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Abstract— To get a robot to perform tasks autonomously,
the robot has to plan its behavior and make decisions based
on the input it receives. Unfortunately, contemporary robot
sensors and actuators are subject to noise, rendering optimal
decision making a stochastic process. To model this process,
partially observable Markov decision processes (POMDPs) can
be applied. In this paper we introduce the RENQ algorithm,
a new POMDP algorithm that combines neural networks for
estimating Q-values with the construction of a spatial pyramid
over the state space. RENQ essentially uses region-based belief
vectors together with state-based belief vectors, and these are
used as inputs to the neural network trained with Q-learning.
We compare RENQ to Qmdp and Perseus, two state-of-the-art
algorithms for approximately solving model-based POMDPs.
The results on three different maze navigation tasks indicate
that RENQ outperforms Perseus on all problems and Qmdp if
the problem becomes larger.

I. I NTRODUCTION

In robotics, a major goal is getting a robot to learn to
perform a task autonomously. This task can involve getting
a robot from a start to a goal position. A possible approach
to this problem is to usereinforcement learning(RL) [23].
Reinforcement learning originated from early work in cy-
bernetics, statistics, psychology and neuroscience, but lately
has received a lot of attention from the Artificial Intelligence
(AI) and machine learning disciplines [7]. It can be seen as
a form of machine learning, but is different from supervised
learning methods in the sense that the agent does not learn
from correct input-output examples, provided by an external
supervisor, but has to learn from feedback given by the
environment. The feedback the agent receives is typically
represented as a numerical value, where a positive reward
is given for the display of a desired behavior and a negative
reward for an undesired action. The robot’s task is to develop
a model of what action to take in a given state, thereby
maximizing its long term reward.

Unfortunately the robot’s actuators do not always act
according to the instructions they have been given. When it
has to move right it sometimes moves left or bumps into
a wall and stays in the same place. This uncertainty in
transitions can be modeled using aMarkov decision process
(MDP). On top of the uncertainty in the robot’s actuators,
there is noise in its sensor readings as well. This partial
observability of the world can be captured in a generalization
of an MDP, called apartially observable Markov decision
process(POMDP).
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Although robotic navigation is one application where a
POMDP needs to be solved, the method is widely applicable
to other problems. Givon and Grosfeld-Nir [5] used the
POMDP model for computing optimal termination times of
TV shows. An application in another field is provided by
Hoey et at. [6], who use a POMDP model to handle the
uncertainty in observations from a monitor, assisting people
with dementia washing their hands.

In this paper we will present RENQ, a novel approach
for solving model-based POMDPs. RENQ uses a neural
network in combination with Q-learning [24], [25], where the
belief-state is given as input to the neural network. RENQ
enhances the state-based belief vector input of the network
by constructing a spatial pyramid over the state space [9], a
method derived from machine vision. At every level of the
pyramid, the average belief of a subset of the state space
is computed and the enhanced belief state is presented to
the neural network. We compare the RENQ algorithm to
Qmdp [11], a method known to be fast in handling large state
spaces and Perseus [21], an efficient state-of-the-art point-
based value iteration algorithm. We test the algorithms on
three different maze navigation tasks and show how RENQ
outperforms the other two methods.

Outline. This paper is divided into 6 sections. In section II,
we will discuss the basic framework of Markov decision pro-
cesses, followed by a brief description of value iteration and
Q-learning, two techniques for solving MDPs and reinforce-
ment learning problems. In section III the POMDP model
will be presented along with two algorithms for handling
POMDPs. Next we discuss RENQ, the new method based
on Q-learning and neural networks, combined with a spatial
pyramid approach. Section V will cover the experimental
setup and results acquired with the three POMDP algorithms.
A conclusion and discussion will be presented in section VI.

II. M ARKOV DECISION PROCESS

In this section, we will start by giving a formal definition
of the MDP model, followed by a description of value
iteration. Then, we describe the Q-learning algorithm which
is part of the RENQ algorithm.

