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Abstract 

The increase in number of papers being 
published on Evolutionary Algorithms for 
dynamic optimization problems shows the 
growing interest in this field. In this paper we 
introduce a powerful new genetic algorithm, the 
Serial Population Algorithm (SPA), which uses 
memory to solve dynamic tasks. We compare 
SPA to two other algorithms: a Hypermutation- 
and a Diploid Genetic Algorithm. Our results 
show that SPA outperforms these algorithms on 
a recurrent, discontinuous, dynamic optimization 
task.  

1.  Introduction 

Over the past two decades the field of Evolutionary 
Algorithms (EA’s) has matured and shown itself to be a 
useful and powerful engineering tool. For tasks where the 
underlying mechanisms are not well understood or 
optimization tasks that have many interdependent 
parameters an EA is often capable of finding good 
solutions. For the most part, the research on EA’s has 
focused on static, non-changing tasks. This is 
understandable for two reasons. Firstly, the inner 
workings of the algorithms, such as takeover time1 and 
the accumulation of building blocks, are easier to analyze. 
Secondly, in the ‘old-days’ computing power was limited 
so the problems to be solved needed to remain simple in 
order for the experiments to remain practical. In recent 
years the frequency of papers being published concerning 
non-static problems has increased. Many of those papers 
will tell you dynamic environments is an interesting 
research area, because many real world problems are 
dynamic in nature and the area is largely unexplored.  

Goldberg and Smith (1987) are two of the earlier 
researchers who looked into Genetic Algorithms (GA’s) 

————— 
1 The time it takes for the population to be filled with the 

fittest individual only. 

for dynamic optimization problems. They experimented 
with a diploid GA on a dynamic 0/1 knapsack problem 
which oscillated between two states. In such algorithms 
the solutions are encoded by two chromosomes instead of 
the regular single (haploid) chromosome. Not all genes 
are used to encode the solution and it is this redundancy 
in genes that is thought to give the diploid GA its power 
to tackle the changes in the fitness landscape.  

Another well-known GA for dynamic fitness 
environments is the (Triggered) Hypermutation algorithm 
by Cobb (1990). She applied this algorithm on a 
continually changing environment attempting to track an 
optimal solution. Over the years this algorithm has been 
shown to perform well (Lewis, Hart & Ritchie, 1998; 
Morrison & K. de Jong, 2000; Simões & Costa, 2003). 

In this paper we introduce a new algorithm that uses 
subpopulations as a mechanism for storing good 
solutions. Between changes only one of those 
subpopulations will be used for evolutionary exploration, 
leaving the others unchanged. The paper is structured as 
follows; in section two we discuss related work, in section 
three we describe our Serial Population Algorithm (SPA), 
section four describes some dynamic characteristics of 
environments and we consider which GA’s could be 
preferred for such dynamics, in section five we describe 
our experimental setup, in section six we discuss our 
results and we give our conclusions in section seven. The 
tables with experimental results are shown in the 
appendix. 

2.  GA’s for Dynamic Environments 

In order to apply Genetic Algorithms to dynamic 
environments we need to make some adjustments to the 
standard GA used for static environments.  One can adopt 
several kinds of strategies, each having its own 
advantages and disadvantages. Jürgen Branke (2001) gave 
a nice overview which we will summarize here 
accompanied by a more in-depth look into two 
algorithms; a diploid GA and a Triggered Hypermutation 
GA. 



 

 

2.1  Strategies for Dynamic Environments 

In the literature four broad strategies can be distilled: 

1. Increase diversity after change 

2. Maintaining diversity throughout the run 

3. Memory 

4. Multiple subpopulations 

2.1.1  INCREASE DIVERSITY AFTER CHANGE 

Triggered Hypermutation (Cobb, 1990) and Variable 
Local Search (VLS) (Vavak, Jukes & Fogarty, 1998) are 
two well-known examples of this strategy. Once a change 
in environment has been detected the mutation-rate will 
be increased. This can happen either in one dramatic burst 
followed by a period of decay as with Hypermutation or 
by gradually increasing the rate as with VLS. 

