
A Serial Population Genetic Algorithm for Dynamic Optimization Problems

Lars Zwanepol Klinkmeijer LARS@DROIDS.NL
CKI, Utrecht University, Heidelberglaan 6, 3584 CS, Utrecht, The Netherlands

Edwin de Jong DEJONG@CS.UU.NL
Marco Wiering MARCO@CS.UU.NL
Department of Computer Science, Utrecht University, Padualaan 14, 3508 TB, The Netherlands.

Abstract

The increase in number of papers being
published on Evolutionary Algorithms for
dynamic optimization problems shows the
growing interest in this field. In this paper we
introduce a powerful new genetic algorithm, the
Serial Population Algorithm (SPA), which uses
memory to solve dynamic tasks. We compare
SPA to two other algorithms: a Hypermutation-
and a Diploid Genetic Algorithm. Our results
show that SPA outperforms these algorithms on
a recurrent, discontinuous, dynamic optimization
task.

1. Introduction

Over the past two decades the field of Evolutionary
Algorithms (EA’s) has matured and shown itself to be a
useful and powerful engineering tool. For tasks where the
underlying mechanisms are not well understood or
optimization tasks that have many interdependent
parameters an EA is often capable of finding good
solutions. For the most part, the research on EA’s has
focused on static, non-changing tasks. This is
understandable for two reasons. Firstly, the inner
workings of the algorithms, such as takeover time1 and
the accumulation of building blocks, are easier to analyze.
Secondly, in the ‘old-days’ computing power was limited
so the problems to be solved needed to remain simple in
order for the experiments to remain practical. In recent
years the frequency of papers being published concerning
non-static problems has increased. Many of those papers
will tell you dynamic environments is an interesting
research area, because many real world problems are
dynamic in nature and the area is largely unexplored.

Goldberg and Smith (1987) are two of the earlier
researchers who looked into Genetic Algorithms (GA’s)

—————
1 The time it takes for the population to be filled with the

fittest individual only.

for dynamic optimization problems. They experimented
with a diploid GA on a dynamic 0/1 knapsack problem
which oscillated between two states. In such algorithms
the solutions are encoded by two chromosomes instead of
the regular single (haploid) chromosome. Not all genes
are used to encode the solution and it is this redundancy
in genes that is thought to give the diploid GA its power
to tackle the changes in the fitness landscape.

Another well-known GA for dynamic fitness
environments is the (Triggered) Hypermutation algorithm
by Cobb (1990). She applied this algorithm on a
continually changing environment attempting to track an
optimal solution. Over the years this algorithm has been
shown to perform well (Lewis, Hart & Ritchie, 1998;
Morrison & K. de Jong, 2000; Simões & Costa, 2003).

In this paper we introduce a new algorithm that uses
subpopulations as a mechanism for storing good
solutions. Between changes only one of those
subpopulations will be used for evolutionary exploration,
leaving the others unchanged. The paper is structured as
follows; in section two we discuss related work, in section
three we describe our Serial Population Algorithm (SPA),
section four describes some dynamic characteristics of
environments and we consider which GA’s could be
preferred for such dynamics, in section five we describe
our experimental setup, in section six we discuss our
results and we give our conclusions in section seven. The
tables with experimental results are shown in the
appendix.

2. GA’s for Dynamic Environments

In order to apply Genetic Algorithms to dynamic
environments we need to make some adjustments to the
standard GA used for static environments. One can adopt
several kinds of strategies, each having its own
advantages and disadvantages. Jürgen Branke (2001) gave
a nice overview which we will summarize here
accompanied by a more in-depth look into two
algorithms; a diploid GA and a Triggered Hypermutation
GA.

2.1 Strategies for Dynamic Environments

In the literature four broad strategies can be distilled:

1. Increase diversity after change

2. Maintaining diversity throughout the run

3. Memory

4. Multiple subpopulations

2.1.1 INCREASE DIVERSITY AFTER CHANGE

Triggered Hypermutation (Cobb, 1990) and Variable
Local Search (VLS) (Vavak, Jukes & Fogarty, 1998) are
two well-known examples of this strategy. Once a change
in environment has been detected the mutation-rate will
be increased. This can happen either in one dramatic burst
followed by a period of decay as with Hypermutation or
by gradually increasing the rate as with VLS.