A. Formal Description

An MDP is characterized by:

• a finite set of statess ∈ S
• a finite set of actionsa ∈ A
• a transition functionT (s, a, s′), specifying the proba-

bility of ending in states′ after taking actiona in state
s



• a reward functionR(s, a), providing the scalar reward
the agent will receive for executing actiona in states

The MDP framework assumes a full map of the environment
is known to the agent and treats time and setsS and A
as discrete. For reinforcement learning algorithms, the MDP
does not have to be known, but we assume a model of the
POMDP is given in our experiments. Otherwise, the problem
would become even harder.

The Markov property entails the fact that the state of the
environment and the reward the agent receives at timet + 1
is stochastically determined by the state of the agent at time
t and the action the agent takes. This is called a first order
Markov process [19]:

P (st, rt|s0, a0, . . . , st−1, at−1) = P (st, rt|st−1, at−1) (1)

The agent’s task is to maximize its long term reward. Due
to the stochasticity of the problem, a mapping is needed
from states to actions. We call such a mapping apolicy and
denote it asπ(s). An optimal policyπ∗ maximizes the long
term reward intake. In order to compute the optimal policy,
the agent will assign a certain value for being in a state or
performing some action in a state.

B. Value Functions

The returnRt of a state is defined as the cumulative reward
the agent can expect to receive after reaching the given state
at time stept. Mathematically,Rt is written as the sum over
all rewards the agent receives at each time step, weighted by
a discount factorγ, where0 ≤ γ < 1:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =

∞∑

k=0

γkrt+k+1 (2)

Introducing a discount factor has two purposes: (1) it models
the preference of the agent to immediate rewards as opposed
to those received in the future, and (2) ensures the infinite
sum is finite as long asγ < 1 and the rewards are bounded.
When the discount factor is set close to1, the agent will value
future rewards greatly, whereas one close to0 will make the
agent focus on immediate rewards and value the future less.

The value of states under policy π is defined as the
expected discounted cumulative reward and is given by:

V π(s) = E[

∞∑

k=0

γkrt+k+1|st = s] (3)

In most situations it is desired to have knowledge of the value
of an action in a certain state, we call this the Q-value, with
Q(s, a) providing the value of takinga in s, it is defined as:

Qπ(s, a) = E[
∞∑

k=0

γkrt+k+1|st = s, at = a] (4)

Assuming the values of all successor statess′ are known to
the agent, Eq. (4) can be rewritten as the reward the agent
receives plus the discounted value ofs′, weighted by the
probability of ending ins′, after taking actiona in s:

Qπ(s, a) =
∑

s′

T (s, a, s′)[R(s, a) + γV π(s′)] (5)

This formula is a form of the Bellman equation named
after Richard Bellman, who introduced it in 1957 [3]. With
this function, we can iteratively update the value of all
states, until it reaches a convergence criterion, resulting
in an optimal state-value functionV ∗(s), from which we
can derive an optimal state action-value functionQ∗(s, a).
Knowing the value of all states, the agent can select the
action with the highest utility in every state, which will lead
to an optimal policy. Value iteration is an algorithm that uses
this concept.

C. Value Iteration

Value iteration is a (truncated) dynamic programming al-
gorithm for computing optimal value functions and provides
an exact solution for solving MDPs. The main idea behind
this method is to compute the value of alls ∈ S iteratively,
and to truncate the algorithm as soon as the difference in
value of a state between two iterations:∆ = maxs∈S |Vi(s)−
Vi−1(s)| drops below a threshold, where∆ is typically
referred to as the Bellman residual. To approximate the value
of a state, value iteration uses the Bellman equation in Eq.
(5) as an update rule, see Algorithm 1.

Algorithm 1 Value iteration
Initialize V (s) andQ(s, a) arbitrarily
repeat

∆← 0
for all s ∈ S do

v ← V (s)
for all a ∈ A do

Q(s, a)←
∑

s′ T (s, a, s′)[R(s, a, s′) + γV (s′)]
end for
V (s)← maxa∈A Q(s, a)
∆← max(∆, v − V (S))

end for
until ∆ < θ

Formally, the algorithm would need an infinite number of
sweeps through the state space to converge to an optimal
value function, but the optimal value can be approximated
by aborting the algorithm if∆ is sufficiently small. A major
drawback is that each iteration requires updating the value
of every s ∈ S, resulting in a computational complexity
of O(|A||S|2) per iteration. This is time consuming for
problems with a large state space.