The (Triggered) Hypermutation GA (HMGA) is an 
elegantly simple algorithm that works well on dynamic 
environments. For most of the time the algorithm works 
like a regular GA using mainly crossover and selection to 
search for a good solution. When a change in the 
environment is detected the algorithm increases the 
amount of variation in the population by raising the 
mutation rate to a very high level. Cobb changed the rate 
from 0.001, which is very low, up to rates of 0.5. The 
increase in mutation rate is followed by a period of decay 
where the rate decreases back to its base rate. Very high 
mutation bursts like 0.5 are similar to reinitializing the 
population. Lower levels of mutation bursts retain some 
parts of the old solution and so are better capable of 
adapting to smaller changes.  Furthermore Morrison and 
K. de Jong (2000) showed that larger hypermutation 
bursts track the optimum better when the environmental 
changes are frequent while lower hypermutation levels 
perform better when the changes are less frequent. 

Cobb tried detecting the change by monitoring the fitness 
of the best performer in the population. When this value 
would decline a burst of hypermutation is triggered. Not 
all changes are detectable this way. Adding peaks in the 
multiple peaks problem or raising the maximum allowed 
weight in a knapsack problem may go undetected leaving 
the algorithm struggling on a suboptimal solution. 

Over the years this algorithm has shown itself not only to 
work well on continuously changing environments but 
also on discontinuous environments which show large 
changes to the optima (Lewis, et al., 1998; Morrison & K. 
de Jong, 2000; Simões & Costa, 2003b).  Problems may 
occur when the algorithm fails to detect the change in the 
environment or when the change is too large 
(Grefenstette, 1992).  

2.1.2  MAINTAINING DIVERSITY THROUGHOUT THE RUN 

Diversity was already important in GA’s used for static 
environments in order to avoid getting stuck in 
suboptimal solutions. In dynamic environments this 

importance is amplified. If a change occurs, your once 
optimal solution is destined to become suboptimal at best. 
Diversity maintenance mechanisms such as Fitness 
Sharing, Random Immigrants (Grefenstette, 1992) and 
Crowding are common examples of this strategy. 
Ensuring the population holds no multiple instances of the 
same solution is another example. 

2.1.3  MEMORY 

Two types of memory can be distinguished: 

- Explicit memory 

- Implicit memory 

GA’s incorporating explicit memory usually have 
strategies for storing solutions and reintroducing them on 
later occasions during the run (Louis & Xu, 1996; 
Ramsey & Grefenstette, 1993; Eggermont & Lenaerts, 
2002). GA’s incorporating implicit memory usually 
incorporate some form of redundancy in their genetic 
representation. The most common example is using a 
diploid genetic structure. (Branke, 2001; Calabretta, 
Calbiati, Nolfi & Parisi, 1996; Lewis et al., 1998; Ng & 
Wong, 1995)  

Applying memory serves two functions: First; it provides 
diversity by retaining former good solutions which 
otherwise would have been lost in the selection process 
and reintroducing (parts of) these solutions on a later 
occasion. Second; reintroducing former solutions in 
repetitive environments can enable the algorithm to 
quickly retrieve the previously encountered optimum. 

A diploid GA is different from a regular GA by the fact it 
has two sets of chromosomes instead of the common 
single set (haploid). The consequence of this is that two 
genes compete for the same phenotypic trait in the same 
individual. In order to solve this dilemma a dominance 
mapping is devised labeling some genes as dominant and 
others as recessive. If a dominant gene is paired with a 
recessive gene, only the former is expressed in the 
phenotype leaving the recessive gene unexpressed. 
Dominant genes are thus able to protect less fit recessive 
genes from being discarded by selection. Formerly fit 
genes can piggyback ride the fitter dominant genes they 
are paired with, hopefully coming into expression again 
when the environment is more favorable. It is this 
mechanism that is thought to give the GA a form of 
implicit memory.  

