
The Neural Support Vector Machine

M.A. Wiering a M.H. van der Ree a M.J. Embrechts b M.F. Stollenga c

A. Meijster a A. Nolte d L.R.B. Schomaker a

a Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen, Groningen, The Netherlands
b Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

c Dalle Molle Institute for Artificial Intelligence, Lugano, Switzerland
d Bernstein Center for Computational Neuroscience, Berlin, Germany

Abstract
This paper describes a new machine learning algorithm for regression and dimensionality reduction tasks.
The Neural Support Vector Machine (NSVM) is a hybrid learning algorithm consisting of neural networks
and support vector machines (SVMs). The output of the NSVM is given by SVMs that take a central
feature layer as their input. The feature-layer representation is the output of a number of neural networks
that are trained to minimize the dual objectives of the SVMs. Because the NSVM uses a shared feature
layer, the learning architecture is able to handle multiple outputs and therefore it can also be used as a
dimensionality reduction method. The results on 7 regression datasets show that the NSVM in general
outperforms a standard SVM and a multi-layer perceptron. Furthermore, experiments on eye images show
that the NSVM autoencoder outperforms state-of-the-art dimensionality reduction methods.

1 Introduction
Multi-layer perceptrons (MLPs) [16, 10] are universal in the sense that they can approximate any contin-
uous nonlinear function arbitrary well on a compact interval [3]. However, one of their drawbacks is that
in training neural networks one usually tries to solve a nonlinear optimization problem that has many local
minima. Furthermore, neural networks tend to overfit on small datasets. Support vector machines (SVMs)
[13, 2, 11] are a more robust method for both classification and regression tasks, and usually have excellent
generalization performance. This makes them very well suited for small datasets with many features. How-
ever, SVMs also have some drawbacks: (1) Their performance heavily relies on the chosen kernel function,
but most kernel functions are not very flexible. (2) SVMs are in principle ”shallow” architectures, whereas
deep architectures [8, 1] have been shown to be very promising alternatives to these shallow models. (3)
The standard SVM is unable to handle multiple outputs in a single architecture, which restricts their usage
for possible learning tasks such as dimensionality reduction.

In this paper, we introduce the Neural Support Vector Machine (NSVM), a hybrid machine learning
algorithm consisting of both neural networks and SVMs. The output of the NSVM is given by support
vector machines that take a small central feature layer as their input. This feature layer is in turn the output
of a number of neural networks, trained through backpropagation of the derivatives of the dual objectives
of the SVMs with respect to the feature-node values. The NSVM aims to overcome the problems of the
standard SVM. First, the NSVM adds more layers to the SVM, making it ”deeper”. Furthermore, the
neural networks can learn arbitrary features, making the kernel functions much more flexible. Finally, by
combining multiple SVMs with a shared feature layer into one learning architecture, the NSVM extends an
SVM’s generalization capability to multiple outputs.

The NSVM is related to some other methods. In [14], a neural support vector network (NSVN) archi-
tecture is proposed. In this NSVN, the neural networks are trained using a boosting algorithm [5] and the

support vectors are chosen beforehand. Compared to the NSVM, this method updates the neural networks
in a more heuristical manner and chooses the support vectors beforehand, which make its theory less el-
egant than the NSVM. The NEUROSVM [6] uses MLPs to learn a representation of the data in a feature
space. This representation is subsequently used as the input of an ensemble of support vector classifiers.
Unlike the method proposed here, the stages of feature learning and classification training are separated in
the NEUROSVM. Therefore, this method acts more like an ensemble method like stacking [18]. In the
training scheme of the NSVM, the optimization of the neural network weights is intricately linked to the
optimization of the SVM objective. Another related method was suggested by Suykens and Vandewalle
[12]. Their modified support vector method trains the weight matrix between the input layer and the feature
layer by minimizing an upper bound on the VC dimension. The NSVM uses another optimization method
and we put more emphasis on how it can be extended to handle multiple outputs. Because of this ability to
handle multiple outputs the NSVM can also be used as an autoencoder [4, 8]: a non-linear model that can
be used to find an efficient coding of data.

This paper attempts to answer the following research questions: (1) How does the single-output regres-
sion NSVM compare to other state-of-the-art machine learning algorithms on regression problems? (2) How
does the NSVM autoencoder compare to other dimensionality reduction methods?