Once the algorithm is finished, the agent can use the values
of state-action pairs to select the action with the best expected
outcome:

π∗(s) = arg max
a∈A

Q∗(s, a) (6)

D. Q-Learning

The introduction of Q-learning by Watkins in 1989 [24],
[25], signified a great leap forward in the progress of the
field of reinforcement learning. It is different from value
iteration in the sense that it does not require an a-priori
model of the environment and can therefore be used for more



applications. Furthermore, Q-learning can be combined with
function approximators to solve large dimensional problems
or problems involving continuous state spaces.

After each action taken, the agent evaluates the value of
the action and uses this to update the current Q-value:

Q(st, at)← Q(st, at) + αδ(st, at) (7)

where α denotes the learning rate, to be decreased as the
algorithm progresses, andδ(st, at) the TD-error, which is
computed according to:

δ(st, at) = rt+1 + γ max
a

Q(st+1, a)−Q(st, at) (8)

It is known that for finite state and action spaces, Q-learning
converges to the optimalQ∗(s, a) as long as every state-
action pair is visited infinitely often [25].

Q-learning needs to visit all state-action pairs repeatedly to
get reliable estimates for their values. Therefore it requires an
exploration policy. In this paper we use thesoftmaxaction
selection rule [23], also known as Boltzmann exploration.
Softmax uses a Gibbs or Boltzmann distribution for acquiring
the probability of an action:

π(s, a) =
eQ(s,a)/τ

∑

a′∈A

eQ(s,a′)/τ
(9)

Whereτ denotes the temperature parameter.
Consider again the problem of a robot trying to navigate

itself from a start to a goal position. In all real world
situations, there is noise in its sensor readings as well; the
world is partially observable to the agent. On top of this
some sensor readings might seem similar, due to a similar
looking environment or due to the distortion caused by the
noise in its sensors. This phenomenon is known asperceptual
aliasing. The uncertainty in observations can be incorporated
into the MDP model. The acquired result is called a partially
observable Markov decision process, or POMDP.

III. PARTIALLY OBSERVABLE MARKOV DECISION

PROCESS

A POMDP is a generalization of an MDP and models not
only the stochasticity in transitions, but also in observations,
rendering the state of the agent partially observable. The
POMDP framework consists of the same set of statess ∈ S,
actions a ∈ A, transition functionT (s, a, s′) and reward
function R(s, a). On top of this a POMDP consists of a
set of observationsz ∈ Z and an observation function
O(s, a, z), providing the probability of observingz in state
s, after executing actiona. Similar to the MDP model all
setsS, A andZ are assumed to be discrete, although work
in continuous spaces has been done (e.g., [15]).

In an MDP the agent acts according to what seems to
be the best possible action for a given state, but since the
agent is no longer certain of its location it has to estimate its
position based on the input it receives and its actions taken.
A common approach to do this is by tracking abelief state
[2].

A. Belief states

A belief state~bt is a probability distribution overS, to
model the belief of the agent at timet. The set of all possible
belief states is referred to as the belief spaceB. The belief
of states at timet is denoted asbt(s). Every time the agent
takes an action, its belief state is updated. GivenO(s′, a, z),
the probability of observingz in successor states′ after
action a and the transition probabilityT (s, a, s′), Bayes’
theorem can be applied to update the belief of the agent:

bz
a(s′) = ηO(s′, a, z)

∑

s∈S

T (s, a, s′)b(s) (10)

Where η is a normalizing constant. The belief state effec-
tively sums up all of the agent’s past actions and observations
and is therefore a Markovian signal and a sufficient statistic
to base its actions on. Since the agent is no longer certain
of its position, the expected reward for a belief state has to
be weighted by the belief in all individual states:

R(~b, a) =
∑

s∈S

b(s)R(s, a) (11)

The initial value function att = 0 is given by:

V0(~b) = max
a

∑

s∈S

b(s)R(s, a) (12)

The value of a belief state under a policyπ is computed
according to:

V π(~b) =
∑

s∈S

b(s)V π(s) (13)

The key observation here is that this knowledge is sufficient
to transform the POMDP to a continuous state MDP, where
belief spaceB represents the state spaceS. Because the
resulting MDP has a continuous state space, the problem
is still very hard to solve optimally. In section IIIC we
will further elaborate on this concept and show how value
iteration can be applied in POMDPs.

