
Predicting Chaotic Time Series using Machine
Learning Techniques

Henry Maathuis∗, Luuk Boulogne∗, Marco Wiering, and Alef Sterk

University of Groningen, Groningen, The Netherlands,
maathuishenry@gmail.com, lhboulogne@gmail.com, m.a.wiering@rug.nl and

a.e.sterk@rug.nl

Abstract. Predicting chaotic time series can be applied in many fields,
e.g. in the form of weather forecasting or predicting stocks. This pa-
per discusses several neural network approaches to perform a regression
prediction task on chaotic time series. Each approach is evaluated on its
sequence prediction ability on three different data sets: the intermittency
map, logistic map and a six-dimensional model. In order to investigate
how well each regressor generalizes, they are compared to a 1 Nearest
Neighbor baseline. In previous work, the Hierarchical Mixture of Experts
architecture (HME) has been developed. For a given input, this archi-
tecture chooses between specialized neural networks. In this work, these
experts are Multilayer Perceptrons (MLPs), Residual MLPs, and Long
Short-Term Memory neural networks (LSTMs). The results indicate that
a Residual MLP outperforms a standard MLP and an LSTM in sequence
prediction tasks on the logistic map and the 6-dimensional model. The
standard MLP performs best in a sequence prediction task on the inter-
mittency map. With the use of HMEs, we successfully reduced the error
in all the above mentioned time series prediction tasks.

Keywords: Dynamical Systems, Neural Networks, Hierarchical Mix-
ture of Experts

1 Introduction

Time series prediction is a task that involves the use of historical information to
predict the future states of a system. Such tasks are often partitioned in one-step
predictions and the prediction of a sequence of states. Many disciplines are con-
cerned with time series prediction. These disciplines range from weather stations
forecasting days or even weeks ahead to stock brokers and traders predicting the
course of stocks. Most problems in nature, including prediction problems, deal
with nonlinear or chaotic data, which poses a challenge. In the field of Ma-
chine Learning, a large quantity of work on predicting time series that involves
using Neural Networks (NNs) such as Multi-Layer Perceptrons (MLP) and Ra-
dial Basis Function NNs (RBF-NN) has already been done, including work on

∗These authors contributed equally to this work.



weather forecasting [1, 2]. Other research has been conducted with other Super-
vised Learning models such as Support Vector Machines or Recurrent Neural
Networks [3–5].

To measure how well a system performs on a prediction task it is often
compared to a baseline. 1 Nearest Neighbor regression is used as a baseline in
this research. This baseline is a powerful tool when large amounts of data are
available (see Section 4.1). However, since temporal data of any kind might not
always be available in abundance, it is interesting to see whether an NN can
generalize better than the baseline.

Three types of chaotic time series are discussed in Section 2. Different kinds
of NNs: MLPs, Residual MLPs and Long Short-Term Memory (LSTM), are
considered in this work and their predictive performance on chaotic data is
investigated. These NNs are also embedded within a larger architecture, the
Hierarchical Mixture of Experts (HME). This architecture allows expert NNs to
specialize in certain input regions so that the problem complexity is reduced for
the separate experts.

The nature of the dynamical systems with which the data sets for this work
are produced makes the behavior of these systems state dependent. Allowing for
an HME system where agents specialize in certain types of states could improve
the system performance. In this research we are interested to see whether the
HME architecture is useful for improving the prediction accuracy on chaotic
time series.

2 Data Sets

For the convenience of the reader we first give a general overview of dynami-
cal systems. Next, we give the concrete examples used in our machine learning
experiments.

2.1 Dynamical Systems

Dynamical systems are mathematical models for everything that evolves in time.
Simple examples are springs and pendulum clocks. More complicated examples
are the celestial bodies comprising the solar system or the atmosphere which
produces everyday weather. These systems are deterministic in the sense that
the present state of the system completely determines its future. In other words,
probability does not play a role in the evolution of a system. See [6] for an
extensive account.

