
QV(λ)-learning: A New On-policy
Reinforcement Learning Algorithm

Marco A. Wiering marco@cs.uu.nl

Intelligent Systems Group, Institute of Information and Computing Sciences, Utrecht University

1. Introduction

Reinforcement learning algorithms (Sutton & Barto,
1998; Kaelbling et al., 1996) are very suitable for learn-
ing to control an agent by letting it interact with an
environment. Currently, there are three well-known
value function based reinforcement learning (RL) al-
gorithms that use the discounted future reward cri-
terium; Q-learning (Watkins, 1989), Sarsa (Rummery
& Niranjan, 1994; Sutton, 1996), and Actor-Critic
(AC) methods (Sutton & Barto, 1998; Konda & Tsit-
siklis, 2003). Alternatively, a number of policy search
and policy gradient algorithms have been proposed.
This paper introduces a new value function based
RL algorithm, named QV-learning. Similar to Actor-
Critic methods and in contrast to Q-learning and
Sarsa, QV-learning keeps track of two value functions.1

QV-learning learns the state value function with tem-
poral difference learning, and uses this estimated state
value function to learn the state-action values with Q-
learning. QV-learning is also enhanced by eligibility
traces (Sutton, 1988) to learn the values of the state
value function using TD(λ) methods, whereas one-step
Q-learning is still used to update the Q-function. In
contrast to Actor-Critic methods that also learn two
separate functions for the Actor and the Critic, QV-
learning learns the real underlying Q-function and not
preference values for the different actions.

2. QV(λ)-learning

QV(λ)-learning works by keeping track of both the Q-
and V-functions. In QV-learning, the state-value func-
tion V is trained with normal TD(λ)-methods (Sut-
ton, 1988). The new thing is that the Q-values simply
learn from the V-values using the one-step Q-learning
algorithm. The V-function might converge faster to
optimal values than the Q-function since it does not
consider the actions and is updated more often. There-
fore, using QV-learning, the Q-values can be easily
learned and compared by the way that an action in a

1Note that Q-learning and Sarsa only learn state-action
values, the value of a state is defined by the different state-
action values of actions applicable in that state.

state leads to different successor states. The updates
after an experience (st, at, rt, st+1) of QV(λ)-learning
are the following:

V (s) := V (s) + αδtet(s)

Where the eligibility traces are updated by:

et(s) := γλet−1(s) + ηt(s)

Where ηt(s) is the indicator function which returns 1
if state s occurred at time t and 0 otherwise, and δt is
defined as:

δt = rt + γV (st+1)− V (st)

Furthermore, the Q-values are updated using the Q-
learning rule:

Q(st, at) := Q(st, at) + α(rt + γV (st+1)−Q(st, at))

Note that the V-value used in this update is learned by
QV-learning and not defined in terms of Q-values. We
first execute the update rule for the Q-values before
using the TD(λ) rule to update the V-values. QV-
learning is an on-policy algorithm, since the state value
function is learned using the behavioural policy that
includes exploration steps. In this way, QV-learning is
quite similar to Sarsa, and for convergence it also needs
that the exploration policy is greedy in the limit of
infinite exploration (GLIE) and that the learning rate
follows the usual stochastic approximation conditions
(Singh et al., 2000). We left out the convergence proof
for QV(0)-learning due to space limiations, but will
present it at the workshop.

3. Experiments

We compare QV(λ)-learning to naive Q(λ), Peng
and Williams’ Q(λ)-learning (Peng & Williams, 1996)
which we call PWQ, Sarsa(λ), and AC(λ). We per-
formed experiments with Sutton’s Dyna maze (Sutton,
1990). This simple maze consists of 9 × 6 states and
there are four actions; north, east, south, and west.
We kept the maze small, since we also used neural
networks in the experiments and wanted to prevent



too much computational cost. The goal is to arrive at
the goal state G as soon as possible starting from an-
other randomly chosen free location. The randomness
(noise) in action execution is 20%. We use λ values
of 0.0, 0.6, and 0.9. We use ε-greedy exploration with
fixed ε = 20%.

Results for Tabular Representations. We per-
formed experiments consisting of 50,000 steps and av-
eraged the results of 500 simulations. For evaluating
we use the greedy policy and let it run 20 times 1000
steps and the average is kept as result. We first per-
formed some smaller simulations to find the best learn-
ing rates for the different RL algorithms.