Numerous algorithms have been developed for solving
POMDPs [7], [11], [12], [13], most of these using some
form of value iteration. Qmdp is one of these, applying value
iteration in its most rudimentary form.

B. Qmdp

An easy method for solving model-based POMDPs is to
make use of the Q-values of the underlying MDP, thereby
ignoring the observation model [11]. By treating the belief
space as if it were the state space in an MDP, the value of
taking actiona in belief state~b is given by:

Q(~b, a) =
∑

s∈S

b(s)QMDP (s, a) (14)

WhereQMDP denotes the Q-value of the underlying MDP.
With these values in hand, Eq. (6) can be rewritten to select
the action with the highest expected value:

π(~b) = arg max
a

[
∑

s∈S

b(s)QMDP (s, a)] (15)



The Qmdp algorithm is easily implementable and can be very
fast in a problem with a large number of states. Furthermore,
it has been applied with great success on particular maze
navigation tasks [11]. A disadvantage however, is that an
agent following this policy does not take information gather-
ing actions. For a more exact solution we have to consider the
observation model and adjust the value iteration algorithmto
suit POMDPs. A short version of the methods involved will
be provided in the next section.

C. Value iteration in POMDPs

Value iteration can also be applied to compute solutions
for POMDPs. Here, we will present a brief outline of
the methods involved, as an introduction to the Perseus
algorithm. For detailed descriptions we refer to Sondik [20]
and Puterman [16].

Recall from section IIIA, that when acquiring the value
function of a POMDP under a certain policy, the value of
every state needs to be weighted by the agent’s belief in
the given state. For notational convenience Eq. (13) can be
written as a dot product:

V π(~b) = ~b · απ (16)

Whereαπ = {V π(s1), V
π(s2), . . . , V

π(sn)}. In section IIB,
a policy was described as a function specifying which action
to take in a given state. Working towards an optimal policy,
the agent needs to select the best action at every time stept:

Vt(~b) = max
α∈Γt

~b · α (17)

with Γt = {α1, α2, . . . , αk}. The state of the agent is
a continuous function of all individual beliefs in a state.
Assigning the belief of a state to every axis, plotting the
belief state will result in an|S| − 1-dimensional hyperspace
(probabilities sum to 1, thus the belief in|S| − 1 states
is sufficient to determine the entire belief state). All belief
points are contained in a belief simplex∆. With every region
of the belief space, an optimal action is associated, this is
represented by one of theα-vectors.

Again, applying the concept of weighting probabilities,
we can combine the functions defined so far into a general
formula for an optimal value function:

V ∗(~b) = max
a∈A

[
∑

s∈S

R(s, a)b(s) + γ
∑

z∈Z

V ∗(bz
a))] (18)

wherebz
a is given by the belief function, defined in Eq. (10).

For short, we can write:V ∗ = HV ∗, with H defined as the
Bellman backup operator.

Since for every region of the belief space, there is anα-
vector optimizing the value, the optimal value function will
be made out of a finite set of hyperplanes, building up the
surface of the belief simplex. Sondik showed this function
is piecewise, linear and convex(PWLC) for finite horizon
POMDPs and is approximately PWLC for POMDPs with an
infinite horizon [20].

Analogous to value iteration in MDPs, the value function
is updated iteratively. In every iteration a set ofα-vectors

will be added and a new value function, made up of the
surface of all vectors will be computed. Every stage can be
seen as a backup of the previous value function. At every
backup stage, the vector parameterizing the surface of the
value function can be computed according to:

backup(~b) = αb
n+1 = arg max

α∈Γn+1

~b · α (19)

Where Γn+1 = {α1, α2, . . . , αl} and l = |HVn|, i.e., the
number of vectors in the value function [21]. This notation
will be useful for understanding the Perseus algorithm.

Value iteration is computationally expensive in POMDPs,
because at each iteration the value of every point in the
entire belief space is updated. Recently developed methods,
known as point-based algorithms, have started working with
restricting value iteration to a subset of the belief space [8],
[12], [14], [27]. Perseus is one of such algorithms.