Many dynamical systems arise in the form of iterated maps. Let D be some
domain and consider a map f : D → D. For an initial condition x0 ∈ D we can
iterate the map f by setting xn+1 = f(xn). This gives the following time series:

x0, f(x0), f(f(x0)), f(f(f(x0))), . . .

A weather forecasting model, for example, fits in this framework. If an initial con-
dition x0 represents today’s weather, then by solving the governing differential



equations of atmospheric physics we can compute a prediction for tomorrow’s
weather f(x0).

Since the seminal work of the mathematician and meteorologist E.N. Lorenz
[7] it is well known that deterministic systems can be unpredictable: small errors
in the initial condition x0 may lead to large errors in predictions for the future.
This phenomenon, which is colloquially known as chaos, hampers long-term
weather forecasts and stimulated the development of mathematical research on
nonlinear dynamics and chaos theory.

2.2 The Logistic Map and Intermittency Map

The most familiar, and perhaps simplest, example of a dynamical system with
chaotic dynamics is the logistic map which is given by:

f : [0, 1]→ [0, 1], f(x) = rx(1− x), (1)

where 0 < r ≤ 4 is a parameter. This map is a simple model for population
growth which also takes overpopulation into account. Increasing the parameter
r leads to a period doubling cascade, and for r = 4 the dynamics have been
proven to be chaotic.

Another example of a 1-dimensional dynamical system is the so-called inter-
mittency map [8] which is given by:

f : [0, 1]→ [0, 1], f(x) =

{
x(1 + (2x)α) if 0 ≤ x ≤ 1

2 ,

2x− 1 if 1
2 < x ≤ 1,

(2)

where 0 < α < 1 is a parameter. This map has a neutral fixed point at x = 0,
which causes the time series to spend long times near x = 0. This effect becomes
stronger when α tends to 1. For the experiments in our paper, this value is fixed
to 0.5.

2.3 Atmosphere Data

A classical problem in the theory of atmospheric circulation is the characteriza-
tion of the recurrent flow patterns observed at midlatitudes in northern hemi-
sphere winters. The prime motivation for studying this phenomenon is to under-
stand the persistence and predictability of atmospheric motion beyond the time
scales of baroclinic synoptic disturbances (2 to 5 days). It is expected that insight
in the nature of this so-called low-frequency variability will lead to significant
progress in extended range weather forecasting [9].

Classical theories associate recurrent large-scale flow patterns with stationary
states of the atmospheric circulation, which correspond to equilibria in the dy-
namical equations of atmospheric motion [10]. Small-scale weather acts then as a
random perturbation inducing fluctuations around equilibria and transitions be-
tween states. From the perspective of nonlinear dynamical systems this scenario



has been explained in terms of intermittency which means that a system al-
ternates between regimes of chaotic and regular behavior such as nearly steady
or periodic dynamics. The intermittency map given by Equation (2) exhibits
this type of dynamics. Intermittency is observed in various forms in atmospheric
models [11, 12]; also see [13] for an overview.

The simplest model for the midlatitude atmospheric circulation is the barotropic
vorticity equation for flow over an orography profile (i.e., mountains):

∂

∂t
∆ψ = −J(ψ,∆ψ + βy + γh)− C∆(ψ − ψ∗), (3)

where ψ is the stream function which describes the atmospheric velocity field,
ψ∗ is the forcing, β controls the Coriolis force, and h is the orography profile.
The differential operators ∆ and J are defined as ∆f = fxx + fyy and J(f, g) =
fxgy − fygx, respectively. For parameter settings and boundary conditions, see
[11, 14].

