
Learning to Play Pac-Xon with Q-Learning and
Two Double Q-Learning Variants

Jits Schilperoort
Artificial Intelligence

University of Groningen
Groningen, The Netherlands
jitsschilperoort@gmail.com

Ivar Mak
Artificial Intelligence

University of Groningen
Groningen, The Netherlands

ivarmak@hotmail.com

Madalina M. Drugan
ITLearns.Online

Utrecht, The Netherlands
madalina.drugan@gmail.com

Marco A. Wiering
Artificial Intelligence

University of Groningen
Groningen, The Netherlands

m.a.wiering@rug.nl

Abstract—Pac-Xon is an arcade video game in which the
player tries to fill a level space by conquering blocks while
being threatened by enemies. In this paper it is investigated
whether a reinforcement learning (RL) agent can successfully
learn to play this game. The RL agent consists of a multi-
layer perceptron (MLP) that uses a feature representation of
the game state through input variables and gives Q-values for
each possible action as output. For training the agent, the use of
Q-learning is compared to two double Q-learning variants, the
original algorithm and a novel variant. Furthermore, we have set
up an alternative reward function which presents higher rewards
towards the end of a level to try to increase the performance of
the algorithms. The results show that all algorithms can be used
to successfully learn to play Pac-Xon. Furthermore both double
Q-learning variants obtain significantly higher performances than
Q-learning and the progressive reward function does not yield
better results than the regular reward function.

Index Terms—Reinforcement Learning, Q-Learning, Double
Q-Learning, Multi-layer Perceptron, Games

I. INTRODUCTION

Learning by trial and error is the foundation of reinforce-
ment learning (RL) [1]. Games provide suitable environments
to model an agent that is trained using reinforcement learning
to learn to distinguish desirable from undesirable actions [2].
Board games like backgammon [3] and more graphical inten-
sive video games such as Ms. Pac-Man [4], regular Pac-Man
[5] and multiple Atari games [6] have provided challenging
environments for reinforcement learning numerous times. In
the previously named video games a variant of reinforcement
learning, Q-learning [7], has been widely applied. In the Ms.
Pac-Man and Pac-Man papers a multi-layer perceptron (MLP)
is used, while the Atari games were trained using Deep Q-
Networks (DQN). The experiments in [4] and [5] have shown
promising results, often leading to playing behavior as good as
that of average human players. In the case of the Atari games,
in three of the seven games included in the experiments it even
surpasses the playing behavior of human expert players [6].

The Atari games agents are trained using raw pixel input
as a state representation [6]. An advantage in using the raw
pixel input is a better distinction between states since every
individual game state presented to the algorithm is unique.
The Ms. Pac-Man agent was trained using higher-order inputs
[4], requiring only 22 input values as a representation of its
game state. The regular Pac-Man agent uses several grids as

input which were converted from raw pixel data [5]. When
using higher-order input variables, less unique states can be
represented, so it can happen that different states appear
similar to each other to the algorithm. The drawback of using
raw pixel input data is that it requires enormous amounts
of computational power while an average personal computer
should be able to train an algorithm that makes use of higher-
order inputs.

Even though Q-learning has shown great successes, it does
have its flaws. Because of its optimistic nature, it sometimes
overestimates action-values. A variant to Q-learning called
double Q-learning [8] decreases the optimistic bias in Q-
learning and obtained a performance improvement for many
Atari games [9].

We present our research on learning in the video game Pac-
Xon using Q-learning and two double Q-learning variants: the
original algorithm [8] and a novel variant, called double-B Q-
learning. Pac-Xon is a difficult game with a large game-state
space and many different levels. Each new level is a little bit
more difficult than the previous one, thus the agent has to
constantly adapt to new situations. Whenever the agent has
obtained a policy with which it is capable of completing a
certain level, it encounters a new, more complex level. The
full explanation of the game can be found in Section II. Using
the previous research in Ms. Pac-Man and Atari games, we in-
vestigate the advantage of the double Q-learning algorithms in
combination with higher-order inputs and an MLP. The double
Q-learning algorithm has not been implemented before with
the use of higher-order inputs (a game-state feature space),
which makes it interesting to see whether its performance
differs from regular Q-learning. Furthermore, we study if the
novel double-B Q-learning variant performs just as well or
even better than double Q-learning.