D. Perseus

Perseus is an approximate point-based value iteration
algorithm for solving POMDPs and was introduced by
Spaan and Vlassis in 2005 [21], [22]. The algorithm starts
by performing a random walk through the environment,
thereby sampling a setB = {b1, b2, . . . , bm} of reachable
belief points. These points remain the same throughout the
algorithm. This holds an advantage over other algorithms
that work with the complete belief space in the sense that it
only computes values for belief points that can actually be
encountered by the agent.

The initial value function is set as a single vector, with all
components set to1

1−γ mins,a R(s, a), the minimal cumula-
tive reward obtainable in the POMDP, guaranteed to be below
V ∗. Perseus introduces a new backup operatorH̃PERSEUS ,
and in every backup stage, tries to improve the value of all
belief points, or at least makes sure that they do not decrease:

Vn(b) ≤ Vn+1(b),∀b ∈ B (20)

It keeps track of the set of non-improved pointsB̃, and as
long as B̃ is not empty, samples uniformly at random a
belief point b and computesα = backup(b). If the vector
improves the value ofb, it is added to the value function of
Vn+1, otherwise a copy ofVn will be inserted. In an ideal
situation, an increase in value of a belief pointb ∈ B will
increase the value of many other points inB. Given the shape
of the value function, such a method can be very effective
in approximating solutions. The backup stage is given in
Algorithm 2.



Algorithm 2 The backup stageVn+1 = H̃PERSEUS

Vn+1 ← ∅
B̃ ← B

repeat
Sample a belief point b uniformly at random from̃B
and computeα = backup(b)
if b · α ≥ Vn(b) then

addα to Vn+1

else
addα′ = arg max

α∈Γn

b · α to Vn+1

end if
B̃ = {∀b ∈ B : Vn+1(b) < Vn(b)}

until B̃ = ∅

This stage is performed iteratively, until some stopping
criterion is met. This could be, analogous to regular value
iteration, terminating the algorithm as soon as the maximum
difference between two backup stagesmaxb∈B(Vn+1(b) −
Vn(b)), drops below a threshold.

The POMDP algorithms discussed so far, all make use
of value iteration. We will now discuss some previous work
on Q-learning in combination with reinforcement learning
and neural networks, followed by the introduction of a new
approach, combining several of these techniques.

IV. RENQ FOR SOLVING MODEL-BASED POMDPS

As described in section IIE, the Q-learning algorithm
updates each state-action pair after executing an action.
However, because the belief space is used as a state space, the
number of possible states encountered is infinite. Therefore,
to work with a lookup table for each belief state-action
pair becomes impossible and there is need for a function
approximator, which generalizes between these pairs and
associated Q-values. Neural Networks (NN) provide such
a method and are known to be a powerful formalism in
function approximation, gaining success in a wide variety
of applications [4], [10], [18], [26], [17].

To use neural nets to predict Q-values, there are two
possible approaches. Either one network is used, with|A|
output units, or a single net is assigned to everya ∈ A, as
used by Lin [10]. The advantage of the latter approach is
that, when trying to obtain the Q-value of a given action,
one can easily address the responsible network. Also this
will reduce the untraining of weights, caused by changes in
the state space. A possible disadvantage of this method is
that it requires more weights and might therefore sometimes
require more training data.

To eacha ∈ A, we assign an NN:QNN
a . The belief state

at time t, ~bt, is fed to the networks as an|S|-dimensional
input vector and a single output unit is used to predict the
Q-value of an action in the given belief state. The number
of hidden units is left as a parameter.

As opposed to normal neural network training, the net-
works in this case do not learn from correct examples, but
from approximations. So as a target, the Q-value at the next
time step was fed to the network and used to compute the

error. To obtain this target, we can rewrite Eq. (8) and update
the network of the previously selected action in the following
way:

Q(~bt, at) = rt+1 + γ max
a∈A

QNN
a (~bt+1) (21)

Instead of updating the Q-value as in Eq. (7), the backpropa-
gation learning algorithm is used to update the weights of the
networks with learning rateα. The method discussed so far,
which we call BQNN, has been used in [26] and obtained
very good results for some small model-based POMDPs. In
the following section we will show that this method can be
enhanced by using region-based belief vectors.