A low-order model can be derived from Equation (3) by means of spectral
discretisation. The idea is to expand the stream function ψ in a truncated Fourier
series with time-dependent coefficients. An orthogonal projection then gives a
system of ordinary differential equations. A particular low-order model consist-
ing of 6 ordinary differential equations was studied in [11] who found intermittent
transitions between two states representing a westerly and a blocked flow respec-
tively which resemble the patterns found in the real atmosphere. The dynamics
consists of three recurrent episodes: (i) transitions from westerly to blocked flows,
typically taking 30 days, (ii) transitions from blocked to westerly flows, typically
taking 40–80 days, and (iii) spiraling behavior around the westerly regime, typi-
cally lasting more than 200 days. The dynamics of the intermittency map given
by Equation (2) can be seen as a prototype for this more complicated scenario.

From the 6-dimensional model derived from Equation (3), see [11, 14] for
explicit equations, we generated a discrete time series by numerical integration.
We sampled the continuous time series by intervals of 6 hours.

2.4 Splitting the Data Sets

The total length of the resulting discrete time series for each type of dynamical
system is 12,001 data points. The first 12,000 are used as input and the last
12,000 as the corresponding output. The resulting data sets are divided into
three segments of equal length, which are used respectively as training, test and
validation sets for our systems. For the atmosphere data, the training, validation
and test sets each translate to approximately 3 years of data.

3 System Design

In this work, two different Neural Network (NN) regressors are considered to
learn the behavior of the dynamical systems described in Section 2. These are the
well established feedforward Multi-Layered Perceptron (MLP) and the recurrent



Long Short-Term Memory NN (LSTM). Each of these NNs are evaluated on
their ability to predict sequences and they are compared to a simple but robust
baseline (1 Nearest Neighbor).

To obtain good performance, we allow a regressor to express different be-
havior for different parts of the data set domain by using the structure of the
Hierarchical Mixture of Experts [15] ensemble technique (HME) for our regres-
sor, explained in Section 3.3.

3.1 (Residual) Multilayer Perceptron

The MLP is a very popular NN used in a lot of different tasks in which a
nonlinear problem is to be solved. An MLP consists of an input layer, output
layer and an arbitrary amount of hidden layers. An MLP maps an input vector
to an output vector: f : Rinput → Routput. More specifically, the output is
obtained by a combination of the input and the weights associated between the
neurons in the NN. After obtaining the output for each neuron, the result is
transformed by feeding it to an activation function. This allows the system to
learn nonlinear decision boundaries. The parameters of the model are learned
by the use of an optimizer. An optimizer describes how the weights in an NN
are updated according to the gradient obtained by using the backpropagation
algorithm. Backpropagation uses a loss function with respect to the weights
to compute the gradient of the output error and propagates this back through
the NN. Such a loss function l(d, y) computes a similarity measure between the
desired output d and the actual output y.

A closely related NN is the MLP that utilizes residual learning blocks. This
NN uses residual learning blocks instead of the default hidden layers. Apart from
this learning block, this NN is identical to the plain MLP. Residual learning
blocks allow the system to learn not only from the output of the layer itself, but
also from its input. In a standard setup the output of an NN can be represented
as:

y = f(x). (4)

Here x is the input and y is the mapped output. However in the case of a
residual learning block, the output is calculated as:

y = f(x) + x. (5)

Empirical evidence has shown that residual learning blocks can reduce the
error of the NN and allow for easier optimization [16]. Figure 1(a) shows a
schematic overview of the residual learning block.

3.2 Long Short-Term Memory

In MLPs a layer of neurons only contains forward connections to subsequent
layers. Layers in Recurrent Neural Networks (RNNs) however, also have neurons
that maintain connections to themselves and preceding layers. When predicting



the next time step in a series, these connections allow the past to be taken into
account. This is because the activation of neurons is not only dependent on the
input at the current time step, but also on input from earlier time steps [17].
An issue with RNNs is that the error gradients vanish after being propagated
back through many layers or time steps. [18]. To overcome this problem, a Long
Short-Term Memory NN (LSTM) has been introduced [19, 18]. LSTMs can be
implemented by replacing the nodes in one or more hidden layers of an NN with
so-called memory cells. These cells contain an internal state that is maintained
using gates. The memory cell is depicted in Figure 1(b). Here, we give a brief
description of the memory cell. A more extensive explanation of an LSTM and
the memory cell is presented in [17].