The (Triggered) Hypermutation GA (HMGA) is an
elegantly simple algorithm that works well on dynamic
environments. For most of the time the algorithm works
like a regular GA using mainly crossover and selection to
search for a good solution. When a change in the
environment is detected the algorithm increases the
amount of variation in the population by raising the
mutation rate to a very high level. Cobb changed the rate
from 0.001, which is very low, up to rates of 0.5. The
increase in mutation rate is followed by a period of decay
where the rate decreases back to its base rate. Very high
mutation bursts like 0.5 are similar to reinitializing the
population. Lower levels of mutation bursts retain some
parts of the old solution and so are better capable of
adapting to smaller changes. Furthermore Morrison and
K. de Jong (2000) showed that larger hypermutation
bursts track the optimum better when the environmental
changes are frequent while lower hypermutation levels
perform better when the changes are less frequent.

Cobb tried detecting the change by monitoring the fitness
of the best performer in the population. When this value
would decline a burst of hypermutation is triggered. Not
all changes are detectable this way. Adding peaks in the
multiple peaks problem or raising the maximum allowed
weight in a knapsack problem may go undetected leaving
the algorithm struggling on a suboptimal solution.

Over the years this algorithm has shown itself not only to
work well on continuously changing environments but
also on discontinuous environments which show large
changes to the optima (Lewis, et al., 1998; Morrison & K.
de Jong, 2000; Simões & Costa, 2003b). Problems may
occur when the algorithm fails to detect the change in the
environment or when the change is too large
(Grefenstette, 1992).

2.1.2 MAINTAINING DIVERSITY THROUGHOUT THE RUN

Diversity was already important in GA’s used for static
environments in order to avoid getting stuck in
suboptimal solutions. In dynamic environments this

importance is amplified. If a change occurs, your once
optimal solution is destined to become suboptimal at best.
Diversity maintenance mechanisms such as Fitness
Sharing, Random Immigrants (Grefenstette, 1992) and
Crowding are common examples of this strategy.
Ensuring the population holds no multiple instances of the
same solution is another example.

2.1.3 MEMORY

Two types of memory can be distinguished:

- Explicit memory

- Implicit memory

GA’s incorporating explicit memory usually have
strategies for storing solutions and reintroducing them on
later occasions during the run (Louis & Xu, 1996;
Ramsey & Grefenstette, 1993; Eggermont & Lenaerts,
2002). GA’s incorporating implicit memory usually
incorporate some form of redundancy in their genetic
representation. The most common example is using a
diploid genetic structure. (Branke, 2001; Calabretta,
Calbiati, Nolfi & Parisi, 1996; Lewis et al., 1998; Ng &
Wong, 1995)

Applying memory serves two functions: First; it provides
diversity by retaining former good solutions which
otherwise would have been lost in the selection process
and reintroducing (parts of) these solutions on a later
occasion. Second; reintroducing former solutions in
repetitive environments can enable the algorithm to
quickly retrieve the previously encountered optimum.

A diploid GA is different from a regular GA by the fact it
has two sets of chromosomes instead of the common
single set (haploid). The consequence of this is that two
genes compete for the same phenotypic trait in the same
individual. In order to solve this dilemma a dominance
mapping is devised labeling some genes as dominant and
others as recessive. If a dominant gene is paired with a
recessive gene, only the former is expressed in the
phenotype leaving the recessive gene unexpressed.
Dominant genes are thus able to protect less fit recessive
genes from being discarded by selection. Formerly fit
genes can piggyback ride the fitter dominant genes they
are paired with, hopefully coming into expression again
when the environment is more favorable. It is this
mechanism that is thought to give the GA a form of
implicit memory.

Apart from this it is also possible for two dominant or two
recessive genes to be paired. What happens in this case
differs between the dominance mappings used by
different researchers. Although over the years many
researchers (Callabretta et al., 1996; Hollstein, 1971; Ng
& Wong, 1995; Ryan, 1997) have devised their own
dominance mappings there is one mapping that is
commonly referred to; the triallelic dominance mapping.

The triallelic dominance mapping was first developed by
Hollstein (1971) for static environments and made

popular by Goldberg and Smith (1987) who first used it
for a dynamic environment. The genetic strings use a
trinary [0,1,2] representation instead of the regular binary
[0,1].

Table 1. A schematic view of the triallelic dominance mapping
where the first row and column denote the genetic values.