A. RENQ: Region Enhanced Neural Q-learning

The RENQ algorithm enhances the belief vector by adding
the average beliefs that the agent is in a particular region of
the state space. This information is easily obtainable and
its use can be very profitable. By using this kind of state
abstraction, RENQ can be seen as a new hierarchical RL
algorithm.

Basically, RENQ is inspired by a technique for extracting
information from images in object recognition, known as
a spatial pyramid [9], [1]. In this method, the image is
divided into regions and spatial features, e.g., a histogram, are
computed for all regions. This approach is known to improve
recognition performance greatly. RENQ uses this method in a
novel way and applies the spatial pyramids to the state space
of the POMDP. The approach works with several levels. At
each level, the state space is divided intok regions of equal
size. At level 1 the used region is equal to the original state
space, where each state is a singleton region, thusk = 1.
This is equal to the BQNN method used in [26]. Level 2
decomposesS into 2× 2 quadrants, makingk = 4. Level 3
subsequently subdividesS in 3×3 regions withk = 9, level
4 in 4× 4, etc.

For everyk, ςk ⊂ S the average belief valuēb is computed:

b̄(ςk) =
1

|ςk|

∑

s∈ςk

b(s) (22)

The enhanced belief vector~b+
L is the combination of all belief

setsBk for every levelk:

~b+
L = ∪L

k=1Bk (23)

Subsequently,~b+
L is fed as an input-vector to the networks

and Q-values are estimated. The computation of this addi-
tional information might seem redundant, but as we will
show, this can actually be very effective.

Example. Consider a 4× 4 grid maze, with|S| = 12. The
grid can be divided into 4 square regions of 2×2 (level 2).
For each region we will compute the average belief according
to Eq. (22). A depiction of the general idea is provided by
Figure 1.



Fig. 1. Level 2 spatial pyramid applied to the belief state of aPOMDP

The belief function represents a belief of the agent, being
in a certain state. The knowledge we add will also provide
the agent with an estimate of its approximate position. If
the goal of the agent is to get to a goal state somewhere in
the upper right corner of the state space and the agent has
a fair degree of faith its position is somewhere within the
boundaries of the lower left corner, it is very likely it will
steer itself either north or east.

In this example, the state space was divided into 4 regions.
For larger problems, one might consider breaking up the
problem into more and/or larger sections, i.e., higher levels,
and add the average belief of these regions to the input
vectors of the networks as well. This is left as a parameter.
Naturally, variations on this scheme can be developed, for
instance for problems that are not captured in a square state
space POMDP, the dimensions of the spatial pyramid can be
modified to suit the particular problem.

In the following section we will provide details about the
benchmark problems used to test the algorithms, the optimal
parameter settings found and show the results comparing the
RENQ algorithm to BQNN, Qmdp, and Perseus.

V. EXPERIMENTS

To test the algorithms, we use 3 square maze navigation
tasks of 4×4, 10×10 and 22×22, with |S| = 12, |S| = 73
and |S| = 344, respectively. Every maze has one static
goal position and every other unoccupied state can be the
initial state. The objective of the agent is to reach the goal
position as soon as possible and with every action the agent
can only reach adjacent states. In every maze, we use the
set of actions:A = {go left, go up, go right, go down},
with a 20% chance that the selected action is changed by
a random action fromA. In every of the 4 directions the
agent can either observe a wall or an empty field, making
the cardinality of |Z| = 24 = 16. We added10% noise
to the observation in each separate direction, meaning that
an observation is correct with probability0.94 = 66%. The
agent receives a reward of100 for reaching the goal position
and is penalized by−0.1 for every other action. In all mazes
the only opportunity for the agent to get a reward is by
reaching the goal state. We therefore chose to measure the
number of steps to the goal position, since this does not
depend on the size of the rewards.

We run the algorithms on an Intel Dual Core 2.33GHz,
with 3.4 GB RAM. For Perseus, the Matlab implementation

available on Spaan’s website is used and the algorithm is
run on Matlab 2009b for Linux. The RENQ and Qmdp
algorithms use self written C++ implementations.