A gate in a memory cell is defined as a neuron with a sigmoid activation
function. In a gated connection from neuron A to neuron B, the activation of a
gate is multiplied with the activation of A to obtain the input for B. Since the
activation of a gate lies within the interval (0,1), it can be viewed as indicating
the percentage of activation of A that flows through to B.

(a) (b)

Fig. 1: (a): A residual learning block as described in [16]. (b): The LSTM memory
cell extended with forget gates [20], after [17]. On the neurons, the corresponding
activation function (hard sigmoid [21] or hyperbolic tangent) is depicted. The
multiplication of the output of nodes is depicted as a circle with the multiplica-
tion symbol. All arrows can be regarded as connections with a weight fixed at
one. Filled arrow: Connection within one time step. Black dashed arrow: Con-
nection to the next time step. Gray dashed arrow: Input connection. This is a
connection from the previous time step to the current one.

Including the forget gate, which is described in [20], a memory cell contains

three gates. For memory cell c at time step t, these are an input gate i
(t)
c , a forget

gate f
(t)
c and an output gate o

(t)
c . Besides gates, the cell has an input neuron g

(t)
c

and an internal state s
(t)
c . It produces an activation h

(t)
c , which is the activation

of c in the hidden layer that is used as input for subsequent layers. We compute a
forward pass through a hidden layer of LSTM cells with input x(t), as described



by:

g(t) = tanh(W gxx(t) +W ghh(t−1) + bg),

i(t) = σ̂(W ixx(t) +W ihh(t−1) + bi),

f (t) = σ̂(W fxx(t) +W fhh(t−1) + bf ),

o(t) = σ̂(W oxx(t) +W ohh(t−1) + bo),

s(t) = g(t) � i(t) + s(t−1) � f (t),

h(t) = tanh(s(t))� o(t),

(6)

after [17]. Here, element-wise multiplication is indicated with the symbol �.
Furthermore, W ij denotes the weight matrix from j to i, bi denotes the bias
for i, tanh denotes the hyperbolic tangent and σ̂ denotes a variant of the hard
sigmoid [21], described by:

σ̂(x) = max(0,min(1, 0.2x+ 0.5)). (7)

3.3 Hierarchical Mixture of Experts

The Hierarchical Mixture of Experts (HME) is a tree-structured architecture
for Supervised Learning that was coined by Jordan et al. [15]. Their system,
incorporates the idea of Mixture of Experts (MoE) also originating from the
authors in earlier research. MoE follows a divide-and-conquer principle in which
the problem space is partitioned into local regions.

Each of these local regions are assigned to individual experts and allows the
experts to specialize in certain regions. In this architecture an expert could com-
plete any specific task such as a classification or prediction task. In [22] a Mixture
of Multi-Layer Perceptron Experts is implemented to forecast the Tehran stock
exchange. The Mixture of Experts is also widely used in classification and has
seen applications in domains such as gender, ethnic origin, and pose of human
faces classification [23].

Empirical evidence has shown that HME has several advantages over the
plain MoE architecture. HME often outperforms MoE which is attributed to the
fact that a HME partitions the data both locally and globally, providing different
resolution scales.

The MoE architecture consists of a manager (or gate) and a variable amount
of experts. The manager network maintains a softmax output where the amount
of output neurons equals the amount of experts. Each output unit represents
how much the output of that corresponding expert should contribute to the
final prediction. Using a softmax output allows us to divide the contribution of
each expert and force the total contribution given each expert to partition unity.
For an HME architecture with a depth of two, the ith weighted output in the
bottom layer is described by:

µi =
∑
j

gj|iµij , (8)



where µij is the output of the jth expert that contributes to µi and gj|i is the
weight given to µij . The output of the whole system µ is computed using the
outputs in the bottom layer weighted by the top layer manager:

µ =
∑
i

giµi. (9)

The HME architecture consists of a variable amount of managers which each
manage either multiple experts or the output of multiple linearly combined ex-
pert blocks. This definition allows the system to obtain an arbitrary recursion
depth as seen in Equations (8) and (9). Figure 2 shows a general HME model
of depth two. In this figure, x denotes the input which is identical for every
manager and expert network. The individual gates and experts are trained end-
to-end with backpropagation.