 0 1 2

0 0 0 1

1 0 1 1

2 1 1 1

The first row and column in table 1 show the genetic
values (alleles) and the rest of the table shows the
resulting phenotypic expression. In this mapping there is a
clear bias for expressing 1’s. Alternative mappings (Ng &
Wong, 1995, Ryan, 1997) have been proposed to
eliminate this bias. Their representations have four alleles
where the probabilities of generating 0’s and 1’s are
equal. Lewis, Hart and Ritchie (1998) showed that a
diploid structure alone is not enough for a diploid GA to
adapt to changing environments. Frequently switching the
values from dominant to recessive and vice versa was
needed to give acceptable results.

2.1.4 MULTIPLE SUBPOPULATIONS

The most common way of using subpopulations is to have
one part of the population track the best solution present
and have other parts of the population search for and track
sub-optimal solutions (Branke, Klaussler, Schmidt &
Schmeck, 2000; Ursem, 2000).

3. Serial Population Algorithm (SPA)

At the start of an evolutionary run a population is created
and initialized randomly. The population is divided into a
predefined number of subpopulations. All subpopulations
are evaluated and the best2 subpopulation is selected.
Until a change in environment is detected only this
subpopulation will be used. When a change has been
detected all subpopulations will be evaluated on the new
environment and again the best subpopulation will be
selected. It is through this serial use of the subpopulations
that we hope to create a form of memory. This memory-
function will perform optimally when the number of
subpopulations is equal to the number of optima.

For the detection of environmental changes we use a
system similar to what Eggermont and Lenaerts (2002)

—————
2 The best subpopulation is either the subpopulation

containing the individual with the highest fitness or the
subpopulation with the highest average fitness. Either
qualification seems to work fine.

used for their algorithm. We store the best individual and
its fitness value at the end of each generation. We then
evaluate this individual again at the beginning of a new
generation. If its fitness value has changed we know a
change in environment has occurred and in our case it
triggers the algorithm to reevaluate all the subpopulations.

When SPA has decided on which subpopulation to use, a
child population will be created. To generate the child
population we repeatedly select two parents from the
subpopulation through tournament selection. These
parents are recombined using two point crossover with
chance Pc followed by mutation. The resulting two
children are placed in the child population.

From the child population the new subpopulation is
selected, once again using tournament selection. By using
elitist selection we ensure both the best parent and the
best child are added to the new subpopulation. This new
subpopulation is not allowed to contain any double
instances thus ensuring the needed diversity in the
population.

until maximum number of generations:
if change detected

 evaluate total population;
choose best subpopulation;

 end
 else continue with same subpopulation;

 until child population is full:

select two parents with tournament
selection;

 perform:
crossover with chance Pc;

 mutation;
 add kids to child population;

end
add the best parent and the best child to new
subpopulation;
until new subpopulation is full:
 select child with tournament selection;
 add child to new subpopulation;

remove any double instances;
end
replace the old subpopulation with the new;

end

Figure 1. Pseudo code for SPA

4. Characteristics of Dynamic Environments

Dynamic environments come in many different flavors
that can have dramatic effects on the functionality of the
algorithms used. Therefore it is important one first gets an
idea of what the problem looks like and how it behaves
before deciding on what algorithm and genetic operators
to use. We now give two distinctions by which you can

characterize the dynamics and we will discuss their
consequences for what type EA to use:

Recurrent vs. Non-recurrent

Continuous vs. Discontinuous

Recurrent environment have states that are revisited
during the evolutionary run. This can happen either
periodically/cyclic or a-periodically. In general you could
say that such dynamics are well suited for GA’s that
incorporate some form of memory.

Non-recurrent environments have no states that are
revisited or at most merely by accident. Here, applying
memory will serve little more function than adding some
diversity to the population. GA’s that either maintain or
introduce diversity seem to have better chances of
succeeding.

Continuous environments, in a strict sense, change every
timestep by a small margin. They require only small
genetic changes to be made to the previous found
optimum in order to find the next. Such environments are
state dependent functions where the next state is
dependent on the previous state. Maintaining diversity
throughout the run seems to be a good strategy to handle
this problem. If the environment is both continuous and
recurrent the amount of related yet distinct states may be
too large for a memory system to be a feasible option
(Cobb, 1990).