Apart from this it is also possible for two dominant or two 
recessive genes to be paired. What happens in this case 
differs between the dominance mappings used by 
different researchers. Although over the years many 
researchers (Callabretta et al., 1996; Hollstein, 1971; Ng 
& Wong, 1995;  Ryan, 1997) have devised their own 
dominance mappings there is one mapping that is 
commonly referred to; the triallelic dominance mapping.  

The triallelic dominance mapping was first developed by 
Hollstein (1971) for static environments and made 



 

 

popular by Goldberg and Smith (1987) who first used it 
for a dynamic environment. The genetic strings use a 
trinary [0,1,2] representation instead of the regular binary 
[0,1]. 

Table 1. A schematic view of the triallelic dominance mapping 
where the first row and column denote the genetic values. 

 0 1 2 

0 0 0 1 

1 0 1 1 

2 1 1 1 

  

The first row and column in table 1 show the genetic 
values (alleles) and the rest of the table shows the 
resulting phenotypic expression. In this mapping there is a 
clear bias for expressing 1’s. Alternative mappings (Ng & 
Wong, 1995, Ryan, 1997) have been proposed to 
eliminate this bias. Their representations have four alleles 
where the probabilities of generating 0’s and 1’s are 
equal. Lewis, Hart and Ritchie (1998) showed that a 
diploid structure alone is not enough for a diploid GA to 
adapt to changing environments. Frequently switching the 
values from dominant to recessive and vice versa was 
needed to give acceptable results. 

2.1.4  MULTIPLE SUBPOPULATIONS 

The most common way of using subpopulations is to have 
one part of the population track the best solution present 
and have other parts of the population search for and track 
sub-optimal solutions (Branke, Klaussler, Schmidt & 
Schmeck, 2000; Ursem, 2000).  

3.  Serial Population Algorithm (SPA) 

At the start of an evolutionary run a population is created 
and initialized randomly.  The population is divided into a 
predefined number of subpopulations. All subpopulations 
are evaluated and the best2 subpopulation is selected. 
Until a change in environment is detected only this 
subpopulation will be used. When a change has been 
detected all subpopulations will be evaluated on the new 
environment and again the best subpopulation will be 
selected. It is through this serial use of the subpopulations 
that we hope to create a form of memory. This memory-
function will perform optimally when the number of 
subpopulations is equal to the number of optima. 

For the detection of environmental changes we use a 
system similar to what Eggermont and Lenaerts (2002) 

————— 
2 The best subpopulation is either the subpopulation 

containing the individual with the highest fitness or the 
subpopulation with the highest average fitness. Either 
qualification seems to work fine. 

used for their algorithm. We store the best individual and 
its fitness value at the end of each generation. We then 
evaluate this individual again at the beginning of a new 
generation. If its fitness value has changed we know a 
change in environment has occurred and in our case it  
triggers the algorithm to reevaluate all the subpopulations.  

When SPA has decided on which subpopulation to use, a 
child population will be created. To generate the child 
population we repeatedly select two parents from the 
subpopulation through tournament selection. These 
parents are recombined using two point crossover with 
chance Pc followed by mutation. The resulting two 
children are placed in the child population.  

From the child population the new subpopulation is 
selected, once again using tournament selection. By using 
elitist selection we ensure both the best parent and the 
best child are added to the new subpopulation. This new 
subpopulation is not allowed to contain any double 
instances thus ensuring the needed diversity in the 
population.  

until  maximum number of generations: 
if  change detected  

  evaluate total population; 
choose best subpopulation; 

 end 
 else continue with same subpopulation; 
 
 until  child population is full: 

select two parents with tournament 
selection; 

  perform: 
crossover with chance Pc;  

 mutation; 
  add kids to child population; 

end  
add the best parent and the best child to new 
subpopulation; 
until  new subpopulation is full: 
 select child with tournament selection; 
 add child to new subpopulation; 

remove any double instances;  
end    
replace the old subpopulation with the new; 

end  

Figure 1. Pseudo code for SPA 

4.  Characteristics of Dynamic Environments 

Dynamic environments come in many different flavors 
that can have dramatic effects on the functionality of the 
algorithms used. Therefore it is important one first gets an 
idea of what the problem looks like and how it behaves 
before deciding on what algorithm and genetic operators 
to use. We now give two distinctions by which you can 