Another aspect that makes the performed experiments an
interesting new challenge is the fact that the nature of this
particular game requires the agent to take more risk as it
progresses through a level. When starting a level, it is quite
easy to obtain points. As the agent progresses, the risk that
has to be taken to obtain the same amount of points becomes
increasingly higher. Two different reward functions are tested.
One reward function is proportional to the obtained score,
whereas the second reward function takes level progress into



account by rewarding more in a later stage of the level.
Section II describes the framework we constructed to simu-

late the game and the extraction of the game-state features.
Section III discusses the theory behind the reinforcement
learning algorithms combined with an MLP. Section IV de-
scribes the experiments that were performed and the parame-
ters we used. Section V shows and discusses the results that
were obtained, and in Section VI we present our conclusions
and give suggestions for future work.

II. PAC-XON

Pac-Xon is a computer game implementing parts of the
game-play of Xonix, which is derived from Qix (released in
1981 by Taito Corp.), combined with some game-play and
graphics of Pac-Man. The game starts in an empty rectangle
with drawn edges. Each level is a grid space with 34 × 23
tiles, with a player initiated on the edge and a number of
enemies initiated in the level space. Figure 1 depicts a screen
shot of the game, in which the player is moving to the right
while dragging a tail. The player can move in four directions
(north, east, south, west), and can stand still, as long as it is
not moving over empty space.

Fig. 1. Screenshot of the game, in which the following objects can be viewed:
player (yellow), tail (cyan), normal enemies (pink), eater enemy (red), solid
tiles and edges (dark blue).

A. Game-play

The main goal for the player is to claim empty spaces,
while avoiding the enemies. A player drags temporary tiles,
also addressed with tail, from edge to edge. A temporary tile
becomes a solid tile after reaching another solid tile. In Figure
1, the tail is depicted in cyan. When enclosing an empty space
(i.e. there are no enemies apparent), the empty space and the
tail convert to solid tiles. The agent scores a point for each
tile. If the tail did not enclose empty spaces, only the tail itself
switches to solid tiles. A level is completed when the agent
has conquered 80 percent of the total area, after which the
player advances to the next level.

There are several options for failing the level, which are
related to the enemies moving around in the level space. When

the player collides with an enemy, the player dies. Each time
the player dies, the game ends in a loss. This as opposed to
the original game, in which the player would lose a life and
restart on the edge as long as it has lives left. We chose this
implementation to simplify the game. In order to achieve better
training results using our MLP, we eliminate the extra variable
for lives which would influence decision making.

The second option for a fail is when the enemy collides
with the tail of the player. The tail will break down with a
speed of 11

2 that of the player’s speed. This means the player
will have a certain amount of time to reach a solid tile in order
to complete its tail and survive. If the player does not reach
a solid tile in due time (i.e. gets caught up by the breaking
tail), the player dies.

There is a third way in which the player can fail the level,
which is not related to the enemies. When the player runs into
its tail, the player dies.

B. Enemy Description

We have implemented three different types of enemies,
which we named according to their specific behavior:

• Normal: Depicted in pink, moving around in the empty
space at a constant speed, bouncing away from solid tiles
and the player’s tail when they hit them.

• Eater: Depicted in red, moving around in the empty
space at a constant speed which is half that of the normal
enemies. These enemies will clear away the solid tile they
hit before bouncing away, the solid edges of the level and
the player’s tail excluded.

• Creeper: Depicted in green, moving around on the solid
tiles of the level at a constant speed the same as the
normal enemy, bouncing away from the edges of the
frame and the empty space. This enemy is initiated after
the player fills its first block of solid tiles, to avoid it
getting stuck on an edge.