In Table 1 we show average results and standard devi-
ations of 500 test-simulations after 50,000 steps. For
higher λ values, QV(λ)-learning performs significantly
better (p < 0.02) than the other algorithms.

Algorithm λ = 0.0 λ = 0.6 λ = 0.9
QV 9.33K 9.33K ± 0.13K 9.26K ± 0.22K
Q 9.35K 9.28K ± 0.14K 8.90K ± 1.1K
PWQ 9.35K 9.29K ± 0.33K 8.80K ± 1.5K
SARSA 9.35K 9.28K ± 0.30K 9.05K ± 0.78K
AC 9.30K 9.16K ± 0.27K 9.08K ± 0.87K

Table 1. Results for a tabular representation with different
values for λ.

Results for Neural Networks. We also performed
experiments with neural networks as function approx-
imators. As input-vector we used 54 inputs that indi-
cate whether the agent is in that location. We used
20 hidden units and no skip-weights or input-output
connections (which would allow for a tabular solution).
We evaluated the greedy policy after each 5,000 steps
during the first 50,000 steps and summed these evala-
tions to compute the initial learning performance for
all algorithms. We average over 100 simulations.

Table 2 shows the results of the summed values of the
first 10 experiments (after each 5,000 steps) during
the first 50,000 steps. We can see that QV-learning
learns significantly faster (p < 0.0001) than the other
algorithms.

Algorithm λ = 0.0 λ = 0.6 λ = 0.9
QV 49.5K ± 9.9K 51.4K ± 11.2K 52.2K
Q 37.9K ± 13.9K 27.7K ± 16.0K 20.9K
PWQ 37.9K ± 13.9K 38.3K ± 13.3K 34.4K
SARSA 30.0K ± 14.0K 27.3K ± 11.7K 29.6K
AC 24.8K ± 16.8K 35.9K ± 23.9K 34.7K

Table 2. Neural network total results for first 50,000 steps
with tests after each 5,000 steps.

4. Conclusion

We introduced a new value function based reinforce-
ment learning algorithm, QV(λ)-learning, which is a
hybrid algorithm combining Q-learning and TD(λ)-
methods. QV(λ)-learning is an on-policy RL algo-
rithm that learns Q-values and separate V-values.
It has some possible advantages compared to the
most commonly used algorithms Q-learning and Sarsa.
Its main advantage compared to Q-learning is that
QV-learning is an on-policy algorithm and therefore
has better convergence guarantees when combined
with function approximators compared to Q-learning.
Compared to Sarsa, QV-learning is less sensitive to ex-
ploration steps. The experiments showed that QV(λ)-
learning learns faster than the other algorithms when
neural networks are used to approximate the value
functions. Also when high values of λ are used, QV(λ)-
learning outperformed the other algorithms.

References

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4, 237–285.

Konda, V., & Tsitsiklis, J. (2003). Actor-critic algo-
rithms. SIAM Journal on Control and Optimization,
42(4), 1143–1166.

Peng, J., & Williams, R. (1996). Incremental multi-step
Q-learning. Machine Learning, 22, 283–290.

Rummery, G., & Niranjan, M. (1994). On-line Q-learning
using connectionist sytems (Technical Report CUED/F-
INFENG-TR 166). Cambridge University, UK.

Singh, S., Jaakkola, T., Littman, M., & Szepesvari, C.
(2000). Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learning,
38, 287–308.

Sutton, R. S. (1988). Learning to predict by the methods
of temporal differences. Machine Learning, 3, 9–44.

Sutton, R. S. (1990). Integrated architectures for learning,
planning and reacting based on approximating dynamic
programming. Proceedings of the Seventh International
Conference on Machine Learning (pp. 216 – 224).

Sutton, R. S. (1996). Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. Ad-
vances in Neural Information Processing Systems 8 (pp.
1038–1045). MIT Press, Cambridge MA.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learn-
ing: An introduction. The MIT press, Cambridge MA,
A Bradford Book.

Watkins, C. J. C. H. (1989). Learning from delayed re-
wards. Doctoral dissertation, King’s College, Cam-
bridge, England.