 

 

characterize the dynamics and we will discuss their 
consequences for what type EA to use: 

Recurrent   vs. Non-recurrent 

Continuous   vs. Discontinuous 

Recurrent environment have states that are revisited 
during the evolutionary run. This can happen either 
periodically/cyclic or a-periodically. In general you could 
say that such dynamics are well suited for GA’s that 
incorporate some form of memory.  

Non-recurrent environments have no states that are 
revisited or at most merely by accident. Here, applying 
memory will serve little more function than adding some 
diversity to the population. GA’s that either maintain or 
introduce diversity seem to have better chances of 
succeeding. 

Continuous environments, in a strict sense, change every 
timestep by a small margin. They require only small 
genetic changes to be made to the previous found 
optimum in order to find the next. Such environments are 
state dependent functions where the next state is 
dependent on the previous state. Maintaining diversity 
throughout the run seems to be a good strategy to handle 
this problem. If the environment is both continuous and 
recurrent the amount of related yet distinct states may be 
too large for a memory system to be a feasible option 
(Cobb, 1990). 

Discontinuous environments switch from one state to the 
next in relatively large steps. This may cause problems for 
some diversity maintenance GA’s and diversity 
introducing GA’s when the adjustments are too big 
(Grefenstette, 1992). Combined with a recurrent 
environment the amount of states to be found is likely to 
be small thus a paradise for memory incorporating GA’s 
including SPA. 

5.  Experimental Setup 

For our experiments we compared three different 
algorithms: a diploid GA using the triallelic dominance 
mapping, a Hypermutation GA and our Serial Population 
Algorithm. The environment we used for the bulk of our 
experiments was a dynamic 0/1 knapsack problem that 
can be classified as a recurrent, discontinuous 
optimization problem. Additionally we used a dynamic 
0/1 knapsack problem where we swapped two items for a 
slightly more continuous and non-recurrent environment. 

5.1  Dynamic 0/1 Knapsack Problem 

The Dynamic 0/1 Knapsack Problem is an oscillatory 
version of the standard 0/1 Knapsack Problem. The task is 
to fill a ‘knapsack’ with a subset of items. Each item has 
both a weight and a value. The aim is to maximize the 
value of the content of the knapsack without exceeding 
the maximum allowed weight. This weight constraint is 

enforced by a penalty function identical to the one used in 
Smith and Goldberg (1992): 

( )2WCP ∆=  

Where:  

P  = the Penalty on the fitness value. 

W∆ = the overweight of the individual. 

C = 20. 

Negative scores will be rated as zero. 

At the start of the experiment we generate several sets of 
items. After a predefined number of generations we pick a 
different set of items thus giving it its dynamic character. 
This method of changing the knapsack problem is 
different from what most researchers do, who change the 
maximum allowed weight (Goldberg & Smith, 1987; 
Smith & Goldberg, 1992; Lewis, et al., 1998; Simões & 
Costa, 2003b). Raising the maximum allowed weight has 
the disadvantage that the change may not be detected, as 
stated earlier. In our case we can be 100% certain of 
detecting a change. 

In order to investigate SPA’s basic characteristics we 
performed several different experiments, each lasting 
2000 generations. For the bulk of our experiments we 
used three different set sizes containing 17, 50 and 150 
items each. With each set size we altered two conditions:  

- The amount of sets used; using 2 and 5 sets of 
items each containing weights and values. 

- The duration of the stationary period; P = 10, P 
= 25 or P = 50 generations. 