Outline. In section 2 we will discuss the theory of support vector regression. Next, we present a single-
output NSVM, discussing its architecture and the modified support vector objectives it utilizes. In section 4
we show how the NSVM can be adapted to handle multiple outputs by presenting the NSVM autoencoder.
Section 5 will cover the setup and the results of the experiments conducted with the single-output NSVM
on several benchmark regression datasets and the results of the NSVM autoencoder on a dataset of images
of left eyes of people. A conclusion and future work will be presented in section 6.

2 Support Vector Regression
In linear ε-insensitive support vector regression (SVR), training consists of solving the following constrained
optimization problem:

min
w,ξ(∗),b

[
1

2
‖w‖2 + C

∑̀
i=1

(ξi + ξ∗i)

]
(1)

subject to constraints:

yi −w · xi − b ≤ ε+ ξi, w · xi + b− yi ≤ ε+ ξ∗i , and ξi, ξ
∗
i ≥ 0. (2)

Here, w is a weight vector, b is a bias value, (xi, yi) is a training sample and its target value, ξi and ξ∗i are
so-called “slack variables” enabling the model to allow deviations between the model output and the target
value of training examples larger than ε, C is a parameter controlling the extent to which such deviations
are allowed and ` is the total number of training samples. Equation (1) is called the primal objective, and its
variables primal variables. Introduction of Lagrange multipliers α and α∗ and solving for the coordinates
of a saddle point allow us to reformulate the primal objective and its constraints in the following way1:

max
α(∗)

−ε∑̀
i=1

(α∗
i + αi) +

∑̀
i=1

(α∗
i − αi)yi −

1

2

∑̀
i,j=1

(α∗
i − αi)(α∗

j − αj)(xi · xj)

 (3)

subject to constraints:

0 ≤ α(∗)
i ≤ C and

∑̀
i=1

(αi − α∗
i) = 0. (4)

Here, we use α(∗)
i to denote both αi and α∗

i , and α(∗) to denote the vectors containing all α(∗)
i values.

Equation (3) is called the dual objective. The second constraint in (4) is called the bias constraint. Once the
1See [11] for a more elaborate derivation.

α and α∗ maximizing the dual objective are found, a linear regression SVM determines its output using:

f(x) =
∑̀
i=1

(α∗
i − αi)(xi · x) + b (5)

The presented SVR model assumes that the relation between xi and yi is a linear one. Obviously, we
want to make the SVR model nonlinear. This could be achieved by preprocessing the training patterns xi
by a map Ψ : X → F into some higher-dimensional feature space F and then applying the standard SVR
algorithm [11]. However, such an approach can become computationally infeasible. Since both the dual
objective (3) and the regression estimate (5) only depend on inner products between patterns xi, it suffices
to know K(xi,x) := Ψ(xi) · Ψ(x), rather than Ψ explicitly. It is this kernel function K(·, ·) that is often
used in SVR to make the algorithm nonlinear. A number of kernel functions are widely used, including
polynomial functions, radial basis functions and sigmoidal functions.

3 The Neural Support Vector Machine
Here we introduce the Neural Support Vector Machine. This section concerns a single-output regression
NSVM. First, we will discuss its architecture. Next we describe the modifications made to the SVR objec-
tives of section 2. The section is closed by a description of the procedure by which the system is trained.

3.1 Architecture
The NSVM (see Figure 1a) consists of: (1) an input layer consisting of D nodes; (2) a central feature layer
z consisting of d nodes; (3) a total of d two-layer neural networks (MLPs) N , which each take the entire
input layer as their input and produce one of the feature values as their output, and (4) a main support vector
regression model M that takes the entire feature layer as its input and determines the value of the output
node. When a pattern x of dimension D is presented to the NSVM, it is propagated through the neural
networks, determining the values of the feature layer. We use Φ(x|θ) to denote the mapping performed by
the neural networks, i.e. z = Φ(x|θ). Here, Φ : RD → Rd and θ is a vector containing all the weights of
the neural networks. The representation in the feature layer is used as input for the support vector machine
M that determines the value of the output node. The regression NSVM computes its output using:

f(x) =
∑̀
i=1

(α∗
i − αi)K(Φ(xi|θ),Φ(x|θ)) + b. (6)

Where K(·, ·) is the kernel function of the main SVM.

Figure 1: Architecture of the NSVM regression estimator (a), and the NSVM autoencoder (b). In both
examples the feature layer consists of three neural networks each one extracting one feature.

