grid for enemy cells and a grid for walls. All grids have a size of 11x11 and cut
the field of view of the agent into 121 equally sized areas. Each area of a grid is represented by one
floating point number, therefore with an experience replay buffer of size 106 and with enemies, one
needs at least 11 · 11 · 3 · 4 · 2 · 106 ≈ 2.70 Gigabytes. This would allow for even finer grids than
11x11.

Next to these vision grids two scalar values are used in the state representation: the total mass of the
agent’s cells and the size of the field of view of the agent relative to the size of a single pellet. The
former value is necessary for the RL algorithm to predict the reward, but it could be replaced by a
vision grid of the agent’s cells. The latter value is not essential, but it did improve performance in
preliminary experiments.

An illustration of a semantic vision grid representation can be seen in Figure 2. To calculate the
floating point number of an area in the grid for pellets the total mass of the pellets in this area is
summed. For the enemy grid the mass of the biggest enemy cell within that area is taken. The value
for an area in the wall grid represents the fraction of area in that area which is covered by a wall.

The state representation in DQN also consists of images of the four last frames, but we only use the
current frame. This is done because cells do not have momentum, and can change the direction of
movement in every frame. Hence, information from previous states is mostly irrelevant. But, using
previous frames might make it easier for the agent to deduce the moving speed and direction of
other cells, and also there is most likely a correlation between the movement direction of an agent in
concurrent frames. Therefore, a more extensive state representation might be advantageous, at the
cost of requiring more computational power.
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Figure 2: This example shows grids of size 5x5, the actual used grid size is 11x11. The semantic
vision grid state representation consists of a grid laid out on the player’s view. Values are extracted
for different semantic objects. For instance, the pellet grid on the left counts the total pellet mass for
every area of the grid.

5 Experiments and Results

5.1 General Experimental Setup

In this section, we describe three experiments we ran to compare the methods. The first experi-
ment compares the different extensions of SPG. The second experiment tests the performance of
all algorithms trained only with pellets, whereas the last experiment tests training the agents using
self-play.

5.1.1 Training

There are two training environments:

1. Pellet collection: In this type of experiment one agent is placed into an environment full
of pellets, so the agent is only trained on collecting pellets. Only the pellet grid is used for
the state representation.

2. Self-Play: In this type of experiment two agents with the same learning algorithm are
placed into an environment containing pellets. In every training step the learning algorithm
is only applied once, whereas all the agents store their experienced transitions in the same
replay buffer. The pellet grid, the wall grid, and the enemy grid are used for the state
representation.

In all experiments the environment is reset after 20,000 game steps. Upon reset all agents are reas-
signed a new cell with mass 10 at a random location and all pellet locations are randomized. This is
done to avoid that the learning agents learn peculiarities of pellet locations on the map, and to force
the agents to also learn to deal with low cell masses.

All algorithms were trained for 500,000 training steps, which equals 5,500,000 game steps, as the
used frame skip rate was 10. On an Intel Xeon E5 2680v3 CPU @2.5Ghz it took Q-learning in the
pellet collection environment approximately 7.5 hours to train, CACLA needed 12.5 hours, DPG
needed 16.6 hours, SPG without sampling needed 17.2 hours, and SPG with 3 samples needed 29.3
hours (approximately 2.5-3 hours increase per sample).
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5.1.2 Testing

Test Environments: While testing the noise factor of the agent (ε of ε-greedy or standard deviation
of Gaussian noise) is set to zero. The agent is placed into 1 or 2 environments to test its performance:

1. Pure Pellets: In this environment the agent can only collect pellets for 15,000 steps. Every
agent is tested in this environment.

2. Greedy Fight: In this environment there is also a Greedy bot along with the agent and the
pellets. The two bots fight for 30,000 steps, which is longer than the pellet environment
time to enable bots with momentarily lower masses to catch up with the other bot. Only
agents that were trained with at least one other bot are tested in this environment.

Test Scores: Every 5% of the training the performance of one agent is tested five times per test
environment. After training is completed the agents are placed in these two testing environments 10
times to measure the final post-training performance.

Furthermore, for testing the average performance of 10 runs for each environment is calculated by
taking the mean of the performance scores of each run. The performance of an individual run is
calculated by taking the mean mass that the agent had over the course of the whole run and by the
highest mass that the agent achieved in a run. For each post-training run for one neural network
initialization the maximum mass is taken, then over all the runs for that initialization the mean
maximum mass is taken. Then again the mean of all mean masses of all initializations is calculated,
along with the standard error.