Discontinuous environments switch from one state to the
next in relatively large steps. This may cause problems for
some diversity maintenance GA’s and diversity
introducing GA’s when the adjustments are too big
(Grefenstette, 1992). Combined with a recurrent
environment the amount of states to be found is likely to
be small thus a paradise for memory incorporating GA’s
including SPA.

5. Experimental Setup

For our experiments we compared three different
algorithms: a diploid GA using the triallelic dominance
mapping, a Hypermutation GA and our Serial Population
Algorithm. The environment we used for the bulk of our
experiments was a dynamic 0/1 knapsack problem that
can be classified as a recurrent, discontinuous
optimization problem. Additionally we used a dynamic
0/1 knapsack problem where we swapped two items for a
slightly more continuous and non-recurrent environment.

5.1 Dynamic 0/1 Knapsack Problem

The Dynamic 0/1 Knapsack Problem is an oscillatory
version of the standard 0/1 Knapsack Problem. The task is
to fill a ‘knapsack’ with a subset of items. Each item has
both a weight and a value. The aim is to maximize the
value of the content of the knapsack without exceeding
the maximum allowed weight. This weight constraint is

enforced by a penalty function identical to the one used in
Smith and Goldberg (1992):

()2WCP ∆=

Where:

P = the Penalty on the fitness value.

W∆ = the overweight of the individual.

C = 20.

Negative scores will be rated as zero.

At the start of the experiment we generate several sets of
items. After a predefined number of generations we pick a
different set of items thus giving it its dynamic character.
This method of changing the knapsack problem is
different from what most researchers do, who change the
maximum allowed weight (Goldberg & Smith, 1987;
Smith & Goldberg, 1992; Lewis, et al., 1998; Simões &
Costa, 2003b). Raising the maximum allowed weight has
the disadvantage that the change may not be detected, as
stated earlier. In our case we can be 100% certain of
detecting a change.

In order to investigate SPA’s basic characteristics we
performed several different experiments, each lasting
2000 generations. For the bulk of our experiments we
used three different set sizes containing 17, 50 and 150
items each. With each set size we altered two conditions:

- The amount of sets used; using 2 and 5 sets of
items each containing weights and values.

- The duration of the stationary period; P = 10, P
= 25 or P = 50 generations.

Additionally we performed experiments using only one
set with size 50 where we generated a change by
swapping two items in the sets. This created a genotypic
difference with a hamming distance of size 2 while
leaving the optimal knapsack value unchanged. Our aim
was to create a somewhat more continuous environment
although it is not continuous in the strict sense for it still
changes periodically.

5.2 The Algorithms

For each of the three algorithms we use the same genetic
operators as much as possible in order to keep things as
equal as possible. The only differences are: a triallelic
encoding for the diploid algorithm, a hypermutation phase
for the Hypermutation algorithm and the use of serial
subpopulations for SPA. The parts that are equal are:
child- and parent population sizes, tournament sizes,
crossover probability, mutation rate, and not allowing
multiple instances in the parent population. In the case of
five sets with size 50 we also ran a basic GA that used
only these operators.

5.2.1 GENERAL SETTINGS

We set the following parameters for all algorithms:

- (sub) population size = 50

- child population size = 150

- tournament size:

o mating selection = 4

o replacement selection = 8

- crossover probability Pc = 0.9

- mutation rate = 1/setsize

This means that if SPA uses five subpopulations, its total
population size will be 250. This appears to give SPA a
major advantage over the other algorithms but in reality
this is limited.

The following three equations give the average number of
evaluations for each algorithm:

Eq. 1: ECI
P

IS =+++−
1

*)1(SPA

Eq. 2: ECI =++1 HMGA

Eq. 3: ECI =+ Diploid GA

Where:

S = number of subpopulations used in SPA.

I = number of individuals in each (sub-) population.

C = number of individuals in each child population.

P = duration of stationary period, measured in
generations.

E = average number of evaluations in each generation.

After each detected change SPA’s entire population will
be evaluated. On average this results in Eq. 4 evaluations
per generation. The detection system itself accounts for
one extra evaluation per generation and evaluating the
parent- and child populations are equal for all GA’s (Eq.
3). The Hypermutation Algorithm does not have the
subpopulations but it does have the detection system,
resulting in Eq. 4 fewer evaluations per generation than
SPA.