Fig. 2: Hierarchical Mixture of Experts model of depth two. Reprinted from [15].
.

Expert Networks. In the HME structure, multiple expert networks are present.
These networks are full fledged regressors that are trained dependently of each
other. In our setup the expert types that are considered are MLPs, Residual
MLPs and LSTMs. For each of these types the hyperparameters associated with
the network that yielded the lowest validation loss are used.

Gating Networks. The strength of the HME architecture lies in the managers
that determine to what extent the individual agents contribute to the final pre-
diction. In this research, MLPs, Residual MLPs and LSTM are tested as man-
agers using the hyperparameters that yielded the lowest validation loss in the



single learner tasks. LSTMs are notorious to learn from experience and therefore
we hypothesize that LSTM managers could provide better results than MLP or
Residual MLP managers.

4 Results

4.1 1 Nearest Neighbor

1 Nearest Neighbor (1NN) is used as a baseline measure for the systems de-
scribed in Section 2. The baseline matches an input with the training input it
received earlier and returns the corresponding training output. Starting at this
corresponding training output, it follows the trajectory already present in the
training space. This follows from the way the training set is constructed, see
Section 2.4. The more training inputs are fed to the system, the likelihood of
finding a similar training instance to an arbitrary input increases. This means
that this baseline can perform well if the system has seen a lot of training in-
stances before. The error of the 1NN baseline reduces over the amount of training
instances used.

4.2 Training

The weights of the LSTM memory cells were initialized with the method de-
scribed in [24]. All other weights were initialized with the method described in
[25]. For weight optimization, we used Adam [26]. Training samples were pre-
sented to the models with a batch size of four.

Early Stopping. During training, once an NN obtains a better validation accu-
racy, this NN is saved. To reduce training time, early stopping is implemented by
monitoring the validation loss. Training is terminated when either the maximum
number of 1000 epochs has been reached or the validation loss did not decrease
over 50 epochs.

Hyperparameters. In order to obtain a well performing NN architecture, prelimi-
nary tests to determine hyperparameters for the MLP, Residual MLP and LSTM
were performed. For each type of NN, the hyperparameters were selected. The
selection was done based on the ability to, given a time step in a validation set
st, make an accurate prediction s′t+1 of the next time step st+1. The performance
measure used was the Mean Squared Error, hereafter referred to as loss.

Each of the NNs are tested with different sets of parameters. For all NNs,
a parameter sweep was performed over the hidden layer sizes, the learning rate
and the learning rate decay. For the MLP and Residual MLP the sweep also
included the number of hidden layers and activation functions. Table 1 shows
the validation loss for each type of NN and data set together with their best
corresponding parameters settings.



Table 1: The best found hyperparameters, which were selected using the valida-
tion loss of 1-step prediction. For each data type, the best performing NN type
is shown in bold. The loss function is the Mean Squared Error.