5.1.3 Algorithms

The Q-learning architecture we use feeds only the state as an input to the network and has one output
node per possible action, as used in [13]. An alternative would be to feed the action as an input as
well and to have only one output node, but preliminary experiments showed that this is much slower
and leads to worse performance.

We coarsely optimized all the hyperparameters using preliminary experiments. Initially for DPG
and CACLA the parameters from the original papers [18, 22] were used and later optimized.

All artificial neural networks/multi-layer perceptrons were constructed using Keras 2.1.4 [2] and
used Adam [8] as an optimizer. This research uses the OpenAi baselines repository [4] for both
uniform and prioritized experience replay. All used parameter values can be found in the Appendix.

5.2 SPG Extensions

To test which extensions of SPG are viable, all extensions plus the pure SPG were run on a pellet
collection experiment. For the OffGE and OnGe extension three samples are used every training
step, hence the name OffGE-3s and OnGE-3s. The results can be seen in Figure 3 and Table 1.

Mean Performance StdError Mean Max Performance StdError Max
Pure 456 0.48 642 0.55

OffGE-3s 464 0.74 649 0.89
OffGE-3s+OnGE-3s 474 0.80 661 0.70

OffGE-3s+SBA 479 0.77 667 0.93

Table 1: Post-training performance of SPG and its extensions in the pellet collection task after being
trained on only pellet collection.

It can be clearly seen that the pure SPG performs the worst and learns the slowest. The offline Gaus-
sian exploration definitely improves performance. A t-test on the mean performance values between
the offline Gaussian Exploration of 3 samples (OffGE-3s) and OffGE-3s with online Gaussian ex-
ploration of 3 samples (OnGE-3s) shows that there is a significant difference between the two with
a p-value of 0.047. Tuning of the standard deviation and the number of samples used for online
exploration might improve the performance of this extension even further.

A t-test on the mean performance values between OffGE-3s and OffGE-3s with storing the best
action (SBA) shows that also here there is a significant difference between the two with a p-value
of 0.005. This extension seems to definitely improve on the standard offline Gaussian exploration
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Figure 3: The performance (mass) over time of pure SPG and some extensions. The first extension is
SPG with offline Gaussian exploration of 3 samples (OffGE-3s). Two other extensions are applied on
top of this one: storing the best action (SBA) and online Gaussian exploration of 3 samples (OnGE-
3s). The shaded regions mark the standard error deviations for every individual measurement. The
performance of the algorithm was tested five times every 5% of training. For each test the mean of
the mean masses of 5 runs was taken.

and is therefore recommended to be used as a default, especially because it does not introduce an
additional tunable parameter.

5.3 Pellet Collection

In this experiment the algorithms were only trained on pellet collection and are only tested on pellet
collection. The results of the experiment are visible in Table 2 and Figure 4. The table shows the final
mean and maximum performance along with the standard errors. The figure shows the performance
of the algorithms during training.

Mean Performance StdError Mean Max Performance StdError Max
Random 18.0 0.12 31.3 0.17
Greedy 527 0.33 693 0.57

Q-Learning 528 0.76 753 0.84
CACLA 496 2.40 699 1.85

CACLA+Var 515 0.55 724 1.29
DPG 460 0.82 649 1.31

SGP-OffGE-3s 464 0.74 649 0.89

Table 2: Post-training performance in the pellet collection task after being trained on only pellet
collection.

It can be clearly seen that all algorithms outperform the Random bot, which takes a completely ran-
dom action without skipping frames. Furthermore it can be seen that the algorithms Q-Learning,
CACLA, and CACLA+Var outperform the Greedy bot in terms of maximal performance. The
Greedy bot is very good at collecting pellets at the start as it does not use a frame skip rate and
it can directly move towards the closest pellets. In the end game this strategy seems to not be
optimal anymore, as the three learning algorithms outperform the Greedy method significantly.
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Figure 4: The pellet collection performance over time of all algorithms trained in a pure pellet
environment

When observing Figure 4 and Table 2 the difference in performance of the algorithms becomes ap-
parent. The algorithm with the highest final performance is Q-Learning, followed by CACLA+Var,
and CACLA. DPG and SPG seem to have converged to an approximately similar final performance.

It is not surprising that Q-Learning does so well in this simple task: moving towards big clusters of
pellets does not require precision. Therefore the extra complexity of the actor-critic algorithms that
they need to get the precision in actions seems to hurt their performance in this task.

In Table 2 it can be clearly seen that CACLA+Var significantly outperforms CACLA in terms of
mean and maximal performance, further supporting the validity of this extension.

CACLA and CACLA+Var outperform the other actor-critic algorithms in this task. This might be
the result of CACLA only needing to estimate how good a state is for its current policy, not how
good an action is in a state in general. It can also make use of a simpler value network that does not
take the action as an input, so it has a reduced complexity and seems to be able to make use of this
to improve its policy even more.