Additionally we performed experiments using only one 
set with size 50 where we generated a change by 
swapping two items in the sets. This created a genotypic 
difference with a hamming distance of size 2 while 
leaving the optimal knapsack value unchanged. Our aim 
was to create a somewhat more continuous environment 
although it is not continuous in the strict sense for it still 
changes periodically.  

5.2  The Algorithms 

For each of the three algorithms we use the same genetic 
operators as much as possible in order to keep things as 
equal as possible. The only differences are: a triallelic 
encoding for the diploid algorithm, a hypermutation phase 
for the Hypermutation algorithm and the use of serial 
subpopulations for SPA. The parts that are equal are: 
child- and parent population sizes, tournament sizes, 
crossover probability, mutation rate, and not allowing 
multiple instances in the parent population. In the case of 
five sets with size 50 we also ran a basic GA that used 
only these operators. 

 



 

 

5.2.1  GENERAL SETTINGS 

We set the following parameters for all algorithms: 

- (sub) population size  = 50 

- child population size = 150 

- tournament size: 

o mating selection  = 4 

o replacement selection = 8 

- crossover probability Pc = 0.9 

- mutation rate = 1/setsize 

This means that if SPA uses five subpopulations, its total 
population size will be 250. This appears to give SPA a 
major advantage over the other algorithms but in reality 
this is limited.  

The following three equations give the average number of 
evaluations for each algorithm: 

Eq. 1:  ECI
P

IS =+++−
1

*)1(  SPA 

 

Eq. 2: ECI =++1   HMGA  

 

Eq. 3: ECI =+    Diploid GA 

Where:  

S = number of subpopulations used in SPA. 

I = number of individuals in each (sub-) population. 

C = number of individuals in each child population. 

P = duration of stationary period, measured in 
generations. 

E = average number of evaluations in each generation. 

After each detected change SPA’s entire population will 
be evaluated. On average this results in Eq. 4 evaluations 
per generation. The detection system itself accounts for 
one extra evaluation per generation and evaluating the 
parent- and child populations are equal for all GA’s (Eq. 
3). The Hypermutation Algorithm does not have the 
subpopulations but it does have the detection system, 
resulting in Eq. 4 fewer evaluations per generation than 
SPA.  

 

Eq. 4:  
P
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The Diploid GA has no detection system nor does it use 
the subpopulations resulting in eq. 5 fewer evaluations per 
generation then SPA. 
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This means that if SPA uses five subpopulations and the 
stationary period is fifty generations, it will have four 
more evaluations than HMGA and five more than the 
Diploid GA. The number of evaluations per generation 
will go up either by increasing the number of 
subpopulations or by increasing the frequency of 
environmental change. To counterbalance this advantage 
of SPA we increased the populations of the 
Hypermutation GA and the Diploid GA by the 
appropriate numbers. So for this example HMGA would 
have 54 individuals and the Diploid GA 55. 

5.2.2  THE HYPERMUTATION ALGORITHM 

We altered the Hypermutation algorithm slightly 
compared to what is common. Normally, between 
mutation bursts, HMGA uses a very low base mutation 
rate and depends mostly on crossover and a large 
population size to find solutions. In our experiments we 
used the base rate of 1/L where L is the length of the 
chromosome. Because our population is smaller than 
normally used in hypermutation experiments the extra 
mutation is needed to compensate the loss of variation 
due to the population size. The mutation burst is set to be 
roughly 35%. This is comparable to the burst size used in 
Lewis et al. (1998) and to the theory that high frequencies 
require high mutation rates (Morrison, K. de Jong, 2000). 
The burst is followed by a period of linear decay. Two 
generations after the initial burst the mutation rate is back 
on the base rate. Also the detection system is different 
than the one used by Cobb. Our detection system has a 
100% chance of detecting a change in environment. This 
is in part caused by the way we change our environment. 
If we would have altered the maximal allowed weight 
there would have been a chance that the change would go 
unnoticed. For these experiments we used the same 
detection system as SPA that we described earlier.  