C. Enemy Distribution

The amount of enemies is dependent on the game progress.
Starting off with two enemies in level one, after passing,
the number of enemies increases by one for each subsequent
level. The enemies are distributed differently over the levels
according to the following set of rules:

• If the level number is even: add levelnumber
2 of eater

enemies.
• If the level number can be divided by three (and returns a

remainder of zero): add a creeper enemy, to a maximum
of one.

• Add the remaining number of normal enemies.
There will always be one enemy more than the number of
the current level. Each level will contain at least two normal
enemies, and there will never be more than one creeper enemy.

D. State Representation

We want to supply the MLP with information about the game,
since the agent needs to link its feedback in the form of future
rewards to a situation in the game. We have constructed a



representation of the environment which is called the game
state, which contains the information that can be viewed on
the screen. A total of 42 variables are computed, which are
stored in a vector. In order to use them as input for the MLP,
we normalize these values between zero and one. There is a
number of features that produce multiple inputs (for example
one for every direction). We have divided the features into
three categories: Tile Vision, Danger and Miscellaneous.

Tile Vision (17 features)
1) unFilledTiles: We compute the normalized inverted

distance towards the closest unfilled tile in each of the
four directions. If there is no tile in the neighbourhood,
this value is set to 0.

2) tailDir: Four binary values determined by whether there
is an active tail in the four directions and within 4 blocks
of the player. Set to 1 if there is, set to 0 if not.

3) distToFilledTile: In each of the four directions, we
compute the normalized inverted distance towards the
closest filled (solid) tile.

4) safeTile: A binary value determined by the current
position of the player. If it is on a filled (safe) tile, this
value is set to 1. If not, it is set to 0.

5) unfilledTiles on row/column: In the four directions, it
calculates the normalized inverted distance towards the
closest row or column with unfilled tiles.

Danger (17 features)
1) enemyDir: It determines the direction of the closest

enemy. This value is either 0 = not moving towards
player, 0.5 = moving towards player in one direction
(x or y) or 1 = moving towards player in two directions
(x and y).

2) enemyDist: The normalized inverted distance towards
the closest enemy is computed in each direction. Set to
zero if there is none.

3) distToClosEnemy: The Euclidean distance towards the
closest enemy is inverted and normalized through a
division by 20.

4) distToCreeper: The Euclidean distance towards the
creeper (green enemy) is inverted and normalized
through a division by 20.

5) enemyLoc: In four directions, the player has vision in
that direction with a width of 7 blocks. If there is an
enemy apparent, the inverted distance gets normalized
such that one enemy can amount up to 0.5. This means
the player can detect up to two enemies in each direction,
and adjust its threat level accordingly.

6) tailThreat: The inverted Euclidean distance from the
active tail towards the closest enemy is normalized
through a division by 20. This value is set to zero if
there is no active tail.

7) tailHasBeenHit: Binary value determines whether the
active tail has been hit by an enemy. If there is no active
tail, or it has not been hit, this value is set to zero.

8) creeperLocation: Inverted normalized distance towards
creeper (green enemy) is computed in the four direc-

tions. If there is no creeper in that direction, the value
is set to zero.

Miscellaneous (8 features)
1) playerDir: Five binary values that determine the di-

rection in which the player is moving. No direction
(standing still) is the fifth option.

2) numberOfFields (/enemies): It is based on the ratio
between empty spaces and the number of enemies: 0
when there is only one field, and 1 when all enemies
are separated. In Figure 1 this variable takes the value
0, but the value changes to 0.5 when and if the player
successfully encloses the enemy.

3) percentage: It represents the normalized percentage of
the level passed (filled with tiles).

4) tailSize: Normalized length of the tail is set to 1 if is
larger than 40 blocks and to zero if there is none.

Figure 2 depicts some examples of the game-state features
and how they relate to the on-screen information. Note that in
Figure 1 the player is about to enclose an enemy. When this
happens, the numberOfFields variable increases.