A. Small Maze

The maze is depicted in Figure 2, with G as the goal
position. The starting state can be any other unoccupied state.
The entire maze is surrounded by a 1 block wall. For all
algorithms, the discount factor is set toγ = 0.7.

Fig. 2. The small maze. G denotes the goal position. Note that wedid not
draw the walls around the maze.

RENQ. A simulation lasts for 100,000 learning steps.
During an experiment, we perform 50 simulations. A run
is finished if the goal is hit or if the agent performed
1000 actions during the run. The learning rateα of the
neural network is set to 0.015. The neural network used 20
sigmoidal hidden units for each separate action network. We
used Boltzmann exploration withτ = 1. We also used the
same parameters to test the performance of BQNN and Q-
learning with neural networks on an MDP.

Perseus. Following Spaan, we ran Perseus 10 times, each
with a different random seed. For the small maze, we
sampled a set|B| = 200 belief points. With every simulation
the algorithm perform 1000 episodes, starting from random
positions. We let the algorithm run for 120 seconds, which
proved to be enough for convergence. The average of the
total 10.000 trajectories is computed along with the standard
deviation.

Qmdp. We ran the algorithm 100 times, in each simulation
letting the agent start at each different starting location. The
average of all the(12)(100) = 1200 different episodes is
computed, along with a success percentage, indicating how
often the goal was found in an episode. As a stopping
criterion for the value iteration part we useθ = 1E−6.

We also tested regular value iteration on an MDP. Here
instead of using observations of the maze which creates the
need for belief vectors, the single current state of the agent is
fully observed and given to the agent. Of course solving this
MDP is much easier, and we mainly did these experiments to
compare value iteration for MDP (an optimal method), with
Q-learning and neural networks to solve the MDP, to see how
much worse neural network solutions are compared to the
optimal solutions. The results are shown in Table I. For value
iteration on the MDP (VI MDP) we did not compute standard
deviations, since it always computes the same policies.



TABLE I

RESULTS ON THE SMALL MAZE.

Method Final steps Nr. Times Goal hit % Success
VI MDP 3.86 100
RL+NN MDP 3.85± 0.04 25375± 533 100
BQNN 4.37± 0.09 22156± 967 100
RENQ LEVEL 2 4.37± 0.08 22172± 1001 100
RENQ LEVEL 3 4.36± 0.06 22307± 796 100
Qmdp 4.38± 0.68 100
Perseus 4.79± 0.03 100

Discussion.As can be seen in Table I, RENQ significantly
outperforms Perseus at all levels, but performs the same as
Qmdp. Furthermore, RENQ at Level 3 outperforms BQNN
without region enhanced beliefs, since it finds the goal the
most times during its learning process. Note that although
all RENQ systems receive the same number of total steps,
some methods may learn faster and hence hit the goal more
often. We can also see that solving this MDP with Value
Iteration (VI MDP) finds a solution of 3.86 steps on average,
whereas using Q-learning and a neural network as function
approximator (RL+NN MDP) learns the same optimal policy.

B. Middle-sized Maze

We use the 10×10 maze shown in Figure 3. For all
algorithms, we set the discount factor toγ = 0.95.

Fig. 3. The Middle-sized maze. G denotes the goal position.

RENQ. A simulation lasts for 200,000 steps. The learning
rateα of the neural network is again set to 0.015. The neural
network used 60 sigmoidal hidden units for each separate
action network. We used Boltzmann exploration withτ = 1.

Perseus. Again we ran the algorithm 10 times, each with
a different random seed and let the agent perform 1000
trajectories, each starting from a different random starting
location. We sampled|B| = 1000 and let the value iteration
stage run for 600 seconds. The average number of steps for
the 10000 trajectories is computed along with a standard
deviation.

Qmdp. We use 100 simulations, in each simulation con-
sists of|S| episodes and the average of all the100|S| = 7300
trajectories is computed. The results are shown in Table II.

TABLE II

RESULTS ON THE10×10 MAZE.