[x]1 ///.-,()*+
LLLLLLLLL

99999999999999

000000000000000000000 z

[x]2 ///.-,()*+
JJJJJJJJJJ

777777777777777 NN /.-,()*+
KKKKKKKKKK

... NN /.-,()*+ SVM /.-,()*+ f //

[x]D−1 ///.-,()*+
tttttttttt

���������������
NN /.-,()*+

ssssssssss

[x]D ///.-,()*+
rrrrrrrrr

��������������

���������������������

(a)

[x]1 ///.-,()*+
LLLLLLLLL

88888888888888

000000000000000000000 z SVM /.-,()*+ f1 //

[x]2 ///.-,()*+
JJJJJJJJJJ

777777777777777 NN /.-,()*+
qqqqqqqqq

9999999999999999

111111111111111111111 SVM /.-,()*+ f2 //

... NN /.-,()*+
KKKKKKKKKK

ssssssssss

:::::::::::::::

��������������� ...
...

[x]D−1 ///.-,()*+
tttttttttt

���������������
NN /.-,()*+

���������������

MMMMMMMMM

SVM /.-,()*+ fD−1 //

[x]D ///.-,()*+
rrrrrrrrr

��������������

���������������������
SVM /.-,()*+ fD //

(b)

3.2 Modified Objectives
To obtain a suitable f , the system must find a representation of the input data in z that codes the features most
relevant for estimating the desired output. The NSVM adapts the primal objective of SVR by replacing the
training samples xi with their representation in the feature layer, Φ(xi|θ). Consequently, the weightvector
of the neural networks θ is introduced as an additional primal variable. This yields the following primal
objective for an NSVM with a linear SVR model M :

min
w,b,θ

[
1

2
‖w‖2 + C

∑̀
i=1

(ξi + ξ∗i)

]
(7)

subject to constraints: yi −w · Φ(xi|θ)− b ≤ ε+ ξi, w · Φ(xi|θ) + b− yi ≤ ε+ ξ∗i , and ξ
(∗)
i ≥ 0.

Correspondingly, the new ‘dual objective’ (the primal variable θ has not been eliminated!) for the NSVM
when the SVR model M uses a kernel function K(·, ·) is:

min
θ

max
α(∗)

W (α(∗), θ) = −ε
∑̀
i=1

(α∗
i +αi)+

∑̀
i=1

(α∗
i−αi)yi−

1

2

∑̀
i,j=1

(α∗
i−αi)(α∗

j−αj)K(Φ(xi|θ),Φ(xj |θ))

(8)
subject to constraints: 0 ≤ αi, α∗

i ≤ C, and
∑`
i=1(α∗

i − αi) = 0.

3.3 Training Procedure
The two goals of training the NSVM regression estimator are: (1) Find the α(∗) that maximizes Equation
(8), and (2) Find the weights of the neural networks θ such that each network Na contributes to the Φ(x|θ)
that minimizes Equation (8). The two goals are not obtained independently, i.e. an adjustment of α requires
an adjustment of the neural networks and vice versa. Whenever the system is presented a training pattern
xi, the NSVM adjusts each αi and α∗

i towards a local maximum of W+(·) with a gradient ascent algorithm:

α
(∗)
i ← α

(∗)
i + λ

∂W+(·)
∂α

(∗)
i

with W+(·) = W (·)− P1(
∑̀
j=1

(α∗
j − αj))2 − P2α

∗
iαi (9)

where λ is a metaparameter controlling the learning rate and P1, P2 are parameters chosen beforehand. By
using the derivative of W+(·) in Equation (9) we ensure that α(∗)

i is adjusted towards a satisfaction of the
bias constraint, and towards a pair of (α∗

i , αi) of which at least one of the values equals zero. The two
derivatives of our gradient ascent algorithm are given by:

∂W+(·)
∂α∗

i

= −ε+ yi −
∑̀
j=1

(α∗
j − αj)K(Φ(xi|θ),Φ(xj |θ))− 2P1

∑̀
j=1

(α∗
j − αj)− P2αi (10)

and

∂W+(·)
∂αi

= − ε− yi +
∑̀
j=1

(α∗
j − αj)K(Φ(xi|θ),Φ(xj |θ)) + 2P1

∑̀
j=1

(α∗
j − αj)− P2α

∗
i .