Fig. 2. State representation example, with the state variables depicted in
arrows with their corresponding labels. The following objects can be viewed:
player (yellow), tail (cyan), normal enemies (pink), creeper enemy (green),
solid tiles and edges (dark blue).

III. REINFORCEMENT LEARNING

A Markov Decision Process (MDP) [10] is the process
of sequentially making decisions based on observations and
being rewarded for reaching particular states. The dynamic
environment of the game to be solved with reinforcement
learning can be divided into five main elements: the learning
agent, the environment, a policy, a reward function, and a
value function [11]. The policy is a mapping from states
to actions and generates a sequence of state-action pairs
representing the global behavior of a learning agent. At time
t, the policy selects and executes the action (at) based on a
certain state (st). When the process starts, the learning agent
runs through the training stage. Initially the learning agent
has no information of its environment and therefore its policy
selects actions at random. As time passes, the agent learns



about its environment and obtains a policy that is based on
rewards it has encountered in previous situations.

A. Q-Learning

The Q-learning algorithm [7] is a form of temporal dif-
ference learning predicting a quantity that depends on future
values of a given signal. Each time step, the agent is in a
state st, selects an action at and transits to a next state st+1,
while obtaining a reward rt. The goal is to maximize the
overall intake of reward and Q-learning does this by using
the experiences (st, at, rt, st+1) to learn a state-action value
function, Q(s, a). The quantity Q(s, a) is a measure of the
total amount of discounted rewards expected over the future
when the agent selects action a in state s and follows its policy
afterwards. The Q-learning update rule in its general form is:

Q(st, at)← Q(st, at)+α[rt + γmax
a

Q(st+1, a)−Q(st, at)]

There are two constants that affect this equation. The
constant α denoting the learning rate is a value between 0 and
1, and influences the extent to which the Q-values are altered
following an action. The constant γ, called the discount factor,
is also a value between 0 and 1, and determines how much
influence the future rewards have on the updates of the Q-
value. A discount factor close to 0 means the agent focuses
on rewards in the near future, whereas using a discount factor
closer to 1 means rewards obtained in the more distant future
are weighed more heavily.

The tabular Q-learning algorithm uses a lookup table with
state-action pairs to store and use information. Each state-
action pair is associated with a Q-value that expresses the
quality of the decision. The algorithm calculates these Q-
values based on the reward received after choosing an action
plus the maximal expected future reward. Since our state-
action space is too large to store all Q-values in a table, we use
a different approach that combines Q-learning with a function
approximator explained in detail in Section III-C.

B. Reward Function

The reward function represents the desirability of choosing
an action transitioning to some state. In a game, the reward
values refer to specific events. The reward value is either
positive, or negative, the latter of which can be seen as a
penalty for an action that is undesirable. The rewards that are
yielded after a state transition are a short term feedback, but
due to the fact that the algorithm includes future rewards in its
action evaluation, it could be the case that an action is linked
to a high Q-value while returning a low immediate reward.

We have implemented two types of reward functions, which
are compared in terms of performance. The first is a ’regular’
(fixed) reward function, which yields rewards that are static in
terms of the level progress. This function is described in Table
I. The reward for capturing tiles is dependent on the number
of tiles that are captured, and this number is scaled to the other
rewards by dividing it by 20. We have implemented a positive
reward for movement over empty space (i.e. unfilled tiles) in
order to encourage the agent to move there. Furthermore, a

number of negative rewards have been implemented to ensure
the agent does not get stuck in a local maximum, moving over
tiles that do not increase the progress and score.