Data NN type h. layers h. l. sizes activation lr lr decay loss

Intermittency
MLP 3 50 PReLU 0.01 0.001 1.60× 10−4

R. MLP 1 200 sigmoid 0.001 0.0001 4.83 × 10−4

LSTM - 50 - 0.01 0.001 4.19 × 10−3

Logistic
MLP 3 200 PReLU 0.01 0.0001 1.53 × 10−8

R. MLP 3 200 sigmoid 0.01 0.0001 6.00× 10−9

LSTM - 50 - 0.01 0.0001 2.82 × 10−3

Atmosphere
MLP 3 200 PReLU 0.001 0.0001 8.12 × 10−8

R. MLP 1 200 PReLU 0.001 0.0001 2.29× 10−8

LSTM - 200 - 0.001 0.0001 6.99 × 10−6

Final NN Architectures. For each dynamical system, we trained 10 NNs of each
type with the best found hyperparameters (all rows in Table 1). For each dy-
namical system, we also trained one type of HME. The NN types and hyper-
parameters of the best performing NNs (bold rows in Table 1) were used for
the experts and managers in these HMEs. The newly constructed models were
trained end-to-end. This is needed for the different experts to learn state depen-
dent behavior. We used four experts and three managers as illustrated in Figure
2. This resulted into a total of 40 trained NNs for each of the three dynamical
systems.

4.3 Testing

Sequence Prediction Evaluation Method. The 120 NNs and the three baselines,
from now on collectively referred to as regressors, were evaluated on their ability
to predict the behavior of a dynamical system, given the starting state in the
test set s0. The sequence that describes the behavior of the dynamical system is
generated by first making the regressor predict the next time step s′1 given s0.
Subsequent time steps at time t+1 are recursively predicted using the prediction
made at time t.

For the logistic and intermittency maps, the length l of the predicted se-
quences is 100 data points. For the atmosphere data, l = 600, which corresponds
to around five months of data.

To obtain more reliable results, the regressors are evaluated given multiple
starting states. Given the test or validation set S the first 4,000 − l (the sets
consist of 4,000 data points) elements are used exactly once as starting state
when evaluating a regressor. The resulting 4,000 − l evaluations are averaged
elementwise to obtain a single sequence of error measures for each regressor a.
This sequence of error measures eSa is the mean loss of a, given S.



NN Selection. We define the performance of a regressor a on the validation
set val as the mean of all elements of evala . Using this performance measure,
we selected the single best NN for each dynamical system. Table 2 shows these
results.

Table 2: This table shows the lowest mean validation loss on sequence prediction
as described in section 4.3 of the single best NN of each NN type for each data
set. The best performing NNs are shown in bold.

Data NN type Lowest mean loss

Intermittency

HME 0.158152
Residual MLP 0.327154
MLP 0.160673
LSTM 0.164677

Logistic

HME 0.219681
Residual MLP 0.220254
MLP 0.222794
LSTM 14.86825

Atmosphere

HME 0.008987
Residual MLP 0.010553
MLP 0.010731
LSTM 0.027812

When taking for a each NN of the best NN type and each baseline for every
dynamical system, we computed etesta . Here test denotes the test set correspond-
ing to the dynamical system on which a was trained. The losses of the predicted
sequences are shown in Figure 3.

5 Discussion

Intermittency Map. The results obtained with the intermittency data show that
the sequence prediction performance of the NNs are worse than the baseline re-
gressor. Figure 3(a) shows that the NNs are able to capture the general behavior
of the dynamical system, but the predicted sequence deviates a lot from the
ground-truth. The loss of the HME rapidly increases after the 7th data point.

Logistic Map. Figure 3(b) shows the sequence prediction ability of the NNs and
the baseline on the logistic map. An interesting pattern arises in the domain
[6, 9]. The baseline performance exceeds the performance of the selected Neural
Network within this interval. However one should note that the selected HME
performs better in the range [10, 15]. After data point 15 there is no evidence
that either the baseline or the HME outperforms one another.

Atmosphere Data. The most interesting results are found in the 6-dimensional
model. We found that out of all dynamical systems considered, relative to the



0 5 10 15 20 25 30
Data points

0.00

0.05

0.10

0.15

0.20
m

ea
n 

lo
ss

HMEs
selected HME
baseline

(a)

2 4 6 8 10
0.00

0.02

0.04

0.06

m
ea

n 
lo

ss

HMEs
selected HME
baseline

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Data points

0.0

0.1

0.2

m
ea

n 
lo

ss

(b)

0 5 10 15 20 25
0.0000

0.0005

0.0010

0.0015

0.0020

m
ea

n 
lo

ss

HMEs
selected HME
baseline

0 20 40 60 80 100 120 140
Days

0.00

0.01

0.02

0.03

m
ea

n 
lo

ss

(c)