We keep all α(∗)-coefficients between 0 and C. We want to adjust the weights of each neural network Na
such that its output minimizes W+(·). Let us denote the output of Na given training pattern xi (i.e. the a-th
entry of zi = Φ(xi|θ)) by zai . Then, using gradient descent, we aim to decrease zai by:

∂W+(·)
∂zai

= −(α∗
i − αi)

∑̀
j=1

(α∗
j − αj)

∂K(Φ(xi|θ),Φ(xj |θ))
∂zai

. (11)

By considering Equation (11) the error of Na given pattern xi, we can adjust its weights to decrease W+(·)
using backpropagation [16, 10]. The complete training algorithm is given in Algorithm 1. It shows that
training the main SVM M is alternated for a number of epochs with training the neural networks. The bias
value of the SVR model M is learned by using the average error.

Algorithm 1 The NSVM training algorithm

Initialize main SVM M
Initialize neural networks

repeat
Compute kernel matrix for main SVM M
Train main SVM M
Use backpropagation on the dual objective of M to train the neural networks

until stop condition (maximal number of epochs)

The computational time and space complexity of the NSVM is linear in the number of inputs and also
linear in the number of feature-extracting neural networks. Just as SVMs, its complexity depends quadrati-
cally on the number of training examples.

4 The Neural Support Vector Machine Autoencoder
This section will show how the single-output regression NSVM can be adapted to handle multiple outputs
by presenting the NSVM autoencoder. The architecture of the NSVM autoencoder differs from the single-
output regression NSVM in two respects: (1) The output layer consists of D nodes, the same number of
nodes the input layer has. (2) It utilizes a total of D support vector regression machines Mc, which each
take the entire feature layer as input and determine the value of one of the output nodes.

Figure 1b depicts the architecture graphically. Just like the method described in section 3, the forward-
propagation of a pattern x of dimension D determines the representation in the feature layer z. The feature
layer is then used as input for each support vector machine Mc that determines its output according to:

fc(x) =
∑̀
i=1

([α∗
c]i − [αc]i)(Φ(xi|θ) · Φ(x|θ)) + bc. (12)

Here, we use [αc]i to denote the αi used by Mc. In this case we use a linear kernel for the SVR models.
Like the single-output NSVM, the NSVM autoencoder tries to find the neural network weights θ such

that Φ(·) codes the features most relevant to the properties corresponding with the desired output. Since the
desired output of an autoencoder is the same as the input data, it is trained to learn structural features of the
data in general. The dual objective of each support vector machine Mc is:

min
θ

max
α∗

c ,αc

Wc(x,α
(∗)
c) =− ε

∑̀
i=1

([α∗
c]i + [αc]i) +

∑̀
i=1

([α∗
c]i − [αc]i)[yi]c

− 1

2

∑̀
i,j=1

([α∗
c]i − [αc]i)([α

∗
c]j − [αc]j)(Φ(xi|θ) · Φ(xj |θ)) (13)

subject to constraints: 0 ≤ αi, α
∗
i ≤ C, and

∑`
i=1(α∗

i − αi) = 0. Recall from section 3.3 that the first
goal of training the NSVM regression estimator is finding the α(∗) that maximizesWc(·) shown in Equation
(8). Similarly, in the NSVM autoencoder we want to find the α

(∗)
c that maximizes Equation (13) for every

support vector machine Mc. Like for the single-output NSVM, this is done through gradient ascent.

However, the minimization of Equation (13) with respect to θ is different from the single-node NSVM.
Since all SVMs share the same feature layer, we cannot just minimize W (·) for every SVM separately. It is
actually this shared nature of the feature layer which enables the NSVM to handle multiple outputs in one
architecture. Let us again denote the output of Na given xi by zai . We can adjust the weights of each Na
towards a minimum of (13) with respect to zai by backpropagation of the sum of the derivatives of all dual
objectives Wc(·) with respect to zai . Therefore, for training the MLPs the NSVM autoencoder uses:

−
D∑
c=1

∂Wc(·)
∂zai

with
∂Wc(·)
∂zai

= −([α∗
c]i − [αc]i)

∑̀
j=1

([α∗
c]j − [αc]j)z

a
j . (14)

This situation resembles that of a neural network with multiple outputs, in which a single hidden node’s
error is determined by summing the proportional errors of all the neurons it directly contributes to [16, 10].