It can be seen in Figure 4 that DPG converged very quickly, after 20% of the training time the
performance does not improve much more. As DPG calculates the exact policy gradient for the actor
it is not surprising that it learns quicker than the other actor-critic algorithms. It can be assumed that
SPG with perfect sampling of a small standard deviation would also find the steepest gradient to
adjust the action, just as DPG. But other than DPG, SPG additionally has the ability to increase its
sampling noise to escape the local optima that DPG quickly lands in.

5.4 Self-Play

In this experiment the algorithms CACLA+Var, Q-Learning, DPG, and SPG-OffGE-3s were trained
in an environment consisting of two bots. Figure 5 shows the performance score during training
that the algorithms got in the pellet collection task and Figure 6 shows the performance score during
training in the fighting task versus the greedy bot. Tables 3 and 4 show the corresponding post-
training performances for both tasks.

Again, all the algorithms are clearly better than random, as can be seen in the tables. But no al-
gorithm comes close to the performance of the greedy bot in either pellet collection or fighting.
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Figure 5: The pellet collection performance over time of the RL algorithms, trained in a 2 bot
self-play scenario.

Mean Performance StdError Mean Max Performance StdError Max
Random 18.0 0.12 31.3 0.17
Greedy 527 0.33 693 0.57

Q-Learning 327 2.92 507 3.49
CACLA+Var 284 6.21 449 7.30

DPG 279 10.5 446 15.5
SGP-OffGE-3s 335 5.95 460 6.57

Table 3: Post-training performance in the pellet collection task, after being trained in self-play of
two bots.

Mean Performance StdError Mean Max Performance StdError Max
Random 19.2 0.13 41.3 0.34
Greedy 551 12.8 820 13.5

Q-Learning 44.5 0.29 142 1.15
CACLA+Var 34.4 0.32 104 1.48

DPG 30.0 0.22 97.6 1.10
SGP-OffGE-3s 27.1 0.25 95.5 0.66

Table 4: Post-training performance in the fighting task versus the greedy bot, after being trained in
self-play of two bots.

The algorithms still learn to collect pellets, but generally much worse than when trained only with
pellets.

The performance against the greedy bot is very low: in testing the bots get nearly constantly eaten
by the greedy bot. This is not very surprising: the greedy strategy is very good at the beginning of
the game, so if the greedy bot has the upper hand in terms of mass early on, then it can repeatedly
eat the other small bot.

When observing the behavior of the bots it can be seen that they do learn to flee from the greedy bot,
but during the chase they get trapped in the corner. To properly flee from a larger bot in a corner
it is necessary to move strictly in parallel of a wall in one direction. This requires the bot to repeat
one action for a large number of steps, but while doing so the greedy bot comes closer, triggering
an earlier acquired ”instinct” of moving in the opposite direction of the greedy bot. Therefore to
solve this problem we propose that a better exploration mechanism is required which either acts
upon some intrinsic motivation or which acts on larger time frames than individual actions.
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Figure 6: The fighting performance versus the greedy bot over time of the RL algorithms, trained in
a 2 bot self-play scenario.

When comparing the algorithms it can be seen that the same order in final performance occurs as
in the pure pellet training: Q-learning is best, followed by CACLA+Var, and DPG and SPG attain
a similar performance. This time CACLA+Var learns very quickly, probably due to its state-value
network it can directly associate a negative reward with the presence of another bot. SPG seems to
be learning to collect pellets better than DPG or CACLA+Var, but fails to outperform them on the
more important task of fighting the greedy bot.

Overall, the discretization of the action space leads to very good results with Q-learning, outper-
forming all other algorithms in all tasks. More complicated tasks involving fighting requires more
sophisticated algorithms with better exploration.

In reinforcement learning research, many implementations of the same algorithm give different re-
sults [6]. Minor implementational details, which are not reported in the research papers might have
a large influence on performance. The learning algorithms used in this paper are constructed using
the Keras library [2] and the experience replay buffer from OpenAi [4]. This was done to make sure
that no algorithm uses special tricks over another that would give an algorithm the edge.

All algorithms have been tuned as well as possible in a limited time and limited computation through
a coarse search through hyperparameter space. But, the optimality of the hyperparameters for an
algorithm is not guaranteed. The current hyperparameters of the algorithm seem to be in a local
optimum, as small perturbations to single parameters do not lead to improvements, but there might
of course be better hyperparameter values.