Eq. 4:
P

IS *)1(−

The Diploid GA has no detection system nor does it use
the subpopulations resulting in eq. 5 fewer evaluations per
generation then SPA.

Eq. 5: 1
*)1(

+
−
P

IS

This means that if SPA uses five subpopulations and the
stationary period is fifty generations, it will have four
more evaluations than HMGA and five more than the
Diploid GA. The number of evaluations per generation
will go up either by increasing the number of
subpopulations or by increasing the frequency of
environmental change. To counterbalance this advantage
of SPA we increased the populations of the
Hypermutation GA and the Diploid GA by the
appropriate numbers. So for this example HMGA would
have 54 individuals and the Diploid GA 55.

5.2.2 THE HYPERMUTATION ALGORITHM

We altered the Hypermutation algorithm slightly
compared to what is common. Normally, between
mutation bursts, HMGA uses a very low base mutation
rate and depends mostly on crossover and a large
population size to find solutions. In our experiments we
used the base rate of 1/L where L is the length of the
chromosome. Because our population is smaller than
normally used in hypermutation experiments the extra
mutation is needed to compensate the loss of variation
due to the population size. The mutation burst is set to be
roughly 35%. This is comparable to the burst size used in
Lewis et al. (1998) and to the theory that high frequencies
require high mutation rates (Morrison, K. de Jong, 2000).
The burst is followed by a period of linear decay. Two
generations after the initial burst the mutation rate is back
on the base rate. Also the detection system is different
than the one used by Cobb. Our detection system has a
100% chance of detecting a change in environment. This
is in part caused by the way we change our environment.
If we would have altered the maximal allowed weight
there would have been a chance that the change would go
unnoticed. For these experiments we used the same
detection system as SPA that we described earlier.

5.2.3 THE DIPLOID GENETIC ALGORITHM

The diploid genetic algorithm uses Hollstein’s triallelic
dominance scheme as described earlier. Apart from this
and the fact it doesn’t use any subpopulations the
algorithm is the same as SPA.

5.3 The Performance Measures

We use two criteria to measure the performances of the
algorithms; Accuracy and Adaptability as described by
Simões & Costa (2003a & 2003b) but with a slight
alteration. Accuracy measures the difference between the
optimal value of that period and the best individual in the
last generation before the change. We altered this slightly
by taking this difference as a percentage of the optimum.
This is especially useful when comparing results of tests
with large differences in set size what can result in large
differences in optimal values. Adaptability is similar to

what is commonly known as the mean fitness error. We
measure the difference between the best individual of
each generation with the optimum value of that period. It
gives us an indication of the speed of recovery of the
algorithm. These two measurements should be as close to
zero as possible. The values that are shown in the tables
are the averages over 10 evolutionary runs per
experiment.

6. Results

The details of the results are given in the appendix.

6.1 Discontinuous recurrent dynamics

The experiments show that the use of serial
subpopulations has the effect that each subpopulation
tends to converge toward a single optimum. This enables
SPA to quickly regain the former solution in recurrent
problems. If the subpopulation had previously found the
optimum and it has not been used to search for a different
optimum it is even capable of retrieving the old optimum
in the first generation after the change. This results in an
adaptability score of zero in the later parts of the
evolutionary run. Of course this is helped by the fact that
the number of subpopulations is set equal to the number
of optima.

Considering both the accuracy and adaptability HMGA
performs equally well on environments with five optima
as on those with two optima although on the latter it does
slightly better. SPA on the other hand does show a
significant difference. This is caused by the fact that when
using two subpopulations for two optima the
subpopulations quickly develop a preference for one of
the optima. With more subpopulations this development
of preference tends to take longer as sometimes a
subpopulation is used for more than one optimum. Given
sufficient time and revisitations to the optima this double
use of a subpopulation ceases.

Whereas HMGA doesn’t lag too much behind when we
consider the accuracy measurement, SPA clearly is king
when we look at the adaptability.

Some preliminary explorations using either more or fewer
subpopulations showed that in the former case the
accuracy and adaptability do not suffer although there are
a lot of useless extra evaluations after each change. In the
latter case some subpopulations are used for more than
one optimum whereas others still manage to converge to a
single solution thus retaining some of its memory.