5 Experimental Results

5.1 Experimental Results on Regression Datasets
We experimented with 7 regression datasets to compare the NSVM to an SVM, both using RBF kernels. We
note that both methods are trained with the simple gradient ascent learning rule, adapted to also consider the
penalty for obeying the bias constraint. The 7 datasets are described in [7]. Some information about these
datasets is shown in Table 1. The datasets are split into 90% training data and 10% testing data.

The NSVM uses two-layer MLPs with Tanh activation functions in the output and hidden layer. The
NSVM contains a fairly large number of metaparameters. To optimize the metaparameters, particle swarm
optimization (PSO) [9] has been utilized. Finally, we used 1000 or 4000 times cross validation runs with the
best found metaparameters to compute the mean squared errors and standard errors of the different methods
for each dataset. In Table 1 we show the results of the NSVM, the results of a standard SVM trained with
gradient ascent, and the results for an SVM and a multi-layer perceptron (MLP) obtained in [7]. We note
that Graczyk et al. [7] only performed 10-fold cross validation and did not report any standard errors.

Dataset #Exams. #Feat. #Runs NSVM Gradient ascent SVM SVM [7] MLP [7]
Baseball 337 6 4000 0.02343 ± 0.00010 0.02413 ± 0.00011− 0.02588− 0.02825−

Boston Housing 461 4 1000 0.006782 ± 0.000091 0.006838 ± 0.000095 0.007861− 0.007809−

Concrete Strength 72 5 4000 0.00782 ± 0.00006 0.00706 ±0.00007+ 0.00851− 0.00837−

Diabetes 43 2 4000 0.02655 ± 0.00023 0.02719 ± 0.00026 0.02515+ 0.04008−

Electrical Length 495 2 1000 0.006492 ± 0.000064 0.006382 ± 0.000066 0.006352 0.006417
Machine-CPU 188 6 1000 0.00740 ± 0.00014 0.00805 ± 0.00018− 0.00777 0.00800−

Stock 950 5 1000 0.000825 ± 0.000005 0.000862 ± 0.000006− 0.002385− 0.002406−

Wins/Losses 1 - 3 1 - 4 0 - 6

Table 1: The 7 datasets (name, number of examples, number of features), the number of runs for cross
validation, and the mean squared errors and standard errors of the NSVM, the gradient ascent SVM, and
results from [7] for an SVM and an MLP. We denote with +/- a significant win/loss (p < 0.01) compared to
the NSVM.

The results show that the NSVM in general outperforms the other methods. It wins against the different
SVMs in 3 or 4 times, and only loses one time. We want to remark that the win of the SVM from [7] could
be explained by the small (10) number of cross validation runs on a a small dataset. Furthermore, compared
to the results obtained with the MLP, the NSVM obtains much better performances on almost all datasets.

5.2 Experimental Results on Dimensionality Reduction of Eye Images
The dataset we used contains 1300 gray-scale images of left eyes of 20 by 20 pixels, manually cropped from
the “Labeled Faces in the Wild Dataset”. Figure 2 shows three examples of the data used. The 400 pixel
values have been normalized such that their average value is µ = 0.0 with a standard deviation of σ = 0.3.

We used 2
3 of the data as trainingdata and the rest for testing. All experiments were repeated 10 times.

For the autoencoder experiments, we implemented an adaptive learning rate of the neural networks of the
NSVM. Furthermore, we used a linear kernel for the SVMs Mc. The two-layer MLPs used Tanh and linear
activation functions in the hidden and output layer, respectively.

Figure 2: Three examples of images of left eyes of people used in the autoencoder experiment.

We made a comparison to a state-of-the-art non-linear neural network autoencoding method, named a
denoising autoencoder [15], for which we optimized the metaparameters. The autoencoders were trained
using stochastic gradient descent with a decreasing learning rate. In each epoch, all samples in the training
set were presented to the network in a random order. Each input sample was augmented with Gaussian
noise, while the target stayed unaltered. We also added l1 regularization on the hidden layer of the network
to increase sparsity. These additions improved the generalization performance of the autoencoder.

We also compared the NSVM to principal component analysis (PCA) using a multi-variate Partial-Least
Squares (PLS) regression model with standardized inputs and outputs [17]. It can easily be shown that the
standard PLS algorithm in autoencoder mode is actually equivalent with a principal component projection
(with symmetric weights in the layer from the latent variable bottleneck layer to the output layer). The
attractiveness of applying the PLS autoencoder in this case is the elegant and efficient implementation of the
standard PLS algorithm to compute the principal components.