TABLE I
REGULAR (STATIC) REWARD FUNCTION WITH a = NUMBER OF TILES

CAPTURED

Event Reward
Level passed 50
Tiles captured ((a / 20) + 1)
Movement in empty space 2
Died -50
No movement -2
Movement in direction
opposite from previous -2

Movement over solid tiles -1

The second approach is a progressive reward function that
takes the level progress into account in the reward that is
generated for capturing tiles. This level progress is expressed
in the percentage of the level space that is filled with tiles.
Since the player has to fill 80 percent of the level in order
to pass it, this is the denominator used in calculating the
level progress. This alternative reward function is shown in
Table II. The aim of this reward function is to incline the
agent to take more risk, the further it progresses through the
level, by returning a higher reward for capturing tiles. The
rewards yielded for other events are equal to the regular reward
function.

TABLE II
PROGRESSIVE REWARD FUNCTION WITH a = NUMBER OF TILES

CAPTURED AND b = PERCENTAGE OF THE LEVEL PASSED

Event Reward
Level passed 50
Tiles captured (

√
a × b/0.8 + 1)

Movement in empty space 2
Died -50
No movement -2
Movement in direction
opposite from previous -2

Movement over solid tiles -1

C. Multi-Layer Perceptron (MLP)

Tabular Q-learning is not an alternative for games as Pac-
Xon because of its huge state space given by too many
different game states to keep track of. As a solution, we
combine Q-learning with an MLP. An MLP is an artificial
neural network which acts as a function approximator, such
that not all individual state-action pairs have to be stored. A
pseudo code version of the algorithm used for implementing
Q-learning combined with the MLP is shown in Algorithm 1.

We made an estimation of the number of game states in the
first level. Any tile, but only one tile, can contain the player.
There are two normal enemies that can exist on any tile that is
not the border, which are 32× 21 possible tiles. Any tile that
is not the border can either be empty, conquered or contains
the tail of the player. Therefore, we estimates the maximum
to be (34 × 23) × (32 × 21)2 × 3(32×21) ≈ 10329 possible



Algorithm 1 Q-Learning algorithm. The exploration algorithm
is explained in section IV

initialize s and Q
repeat

if explore() then
a← randomMove()

else
a← argmaxaQ(s, a)

end if
s∗ ← newState(s, a)
r ← reward(s, a, s∗)
Qtarget(s, a)← r + γmaxaQ(s∗, a)
update(Q(s, a), Qtarget(s, a))

until end

game states in the first level. Note that this estimation gives a
very optimistic idea of the scale since it contains many game
states that are in practice not possible. However, this estimation
considers only the first level; the computational complexity
increases with each level because there are more and different
kinds of enemies.

The implemented MLP consists of an input layer, a hidden
layer and an output layer. Between layers a matrix with
weights exists.

1) Input: As its input, the MLP gets all state representation
variables which are explained in Section II-D. They add up to
a total of 42 values which are all normalized between 0 and
1. These values are multiplied by the input to hidden layer
weights and sent to the hidden layer.

2) Hidden Layer: The hidden layer consists of an arbitrary
number of nodes. Each node receives the input of all input
nodes multiplied by their weights. These weighted inputs are
added together with a bias value and sent through an activation
function, for which a sigmoid function is used.

This results in values in the hidden nodes between 0 and
1. It was also considered to apply a variant of an exponential
linear unit (ELU) rather than a sigmoid activation function,
which was shown to result in better performances in [12] but
we decided to leave that for future research.

3) Output Layer: The output layer consists of five nodes
and receives its input from the hidden layer multiplied by the
corresponding weights. The activation function used in this
layer is linear. Each node in this layer represents a Q-value
for a specific action. Whenever an action is picked, it is either
random (exploration, explained in Section IV) or the action
with the highest Q-value from the network is chosen.

4) Backpropagation: The network makes use of data that
is acquired dynamically while playing the game. Therefore
it is considered online learning [13]. Updating the network
is done by backpropagation [14]. The error required for
backpropagation is the difference between the target Q-value
(Equation 1) and the current Q-value for the selected action.
Whenever a terminal state is reached, i.e. the agent either died
or passed a level, Equation 2 is used since there are no future
values to take into account.