The Diploid GA clearly is the worst performer of all
tested algorithms, both with the accuracy and the
adaptability measure. Even when we compared it to a
basic GA that was similar to SPA using only one
undivided population, it still performed worse. This is
most likely caused by the slow convergence of the diploid
GA and by the fact that even when all individuals were

unique it still was able to converge to a single phenotype,
losing much of its selective pressures.

6.2 Small changes, non-recurrent dynamics

Using only one set of items for the knapsack and
changing them around between the stationary periods
result in small changes. Because in SPA subpopulations
tend to converge to one specific set it now only uses one
subpopulation. Any additional subpopulations will not be
used and become a burden because of the extra
evaluations after each detected change. HMGA now does
a lot better and comes very close to the accuracy and
adaptability performances of SPA. HMGA may very well
exceed SPA’s performances in this case when properly
tuned.

7. Discussion

7.1 Strengths and weaknesses of SPA

Strengths:

Adaptability is clearly the strongest point of SPA. The
more an optimum is revisited the more powerful SPA will
become. The dedication of a single subpopulation to an
optimum also causes SPA to increase its accuracy because
former search results are not lost.

Weaknesses:

- Higher frequency of change causes an increase in the
average number of evaluations per generation.

- Larger numbers of subpopulations cause an increase in
the average number of evaluations per generation.

Both these weaknesses may be lessened by sampling the
subpopulations instead of evaluating the entire
population.

- The efficiency of SPA is dependent on whether the
number of optima and subpopulations match.

This may be resolved by introducing more complex rules,
such as starting out with one subpopulation and
introducing more subpopulations when this is required by
the environment.

7.2 Future Work

SPA works extremely well on recurrent, discontinuous
optimizations tasks. Given a number of subpopulations
greater or equal to the number of optima it makes near
perfect use of memory. Developing a system for SPA that
does not require knowing the amount of optima, for
instance by gradually introducing extra subpopulations,
may make SPA a more widely applicable algorithm.

References

Branke, J. (2003). Evolutionary approaches to dynamic
optimization problems - introduction and recent trends.
In J. Branke, editor, GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization Problems, pages
2-4.

Branke, J., Kaußler, T. & Schmidt, C. & Schmeck,
H. (2000). A multi-population approach to dynamic
optimization problems. In Adaptive Computing in
Design and Manufacturing 2000. Springer.

Cobb, H. G. (1990). An investigation into the use of
hypermutation as an adaptive operator in genetic
algorithms having continuous, time-dependent
nonstationary environments. Technical Report AIC-90-
001, Naval Research Laboratory, Washington, USA.

Eggermont, J. & Lenaerts, T. (2002) Dynamic
Optimization using Evolutionary Algorithms with a
Case-based Memory. In Proceedings of the 14th
Belgium Netherlands Artificial Intelligence Conference
(BNAIC'02)

Goldberg, D. E. & Smith, R. E. (1987). Nonstationary
function optimization using genetic algorithms with
dominance and diploidy. In J. J. Grefenstette, editor,
International Conference on Genetic Algorithms, pages
59-68. Lawrence Erlbaum Associates.

Grefenstette, J. J. (1992). Genetic algorithms for changing
environments. In R. Maenner and B. Manderick, editors,
Parallel Problem Solving from Nature 2, pages 137-
144. North Holland.

Lewis, J., Hart, E. & Ritchie. G. (1998).A comparison of
dominance mechanisms and simple mutation on non-
stationary problems. In A. E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature, number 1498 in LNCS,
pages 139-148. Springer.

Appendix

Accuracy:

Table 2. Accuracy (%) on 5 sets of size 17

 P = 10 P = 25 P = 50
Diploid 0.8515 0.5484 0.3646
HMGA 0.1087 0.0010 0.0000

SPA 0.0222 0.0011 0.0355

Table 3. Accuracy (%) on 2 sets of size 17

 P = 10 P = 25 P = 50
Diploid 1.1878 0.3108 0.1261
HMGA 0.0128 0 0

SPA 0.0021 0 0.009

Morrison, R. W. & De Jong, K. A. (2000). Triggered
hypermutation revisited. In Congress on Evolutionary
Computation, pages 1025-1032.

Ng, K. P. & Wong, K. C. (1995). A new diploid scheme
and dominance change mechanism for non-stationary
function optimization. In Proceedings of the Sixth
International Conference on Genetic Algorithms,
Algorithms, pages 159-166. Morgan Kaufmann.