5.2.3  THE DIPLOID GENETIC ALGORITHM 

The diploid genetic algorithm uses Hollstein’s triallelic 
dominance scheme as described earlier. Apart from this 
and the fact it doesn’t use any subpopulations the 
algorithm is the same as SPA. 

5.3  The Performance Measures  

We use two criteria to measure the performances of the 
algorithms; Accuracy and Adaptability as described by 
Simões & Costa (2003a & 2003b) but with a slight 
alteration. Accuracy measures the difference between the 
optimal value of that period and the best individual in the 
last generation before the change. We altered this slightly 
by taking this difference as a percentage of the optimum. 
This is especially useful when comparing results of tests 
with large differences in set size what can result in large 
differences in optimal values. Adaptability is similar to 



 

 

what is commonly known as the mean fitness error. We 
measure the difference between the best individual of 
each generation with the optimum value of that period. It 
gives us an indication of the speed of recovery of the 
algorithm. These two measurements should be as close to 
zero as possible. The values that are shown in the tables 
are the averages over 10 evolutionary runs per 
experiment.  

6.  Results 

The details of the results are given in the appendix.  

6.1  Discontinuous recurrent dynamics 

The experiments show that the use of serial 
subpopulations has the effect that each subpopulation 
tends to converge toward a single optimum. This enables 
SPA to quickly regain the former solution in recurrent 
problems. If the subpopulation had previously found the 
optimum and it has not been used to search for a different 
optimum it is even capable of retrieving the old optimum 
in the first generation after the change. This results in an 
adaptability score of zero in the later parts of the 
evolutionary run. Of course this is helped by the fact that 
the number of subpopulations is set equal to the number 
of optima. 

Considering both the accuracy and adaptability HMGA 
performs equally well on environments with five optima 
as on those with two optima although on the latter it does 
slightly better. SPA on the other hand does show a 
significant difference. This is caused by the fact that when 
using two subpopulations for two optima the 
subpopulations quickly develop a preference for one of 
the optima. With more subpopulations this development 
of preference tends to take longer as sometimes a 
subpopulation is used for more than one optimum. Given 
sufficient time and revisitations to the optima this double 
use of a subpopulation ceases. 

Whereas HMGA doesn’t lag too much behind when we 
consider the accuracy measurement, SPA clearly is king 
when we look at the adaptability.  

Some preliminary explorations using either more or fewer 
subpopulations showed that in the former case the 
accuracy and adaptability do not suffer although there are 
a lot of useless extra evaluations after each change. In the 
latter case some subpopulations are used for more than 
one optimum whereas others still manage to converge to a 
single solution thus retaining some of its memory.  

The Diploid GA clearly is the worst performer of all 
tested algorithms, both with the accuracy and the 
adaptability measure. Even when we compared it to a 
basic GA that was similar to SPA using only one 
undivided population, it still performed worse. This is 
most likely caused by the slow convergence of the diploid 
GA and by the fact that even when all individuals were 

unique it still was able to converge to a single phenotype, 
losing much of its selective pressures.  

6.2  Small changes, non-recurrent dynamics 

Using only one set of items for the knapsack and 
changing them around between the stationary periods 
result in small changes. Because in SPA subpopulations 
tend to converge to one specific set it now only uses one 
subpopulation. Any additional subpopulations will not be 
used and become a burden because of the extra 
evaluations after each detected change. HMGA now does 
a lot better and comes very close to the accuracy and 
adaptability performances of SPA. HMGA may very well 
exceed SPA’s performances in this case when properly 
tuned. 

7.  Discussion 

7.1  Strengths and weaknesses of SPA 

Strengths: 

Adaptability is clearly the strongest point of SPA. The 
more an optimum is revisited the more powerful SPA will 
become. The dedication of a single subpopulation to an 
optimum also causes SPA to increase its accuracy because 
former search results are not lost. 

Weaknesses: 

- Higher frequency of change causes an increase in the 
average number of evaluations per generation. 

- Larger numbers of subpopulations cause an increase in 
the average number of evaluations per generation.  