As results we compute the reconstruction error on the test images using the root of the mean squared
error (RMSE). The results of the three methods using 10, 20, and 50 dimensions (or features) are shown in
Table 2. The results show that the best method is the NSVM autoencoder. It significantly outperforms the
denoising autoencoder when 50 features are used, and outperforms PCA with all sizes of the feature layer.

Dimensionality RMSE NSVM RMSE NN RMSE PCA
10 0.1218 ± 0.0004 0.1211 ± 0.0002 0.1242 ± 0.0004−

20 0.0882 ± 0.0004 0.0890 ± 0.0002 0.0903 ± 0.0003−

50 0.0503 ± 0.0002 0.0537 ± 0.0001− 0.0519 ± 0.0002−

Wins/losses 0 - 1 0 - 3

Table 2: The test RMSE and its standard error obtained by the NSVM autoencoder, the denoising neural
network autoencoder, and principal component analysis, for different sizes of the feature layer. The symbol
+/- indicates a significant (p < 0.01) win/loss of the method compared to the NSVM autoencoder.

6 Conclusion and Future Work
In this paper we have described the Neural Support Vector Machine, a new machine learning algorithm that
learns through a complex interaction between support vector machines and neural networks. Because neural
networks try to minimize a function that the SVMs try to maximize, the learning dynamics follow a chaotic
behavior. Although the NSVM has many trainable parameters, the experimental results have shown that the
NSVM often performs better than state-of-the-art machine learning techniques. But, because the NSVM
consists of a large number of adaptive parameters, it takes more computational time than the other methods.

There is a lot of possible future work. First of all, the current implementation uses around 12 different
metaparameters. We want to study if they are all important and if we cannot set some of them to constant
(universal) values. Second, the NSVM becomes very large for large datasets and then needs a lot of training

time. To deal with large datasets, we want to research faster optimization techniques. We can also include
more diversity in the feature-extracting neural networks, for example by letting them use different inputs or
different examples. Finally, we want to test the NSVM on some challenging image classification datasets.

References
[1] Y. Bengio and Y. LeCun. Scaling learning algorithms towards AI. Large Scale Kernel Machines, MIT

Press, 2007.

[2] N. Cristianini and J. Shawe-Taylor. Support Vector Machines and other kernel-based learning methods.
Cambridge University Press, 2000.

[3] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems,
2:303–314, 1989.

[4] D. DeMers and G. Cottrell. Non-linear dimensionality reduction. Advances in neural information
processing systems, pages 580–587, 1993.

[5] Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In Proceedings of the
thirteenth International Conference on Machine Learning, pages 148–156. Morgan Kaufmann, 1996.

[6] P. Ghanty, S. Paul, and N.R. Pal. NEUROSVM: An architecture to reduce the effect of the choice of
kernel on the performance of SVM. The Journal of Machine Learning Research, 10:591–622, 2009.

[7] M. Graczyk, T. Lasota, Z. Telec, and B. Trawinski. Nonparametric statistical analysis of machine
learning algorithms for regression problems. In Knowledge-Based and Intelligent Information and
Engineering Systems, pages 111–120. 2010.

[8] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Sci-
ence, 313:504–507, 2006.

[9] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the IEEE International
Conference on Neural Networks, volume 4, pages 1942–1948, 1995.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propa-
gation. In Parallel Distributed Processing, volume 1, pages 318–362. MIT Press, 1986.

[11] B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization, Opti-
mization, and Beyond. MIT Press, 2002.

[12] J.A.K. Suykens and J. Vandewalle. Training multilayer perceptron classifiers based on a modified
support vector method. IEEE Transactions on Neural Networks, 1(4):907–911, 1999.

[13] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

[14] P. Vincent and Y. Bengio. A neural support vector network architecture with adaptive kernels. In
Proceedings of IJCNN 2000, volume 5, pages 187–192. IEEE, 2000.

[15] P. Vincent, H. Larochelle, Y. Bengio, and P-A. Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learn-
ing, pages 1096–1103, 2008.

[16] P. J. Werbos. Advanced forecasting methods for global crisis warning and models of intelligence. In
General Systems, volume XXII, pages 25–38, 1977.

[17] S Wold, M. Sjöström, and L. Eriksson. PLS-regression: a basic tool of chemometrics. Chemometrics
and Intelligent Laboratory Systems, 58:109–130, 2001.

[18] D.H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