Algorithm 2 Double Q-Learning algorithm
initialize s,QA and QB

repeat
pickrandom(A,B)
if A then

if explore() then
a← randomMove()

else
a← argmaxaQA(s, a)

end if
s∗ ← newState(s, a)
r ← reward(s, a, s∗)
a∗ ← argmaxaQA(s

∗, a)
Qtarget

A (s, a)← r + γQB(s
∗, a∗)

update(QA(s, a), Q
target
A (s, a))

else if B then
if explore() then
a← randomMove()

else
a← argmaxaQB(s, a)

end if
s∗ ← newState(s, a)
r ← reward(s, a, s∗)
a∗ ← argmaxaQB(s

∗, a)
Qtarget

B (s, a)← r + γQA(s
∗, a∗)

update(QB(s, a), Q
target
B (s, a))

end if
until end

Qtarget(st, at)← rt + γmax
a

Q(st+1, a) (1)

Qtarget(st, at)← rt (2)

D. Double Q-Learning Variants

When calculating target Q-values, Q-learning always uses
the maximal expected future values. This can result in Q-
learning overestimating its Q-values. Double Q-learning was
proposed in [8] because of this possible overestimation. The
difference with regular Q-learning lies in the fact that two
agents (MLPs) are trained rather than one. Whenever a Q-
function is updated it computes the best action in the next
state, but uses the Q-value associated to this best action of
the other Q-function. This should reduce the optimistic bias
since chances are small that both Q-functions overestimate
on exactly the same states and actions. The target Q-value is
computed using Equations 3 and 4. Note that the equation
contains both a QA and a QB . These represent the individual
trained networks. A pseudo-code version of the algorithm is
shown in Algorithm 2.

a∗ ← argmaxaQA(st+1, a) (3)

Qtarget
A (st, at)← rt + γQB(st+1, a

∗) (4)



TABLE III
PARAMETERS USED FOR THE EXPERIMENTS

Discount factor 0.98
Learning rate 0.005
Number of hidden layers 1
Nodes in hidden layer 50

We made a variant of double Q-learning, in which a Q-
function is updated using the maximal Q-value of the other
Q-function in the next state. Here, if network A selected the
previous action, network B is used to compute both the best
action in the next state and the associated Q-value. Because
network B is now used two times, we call this alternative
algorithm: double-B Q-learning. The target Q-value for net-
work A that selected the previous action is now computed
using Equations 5 and 6. The pseudo-code of the algorithm is
very similar to the one shown in Algorithm 2.

a∗ ← argmaxaQB(st+1, a) (5)

Qtarget
A (st, at)← rt + γQB(st+1, a

∗) (6)

IV. EXPERIMENTAL SETUP

A. Training the Agent

At initialization, an agent has absolutely no knowledge of
playing the game. The weights of the MLP are all randomly
set between −0.5 and 0.5. In total each agent is trained for
106 epochs. One epoch consists of the agent playing the game
until it reaches a terminal state, which in the training stage
means that it either dies or passes a level.

1) Exploration: Each time-step, the agent chooses to pick
an action from the network or performs a random move for
exploration. The exploration method used is a decreasing
ε-greedy approach [15]. This means that the agent has a
probability of ε to perform a random action and a probability
of 1 − ε to choose the action from the network which is
expected to be the best. The value of ε decreases over the
epochs. The value of ε is initialized at 1, but decreases as
the training progresses. The value of ε is determined by a
function over the epochs. The formula ε(E), with E as the
current training epoch is shown in Equation 7.

ε(E) =


1− 0.9∗E

50,000 if 0 ≤ E < 50,000
750,000−E
700,000∗10 if 50,000 ≤ E < 750,000

0 if 750,000 ≤ E < 1,000,000
(7)

Whenever an agent has failed to obtain any positive rewards
in 100 subsequent moves, a random move is performed as
well. This is done in order to try to speed up the training as
the agent cannot endlessly wander around the level or just stay
in a corner without obtaining points.