Method Final steps Nr. Times Goal hit % Success
VI MDP 11.3 100
RL+NN MDP 11.9± 0.3 14165± 436 100
BQNN 15.2± 0.4 10971± 208 100
RENQ LEVEL 2 15.1± 0.3 11526± 195 100
RENQ LEVEL 3 15.2± 0.3 11608± 200 100
RENQ LEVEL 4 15.2± 0.3 11606± 179 100
Qmdp 14.7± 0.6 100
Perseus 15.7± 0.1 100

Discussion.As can be seen in Table II, Qmdp performs
the best for this maze, while RENQ significantly outperforms
Perseus at all levels. RENQ at higher levels learns much
faster than BQNN with only the state-based belief vector,
since they hit the goal significantly more often. We can also
see that solving this MDP with Value Iteration (VI MDP)
finds a solution of 11.3 steps on average, whereas using
Q-learning and a neural network as function approximator
(RL+NN MDP) comes very close to this optimum.

C. Large Maze

For the large maze shown in Figure 4, we use a discount
factor γ = 0.99.

Fig. 4. The Large maze. G denotes the goal position.

RENQ. A simulation lasts 2,000,000 steps. The learning
rate α of the neural network is set to 0.01. The neural
network used 60 sigmoid hidden units for each separate
action network. We used Boltzmann exploration withτ =
1.

Perseus. Continuing in the same fashion, we ran the
algorithm 10 times, each with a different random seed. We
sampled|B| = 10000 belief points and let the algorithm run
for 2 hours. The average number of steps of 5 simulations
is computed along with a standard deviation.

Qmdp. Again we use 100 simulations, in each simulation
we let the algorithm start from all the|S| different goal posi-
tions. The average number of steps of all the100|S| = 34400
episodes is computed, along with a success percentage. The
results are shown in Table III.



TABLE III

RESULTS ON THE22×22 MAZE.

Method Final steps Nr. Times Goal hit % Success
VI MDP 21.4 100
RL+NN MDP 23.7± 2.4 51372± 5413 100
BQNN 397.8± 1438 27290± 7502 97
RENQ LEVEL 2 33.9± 0.5 37639± 1363 100
RENQ LEVEL 3 33.6± 0.5 38418± 1338 100
RENQ LEVEL 4 33.8± 0.4 38098± 1641 100
Qmdp 35.6± 1.0 99.3
Perseus 34.7± 0.3 100

Discussion.As can be seen in Table III, RENQ signifi-
cantly outperforms Qmdp and Perseus at levels 2, 3, and 4.
BQNN fails to learn a good policy in 2 of the 50 simulations.
RENQ at Levels 3 and 4 performs the best of all POMDP
methods. We can also see that solving this MDP with Value
Iteration (VI MDP) finds a solution of 21.4 steps on average,
whereas using Q-learning and a neural network as function
approximator (RL+NN MDP) again comes close to this
optimum. Note that for this largest problem, Qmdp may
be a too simple algorithm and is outperformed by Perseus
and RENQ. We did some preliminary experiments with even
larger problems and noted that the difference between RENQ
and Qmdp becomes even larger.

VI. CONCLUSION

The partially observable Markov decision process
(POMDP) framework provides a model for decision mak-
ing under uncertainty, caused by for instance, noise in a
robot’s actuators and sensor readings. In this paper we have
presented RENQ, a novel approach combining techniques
from machine vision with Q-learning and neural networks
to approximate an optimal solution for POMDPs. We have
shown that RENQ outperforms Qmdp, a simple POMDP
algorithm, and Perseus, a state-of-the-art algorithm, when the
maze problems become larger.

A problem that we kept as future work is to automatically
create the optimal spatial layouts. We found that adding lay-
ers with more states never reduces performance for partially
observable maze navigation problems. We also found that
adding more hidden neurons usually improves performance
a bit, although this is at the cost of more computational time.
The system is also fairly robust to the learning rate, and
we hardly experimented with it. The benchmark problems
all consist of maze navigation tasks, where state transitions
are only defined for adjacent states. It would be interesting
to see how RENQ can be used for problems where this
is not the case. Ultimately, the goal is to work towards
a method providing effective learning behavior in a real
world situation. We also want to study different hierarchical
approaches to improve RENQ’s learning speed in future
work.
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