Fig. 3: Sequence prediction on intermittency map (a), logistic map (b) and at-
mosphere (c) test data.



baseline, the NNs performed best on the atmosphere data. On sequence predic-
tion, an HME with Residual MLPs for managers and experts reliably outper-
forms the baseline of 1NN for about 24 days (96 time steps) as can be seen in
Figure 3(c). Furthermore, the loss remains fairly small during the first 20 days.
The HME that performed best on the validation data outperforms the baseline
for several months. Figure 4 shows that HMEs are able to capture the general
behavior of the atmospheric dynamical system.

0 20 40

0.8

0.9

1s
t d

im

ground truth HME

0 20 40
0.0

0.2
2n

d 
di

m

0 20 40

0.25

0.00

3r
d 

di
m

0 20 40
Days

0.50

0.25

4t
h 

di
m

0 20 40
Days

0.25
0.00
0.25

5t
h 

di
m

0 20 40
Days

0.0

0.5

6t
h 

di
m

Fig. 4: Example of atmosphere data prediction by an HME over 50 days. The
starting state has been chosen from the test set at random.

Relative to the baseline, the NNs perform better on the atmosphere data
than on the other data sets. This could be because of the larger dimensionality
of the atmosphere data. Because the same number of data points are sampled
from each data set, the larger dimensionality causes the atmosphere data to be
relatively sparse. This might allow the better interpolation capabilities of the
NNs with respect to the baseline to become more apparent on the atmosphere
data than on the other data sets.

As can be seen in Figure 3(c) where one of the grey lines becomes almost
vertical around day 30, the mean loss of one of the HMEs suddenly becomes
enormous. This is probably because this HME made a prediction slightly outside
of the domain of the training set and predicted the next datapoint even further
outside of the domain. This type of extrapolation causes the error to snowball.

6 Conclusion and Future Work

Conclusion. This work provides an overview of Neural Networks (NNs) in com-
bination with a Hierarchical Mixture of Experts (HME) architecture applied
to three different dynamical systems: the logistic map, the intermittency map
and a 6-dimensional model which contains patterns that are found in the real
atmosphere.

When testing Multi-Layer Perceptrons (MLPs), Residual MLPs and Long
Short-Term Memory NNs (LSTMs) on these data sets it was observed that the
best results were obtained with the Residual MLP for the logistic map and the



atmosphere data. The best results for the intermittency map were obtained with
an MLP.

Compared to the 1-Nearest Neighbor baseline, the NNs used in this work
are not suitable for dynamical systems such as the intermittency and logistic
map. On the contrary, we found that the time series prediction test on the 6-
dimensional data does give promising results. In the first couple of months of
the predicted sequence, the baseline is clearly outperformed by the HME.

The results indicate that the HME architecture helps in reducing the gener-
alisation error of dynamical system predictions, since for every data set tested,
better results were obtained with using this architecture than without.

Future Work. Although we obtained promising results, there are several ways in
which they could be improved. Future research can focus on the use of deeper
HME architectures or more extensive hyperparameter studies. Other types of
NNs or sequence prediction techniques might also prove useful for the problem
at hand. A final suggestion is to investigate different ensemble techniques that
might reduce the generalization error.

A drawback of predicting the behavior of a dynamical system step by step
as described in Section 4.3 is that, when making a prediction of a time step,
the system only uses one preceding step. For feedforward NNs, there is thus no
countermeasure for the accumulation of error over time. Performance might thus
be increased by using multiple previous predictions as input to the NNs.

Furthermore, although LSTMs did not perform well on these data sets, other
types or combinations of recurrent connections might also help to counter this
problem. Future research could also indicate whether, for the different data sets,
varying the amount of data used influences the performance of NNs with respect
to the baseline. It would also be interesting to see how well NNs can make
predictions based on noisy training data and whether the models resulting from
this research could be used as pre-trained models for training and testing on real
world data.