A total of 60 agents are trained. The agents are divided
into six groups. Each group of 10 agents is trained using
a unique combination of one of the reward functions and
double Q-learning, double-B Q-learning or regular Q-learning.

After a search through parameter space, we selected the hyper-
parameters as shown in Table III.

B. Testing the Agent

The testing stage consists of 105 epochs. In every epoch
each trained agent plays the game until it either dies or gets
stuck (performs 100 actions without obtaining points). Both
the total score of each epoch as the level in which the agent
died or got stuck are stored.

With this data, the algorithms and reward functions will be
compared to each other.

V. RESULTS

In Figures 3 and 4 the training stage of the agents is plotted.
Figure 3 shows the average level the agents reached with the
reward function that is not related to the level progress. Figure
4 shows the average level that the agents reached when using
the progressive reward function. In both graphs three lines
are plotted representing Q-learning, double Q-learning and
double-B Q-learning. The shapes of the graphs are related
to the exploration variable ε of the agents. The value of this
variable decreases from 1 to 0.1 in the first 50,000 epochs, and
then gradually decreases until it reaches 0 in epoch 750,000.
The learning curves show that the different algorithms learn
with almost the same speeds, but that finally double-B Q-
learning reaches the highest average performance.

Fig. 3. Graphs of the training stage using the regular reward function. Each
line is averaged over 10 trials.

Fig. 4. Graphs of the training stage using the progressive reward function.
Each line is averaged over 10 trials.



Fig. 5. Graphs of the testing stage with the progress independent reward function. Each bar shows the average passed/started ratio of 10 trials. The error
bars show the standard error.

Fig. 6. Graphs of the testing stage with the progress dependent reward function. Each bar shows the average passed/started ratio of 10 trials. The error bars
show the standard error.

TABLE IV
MEAN SCORES AND STANDARD DEVIATIONS OF THE EXPERIMENTS. ALGORITHM: Q = Q-LEARNING, DQ = DOUBLE Q-LEARNING, DBQ = DOUBLE-B

Q-LEARNING. PROGRESSIVE: WHETHER THE REWARD IS DEPENDENT ON THE LEVEL PROGRESS. N: NUMBER OF TRAINING AGENTS. SCORE: MEAN
SCORE OF THE TRAINED AGENTS IN THE TESTING STAGE. σ: STANDARD DEVIATION OF THE SCORES, SE: STANDARD ERROR.

95% confidence interval
Algorithm Reward N Mean σ SE Lower Bound Upper Bound Min Max
Q Regular 10 814 424 134 551 1076 0 1227
Q Progressive 10 968 261 82 806 1129 427 1282
DQ Regular 10 1091 146 46 1000 1181 811 1274
DQ Progressive 10 1144 81 26 1093 1194 1021 1274
DBQ Regular 10 1156 109 34 1088 1223 994 1335
DBQ Progressive 10 1190 86 27 1137 1243 1080 1339

The results of the testing phase are shown in Figure 5 and
Figure 6. Note that in the testing phase there is no exploration
and learning, so all decisions made by the agents are chosen
from the neural network and the network is not updated
anymore. The figures show that the double Q-learning variants
are able to pass more levels than Q-learning. The results also
show that the novel double-B Q-learning algorithms performs
slightly better than standard double Q-learning.

A more elaborate summary of the results can be found in
Table IV. This table also shows that the highest scores are ob-
tained with the double-B Q-learning algorithm. Furthermore,

it shows that the progressive reward function results in more
stable outcomes, as the standard deviation of the scores is
lower given the same RL algorithm.

We performed a Tukey HSD post-hoc test to compare
the results of the different RL algorithms to each other for
which we used both reward functions. The results of this
test are shown in Table V. The tests show that Q-learning
is significantly (p < 0.01) outperformed by both double Q-
learning variants. However, no significant difference between
the results obtained by double Q-learning and double-B Q-
learning is found.