Both these weaknesses may be lessened by sampling the 
subpopulations instead of evaluating the entire 
population.  

- The efficiency of SPA is dependent on whether the 
number of optima and subpopulations match.  

This may be resolved by introducing more complex rules, 
such as starting out with one subpopulation and 
introducing more subpopulations when this is required by 
the environment.   

7.2  Future Work 

SPA works extremely well on recurrent, discontinuous 
optimizations tasks. Given a number of subpopulations 
greater or equal to the number of optima it makes near 
perfect use of memory. Developing a system for SPA that 
does not require knowing the amount of optima, for 
instance by gradually introducing extra subpopulations, 
may make SPA a more widely applicable algorithm. 
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Adaptability :  

 

Table 9. Adaptability (%) on 5 sets of size 17 

 P = 10 P = 25 P = 50 
Diploid 11.6612 5.8761 3.4162 
HMGA 4.6372 1.8022 1.0003 

SPA 0.3821 0.2250 0.2233 
 

Table 10. Adaptability (%) on 2 sets of size 17 

 P = 10 P = 25 P = 50 
Diploid 9.3527 5.2123 2.9160 
HMGA 3.7169 1.5001 0.7430 

SPA 0.0586 0.0523 0.0785 



 

 

Table 4. Accuracy (%) on 5 sets of size 50 

 P = 10 P = 25 P = 50 
Diploid  7.988 1.8547 0.7381 
HMGA 3.65 0.2609 0.0151 

SPA   0.305   0.045 0.0059 
Basic GA 5.701 0.40087 0.0354 

 

Table 5. Accuracy (%) on 2 sets of size 50 

 P = 10 P = 25 P = 50 
Diploid 6.4238 2.0139 0.8077 
HMGA 4.0406 0.2884 0.0151 

SPA 0.0565 0.0122 0.0015 
 

Table 6. Accuracy (%) on 5 sets of size 150 

 P = 10 P = 25 P = 50 
Diploid 21.414 8.333 3.440 
HMGA 9.985 3.985 2.020 

SPA 1.789 1.194 0.688 
 

Table 7. Accuracy (%) on 2 sets of size 150 

2 optima P = 10 P = 25 P = 50 

Diploid 15.1685 4.1251 2.1364 

HMGA 9.6863 3.5759 1.8728 

SPA 0.6822 0.4651 0.3254 

 

Table 8. Accuracy (%) for small changes on size 50  

 P = 10 P = 25 P = 50 

HMGA 0.6907 0.0347 0.0048 

SPA 0.3108 0.0246 0.0021 
 

 

 

 

 

 

 

 

 

 

 

 

Table 11. Adaptability (%) on 5 sets of size 50 

 P = 10 P = 25 P = 50 
Diploid 19.16 15.56 9.37 
HMGA 13.56 6.73 3.45 

SPA 0.73 0.60 0.48 
basic GA 15.26 5.29 5.28 

 

Table 12. Adaptability (%) on 2 sets of size 50 

 P = 10 P = 25 P = 50 
Diploid 19.33 16.91 10.96 
HMGA 15.28 7.30 3.71 

SPA 0.15 0.16 0.17 
 

Table 13. Adaptability (%) on 5 sets of size 150 

 P = 10 P = 25 P = 50 
Diploid 25.6305 26.5077 23.4982 
HMGA 13.5355 13.8279 8.8153 

SPA 2.0354 2.1057 1.8599 
 

Table 14. Adaptability (%) on 2 sets of size 150 

 P = 10 P = 25 P = 50 
Diploid 18.4185 18.5358 19.0245 
HMGA 13.7836 13.9357 8.8824 

SPA 0.7521 0.7691 0.7160 
 

Table 15. Adaptability (%) for small changes on size 50 

 P = 10 P = 25 P = 50 

HMGA 1.3635 0.5520 0.3275 

SPA 0.7235 0.3234 0.1813 
 

  

 

 

 

 

 