References

1. Maqsood, I., Khan, M.R., Abraham, A.: An ensemble of neural networks for
weather forecasting. Neural Computing & Applications 13(2) (2004) 112–122

2. Taylor, J.W., Buizza, R.: Neural Network Load Forecasting With Weather Ensem-
ble Predictions. IEEE Transactions on Power Systems 17(3) (2002) 626–632

3. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)
a review of applications in the atmospheric sciences. Atmospheric environment
32(14) (1998) 2627–2636

4. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and
computing 14(3) (2004) 199–222

5. Maier, H.R., Dandy, G.C.: Neural networks for the prediction and forecasting of
water resources variables: a review of modelling issues and applications. Environ-
mental modelling & software 15(1) (2000) 101–124

6. Broer, H., Takens, F.: Dynamical Systems and Chaos. Volume 172 of Applied
Mathematical Sciences. Springer (2011)



7. Lorenz, E.: Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences
20 (1963) 130–141

8. Pomeau, Y., Manneville, P.: Intermittent Transition to Turbulence in Dissipative
Dynamical Systems. Communications in Mathematical Physics 74 (1980) 189–197

9. Reinhold, B.: Weather Regimes: The Challenge in Extended-Range Forecasting.
Science 235 (1987) 437–441

10. Charney, J., DeVore, J.: Multiple Flow Equilibria in the Atmosphere and Blocking.
Journal of the Atmospheric Sciences 36 (1979) 1205–1216

11. Crommelin, D., Opsteegh, J., Verhulst, F.: A Mechanism for Atmospheric Regime
Behavior. Journal of the Atmospheric Sciences 61 (2004) 1406–1419

12. Sterk, A., Vitolo, R., Broer, H., Simó, C., Dijkstra, H.: New nonlinear mecha-
nisms of midlatitude atmospheric low-frequency variability. Physica D: Nonlinear
Phenomena 239 (2010) 702–718

13. Broer, H., Vitolo, R.: Dynamical systems modelling of low-frequency variability in
low-order atmospheric models. Discrete and Continuous Dynamical Systems B 10
(2008) 401–419

14. Sterk, A., Holland, M., Rabassa, P., Broer, H., Vitolo, R.: Predictability of extreme
values in geophysical models. Nonlinear Processes in Geophysics 19 (2012) 529–539

15. Jordan, M.I., Jacobs, R.A.: Hierarchical Mixtures of Experts and the EM Algo-
rithm. Neural computation 6(2) (1994) 181–214

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
(2016) 770–778

17. Lipton, Z.C., Berkowitz, J., Elkan, C.: A Critical Review of Recurrent Neural
Networks for Sequence Learning. arXiv preprint arXiv:1506.00019 (2015)

18. Hochreiter, S.: The Vanishing Gradient Problem During Learning Recurrent Neu-
ral Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 6(02) (1998) 107–116

19. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural computation
9(8) (1997) 1735–1780

20. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to Forget: Continual Predic-
tion with LSTM. IET Conference Proceedings (1999) 850–855

21. Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: Training Deep Neu-
ral Networks with binary weights during propagations. In: Advances in Neural
Information Processing Systems. (2015) 3123–3131

22. Ebrahimpour, R., Nikoo, H., Masoudnia, S., Yousefi, M.R., Ghaemi, M.S.: Mixture
of MLP-experts for trend forecasting of time series: A case study of the Tehran
stock exchange. International Journal of Forecasting 27(3) (2011) 804–816

23. Gutta, S., Huang, J.R., Jonathon, P., Wechsler, H.: Mixture of Experts for Classi-
fication of Gender, Ethnic Origin, and Pose of Human Faces. IEEE Transactions
on neural networks 11(4) (2000) 948–960

24. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics. (2010) 249–256

25. He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In: Proceedings of the IEEE
international conference on computer vision. (2015) 1026–1034

26. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980 (2014)