If we again examine Table IV, we can observe that Q-
learning sometimes obtains very low average scores. This
shows that the double Q-learning variants are more robust in
obtaining good performances in multiple experiments.

TABLE V
TUKEY HSD POST-HOC TEST

diff lower upper p-value
Q - DQ -226.2 -395.1 -57.4 <0.01
DBQ - DQ 55.9 -113.0 224.8 0.71
DBQ - Q 282.1 113.2 451.0 <0.01

VI. CONCLUSIONS

In this paper we have examined two existing temporal
difference learning algorithms, Q-learning and Double Q-
learning, and introduced a variant of double Q-learning called
double-B Q-learning. These algorithms have been combined
with a multi-layer perceptron and extracted game-state features
to learn to play the game Pac-Xon. We have examined different
implementations of the reward function. We compare the
’standard’ reward function using fixed values, and a pro-
gressive reward function, increasing the reward pursuant to
level progress. Based on the outcomes of our experiments
we conclude that all RL algorithms learn to play the game
well with both reward functions. Our results also show that
both Double Q-learning variants reach a significantly higher
performance than Q-learning. The algorithms were able to
reach a good performance in passing the first levels, and
reaching levels that have revealed to be difficult for human
players.

In future work, we want to compare the used RL algorithms
to other algorithms such as actor-critic algorithms. Further-
more, we want to develop a learning method that allows
the agent to predict the dynamics of the environment over
multiple time steps. Such a model could then be used to
improve the behavior of the RL agents even further. Finally,
it would interesting to examine if double-B Q-learning also
performs well on other problems and if it has advantages or
disadvantages compared to standard double Q-learning.

REFERENCES

[1] M. Wiering and M. Van Otterlo, Reinforcement Learning: State of the
Art. Springer, 2012.

[2] J. Laird and M. VanLent, “Human-level AI’s killer application: Interac-
tive computer games,” AI magazine, vol. 22, no. 2, p. 15, 2001.

[3] G. Tesauro, “Temporal difference learning and TD-gammon,” Commu-
nications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[4] L. Bom, R. Henken, and M. Wiering, “Reinforcement learning to train
Ms. Pac-Man using higher-order action-relative inputs,” in 2013 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), April 2013, pp. 156–163.

[5] M. Gallagher and M. Ledwich, “Evolving Pac-Man players: Can we
learn from raw input?” in 2007 IEEE Symposium on Computational
Intelligence and Games, April 2007, pp. 282–287.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” NIPS Deep Learning Workshop, 2013.

[7] C. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[8] H. van Hasselt, “Double Q-learning,” in Advances in Neural Information
Processing Systems 23. Curran Associates, Inc., 2010, pp. 2613–2621.

[9] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning.” in AAAI, vol. 16, 2016, pp. 2094–2100.

[10] R. Bellman, “A markovian decision process,” Indiana Univ. Math. J.,
vol. 6, pp. 679–684, 1957.

[11] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[12] S. Knegt, M. Drugan, and M. Wiering, “Opponent modelling in the
game of Tron using reinforcement learning,” in Proceedings of the 10th
International Conference on Agents and Artificial Intelligence, ICAART
2018, Volume 2, Funchal, Madeira, Portugal, 2018, pp. 29–40.

[13] L. Bottou, “Online algorithms and stochastic approximations,” in Online
Learning and Neural Networks. Cambridge, UK: Cambridge University
Press, 1998, revised, oct 2012.

[14] D. Rumelhart, G. Hinton, and R. Williams, “Neurocomputing: Founda-
tions of research,” J. A. Anderson and E. Rosenfeld, Eds. Cambridge,
MA, USA: MIT Press, 1988, pp. 696–699.

[15] J. Groot Kormelink, M. Drugan, and M. Wiering, “Exploration methods
for connectionist Q-learning in Bomberman,” in Proceedings of the 10th
International Conference on Agents and Artificial Intelligence, ICAART
2018, Volume 2, Funchal, Madeira, Portugal, 2018, pp. 355–362.