Simões, A. & Costa, E. (2003a). An immune system-
based genetic algorithm to deal with dynamic
environments: Diversity and memory. In D. W. Pearson,
N. C. Steele, and R. Albrecht, editors, Proceedings of
the Sixth international conference on neural networks
and genetic algorithms (ICANNGA03), pages 168-174.
Springer.

Simões, A. & Costa, E. (2003b). A comparative study
using genetic algorithms to deal with dynamic
environments. In D. W. Pearson, N. C. Steele, and
R. Albrecht, editors, Proceedings of the sixth
international conference on neural networks and
genetic algorithms (ICANNGA03), pages 203-209.
Springer.Smith, R. E. & Goldberg, D. E. (1992).
Diploidy and Dominance in Artificial Genetic Search.
In Complex Systems, Vol. 6, pages. 251-285.

Ursem, R. K. (2000). Multinational GA optimization
techniques in dynamic environments. In D. Whitley,
D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and
H.-G. Beyer, editors, Genetic and Evolutionary
Computation Conference, pages 19-26. Morgan
Kaufmann.

Vavak, F., Jukes, K. A. & Fogarty, T. C. (1998).
Performance of a genetic algorithm with variable local
search range relative to frequency for the environmental
changes. In Koza et al., editor, International Conference
on Genetic Programming. Morgan Kaufmann.

Adaptability :

Table 9. Adaptability (%) on 5 sets of size 17

 P = 10 P = 25 P = 50
Diploid 11.6612 5.8761 3.4162
HMGA 4.6372 1.8022 1.0003

SPA 0.3821 0.2250 0.2233

Table 10. Adaptability (%) on 2 sets of size 17

 P = 10 P = 25 P = 50
Diploid 9.3527 5.2123 2.9160
HMGA 3.7169 1.5001 0.7430

SPA 0.0586 0.0523 0.0785

Table 4. Accuracy (%) on 5 sets of size 50

 P = 10 P = 25 P = 50
Diploid 7.988 1.8547 0.7381
HMGA 3.65 0.2609 0.0151

SPA 0.305 0.045 0.0059
Basic GA 5.701 0.40087 0.0354

Table 5. Accuracy (%) on 2 sets of size 50

 P = 10 P = 25 P = 50
Diploid 6.4238 2.0139 0.8077
HMGA 4.0406 0.2884 0.0151

SPA 0.0565 0.0122 0.0015

Table 6. Accuracy (%) on 5 sets of size 150

 P = 10 P = 25 P = 50
Diploid 21.414 8.333 3.440
HMGA 9.985 3.985 2.020

SPA 1.789 1.194 0.688

Table 7. Accuracy (%) on 2 sets of size 150

2 optima P = 10 P = 25 P = 50

Diploid 15.1685 4.1251 2.1364

HMGA 9.6863 3.5759 1.8728

SPA 0.6822 0.4651 0.3254

Table 8. Accuracy (%) for small changes on size 50

 P = 10 P = 25 P = 50

HMGA 0.6907 0.0347 0.0048

SPA 0.3108 0.0246 0.0021

Table 11. Adaptability (%) on 5 sets of size 50

 P = 10 P = 25 P = 50
Diploid 19.16 15.56 9.37
HMGA 13.56 6.73 3.45

SPA 0.73 0.60 0.48
basic GA 15.26 5.29 5.28

Table 12. Adaptability (%) on 2 sets of size 50

 P = 10 P = 25 P = 50
Diploid 19.33 16.91 10.96
HMGA 15.28 7.30 3.71

SPA 0.15 0.16 0.17

Table 13. Adaptability (%) on 5 sets of size 150

 P = 10 P = 25 P = 50
Diploid 25.6305 26.5077 23.4982
HMGA 13.5355 13.8279 8.8153

SPA 2.0354 2.1057 1.8599

Table 14. Adaptability (%) on 2 sets of size 150

 P = 10 P = 25 P = 50
Diploid 18.4185 18.5358 19.0245
HMGA 13.7836 13.9357 8.8824

SPA 0.7521 0.7691 0.7160

Table 15. Adaptability (%) for small changes on size 50

 P = 10 P = 25 P = 50

HMGA 1.3635 0.5520 0.3275

SPA 0.7235 0.3234 0.1813