6 Conclusions

Our study on how to apply reinforcement learning to the game Agar.io has led to a new off-policy
actor-critic algorithm named Sampled Policy Gradient (SPG). We compared some state of the art
actor-critic continuous action RL algorithms, CACLA and DPG, to SPG and Q-learning on the
Agar.io game.

The results show that Q-learning and CACLA perform very well in the pellet collection task by
outperforming a preprogrammed Greedy bot that follows a simple, yet effective, heuristic. The other
two algorithms perform slightly worse than the Greedy bot in pellet collection, but still significantly
better than random. All algorithms were not able to successfully learn how to defeat the Greedy bot
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heuristic in a direct fighting scenario, requiring further research. The analysis indicates that CACLA
performed well in comparison to the other actor-critic algorithms because of its use of a state-value
critic function. The DPG algorithm learns very quickly but gets stuck in a local optimum. SPG learns
slower than DPG, but catches up with DPG during training to reach the same final performance.

The novel SPG algorithm was shown to result in similar final performances as DPG, even without
heavy extensions. An online Gaussian sampling method improves the performance of SPG. Storing
the best sampled action in the transition to use it in later training instances increased performance
significantly. We recommend to use offline Gaussian exploration, with the method of storing the
best sampled action, as a default version of SPG.

For the relatively simple task of pellet collection, Q-learning was able to obtain the best perfor-
mances, despite that it cannot directly handle continuous actions and needed to discretize the action
space. It was shown that the lack in precision through discretization of the action space is balanced
out by a more simple and better learning network.

6.1 Future Work

First of all it is important to note that only a large simplification of Agar.io was investigated. Future
work could use more sophisticated algorithms such as critics with distributional value output, hier-
archical actor-critic architectures, and exploration by curiosity. To deal with the time dependency
that the cell splitting functionality brings, LSTM units [7] can be used instead of perceptrons.

The analysis of the SPG algorithm shows how the DPG algorithm can be matched in performance
by some simple sampling in action space. Future work could explore the algorithm space between
DPG and SPG further by using the policy gradient from DPG to steer the sampling of SPG.

It was shown that CACLA performs better than the other actor-critic algorithms. It was hypothe-
sized that this is because CACLA uses a state value function instead of a state-action value function.
Therefore it would be interesting to compare QV-Learning [24] applied on SPG and DPG to CA-
CLA. If QV-Learning improves the performance of the critic, then it might drastically improve the
performance of SPG and DPG, which are both heavily reliant on an accurate critic.

Lastly it is of great importance that SPG is tested in other environments against CACLA and DPG.
The surprising success of CACLA over DPG and SPG might not replicate in environments in which
it is more difficult to estimate the value of a state or in environments with a sparse reward function.
Also DPG might perform better than SPG in other environments, even though the work of this paper
suggests that the SPG algorithm matches the performance of DPG and allows for a wide range of
extensions.
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Appendix: Parameter values

Parameter Value
Reset Environment After 20,000 training steps
Frame Skip Rate 10
Discount Factor 0.85
Total Training Steps 500,000
Optimizer Adam
Loss Function For All Algorithms Mean-Squared Error
Semantic Vision Grid Size 11x11
Weight Initializer Glorot Uniform
Activation Function Hidden Layers All Algorithms ReLU
Prioritized Experience Replay Alpha 0.6
Prioritized Experience Replay Beta 0.4
Prioritized Experience Replay Capacity 75,000
Training Batch Length 32
Q-Learning Steps Between Target Network Updates 1500
Q-Learning Hidden Layers 3
Q-Learning Neurons per Hidden Layer 256
Q-Learning Learning Rate 0.0001
Q-Learning Std of Noise at Training End 0.0004
Q-Learning Number of actions 5x5
Actor-Critic Policy Output Activation Function Sigmoid
Actor-Critic Actor and Critic Hidden Layers 3
Actor-Critic Critic Neurons per Hidden Layer 250
Actor-Critic Actor Neurons per Hidden Layer 100
CACLA Target Network τ 0.02
CACLA Actor Learning Rate 0.0005
CACLA Critic Learning Rate 0.000075
CACLA+Var Start Variation 1
CACLA+Var Beta 0.001
DPG Target Network τ 0.001
DPG Actor Learning Rate 0.00001
DPG Critic Learning Rate 0.0005
DPG Combined Network Q-Value Target Increase (β) 2
DPG Feed Action in Layer 1
DPG Critic L2 Weight Decay 0.001
SPG Target Network τ 0.001
SPG Actor Learning Rate 0.0005
SPG Critic Learning Rate 0.0005
SPG Offline Sample Number 3
SPG Offline Exploration Noise at End of Training 0.0004
SPG Online Sample Number 3
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