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1.1 Introduction

Support vector machines (SVMs) [24, 8, 20, 22] and other learning algo-
rithms based on kernels have been shown to obtain very good results on many
different classification and regression datasets. SVMs have the advantage of
generalizing very well, but the standard SVM is limited in several ways. First,
the SVM uses a single layer of support vector coefficients and is therefore a
shallow model. Deep architectures [17, 14, 13, 4, 25, 6] have been shown to be
very promising alternatives to these shallow models. Second, the results of the
SVM rely heavily on the selected kernel function, but most kernel functions
have limited flexibility in the sense they they are not trainable on a dataset.
Therefore, it is a natural step to go from the standard single-layer SVM to
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the multi-layer SVM (ML-SVM). Just like the invention of the backpropa-
gation algorithm [26, 19] allowed to construct multi-layer perceptrons from
perceptrons, this chapter describes techniques for constructing and training
multi-layer SVMs consisting only of SVMs.

There is a lot of related work in multiple kernel learning (MKL) [16, 3,
21, 18, 31, 10]. In these approaches, some combination functions of a set of
fixed kernels are adapted to the dataset. As has been shown by a number
of experiments, linear combinations of base kernels do not often help to get
significantly better performance levels. Therefore, in [7] the authors describe
the use of non-linear (polynomial) combinations of kernels and their results
show that this technique is more effective. An even more recent trend in MKL
is the use of multi-layer MKL. In [9], a general framework for two-layer kernel
machines is described, but unlike the current study no experimental results
were reported in which both layers used non-linear kernels. In [32], multi-layer
MKTL is described where mixture coefficients of different kernels are stored in
an exponential function kernel. These coefficients in the second layer of the
two-layer MKL algorithm are trained using a min-max objective function. In
[5] a new type of kernel is described, which is useful for mimicking a deep
learning architecture. The neural support vector machine (NSVM) [28] is also
related to the multi-layer SVM. The NSVM is a novel algorithm that uses neu-
ral networks to extract features which are given to a support vector machine
for giving the final output of the architecture. Finally, the current chapter ex-
tends the ideas in [27] by describing a classification and autoencoder method
using multi-layer support vector machines.

Contributions. We describe a simple method for constructing and train-
ing multi-layer SVMs. The hidden-layer SVMs in the architecture learn to
extract relevant features or latent variables from the inputs and the output-
layer SVMs learn to approximate the target function using the extracted fea-
tures from the hidden-layer SVMs. We can easily make the association with
multi-layer perceptrons (MLPs) by letting a complete SVM replace each in-
dividual neuron. However, in contrast to the MLP, the ML-SVM algorithm
is trained using a min-max objective function: the hidden-layer SVMs are
trained to minimize the dual-objective function of the output-layer SVMs and
the output-layer SVMs are trained to maximize their dual-objective functions.
This min-max optimization problem is a result of going from the primal objec-
tive to the dual objective. Therefore, the learning dynamics of the ML-SVM
are entirely different compared to the MLP in which all model parameters
are trained to minimize the same error function. When compared to other
multi-layer MKL approaches, the ML-SVM does not make use of any com-
bination weights, but trains support vector coefficients and the biases of all
SVMs in the architecture. Our experimental results show that the ML-SVM
significantly outperforms state-of-the-art machine learning techniques on re-
gression, classification and dimensionality reduction problems.

We have organized the rest of this chapter as follows. Section 1.2 describes
the ML-SVM algorithm for regression problems. In Section 1.3, the ML-SVM
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algorithm is introduced for classification problems. In Section 1.4, the au-
toencoding ML-SVM is described. In Section 1.5, experimental results on 10
regression datasets, 8 classification datasets, and a dimensionality reduction
problem are presented. Finally, Section 1.6 discusses the findings and describes
future work.

1.2 Multi-layer Support Vector Machines for Regression
Problems

We will first describe the multi-layer SVM for regression problems. We use
a regression dataset: {(x1,91),- .., (X¢, ye)}, where x; are input vectors and y;
are the scalar target outputs. The architecture of a two-layer SVM is shown
in Figure 1.1.
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FIGURE 1.1: Architecture of a two-layer SVM. In this example, the hidden
layer consists of three SVMs S, .

The two-layer architecture contains an input layer of D inputs. Then, there
are a total of d SVMs S,, each one learning to extract one latent variable
f(x|0), from an input pattern x. Here 6 denotes the trainable parameters
in the hidden-layer SVMs (which are the support vector coefficients and the
biases). Finally, there is the main support vector machine M that learns to
approximate the target function using the extracted feature vector as input.
For computing the hidden-layer representation f(x|f) of input vector x, we

use:
14

f(x[0)a = Y _(af(a) — ai(a)) K1 (xi, ) + ba, (1.1)
i=1

which is iteratively used by each SVM S, to compute the element f(x|6),.
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In this equation, o (a) and «;(a) are support vector coefficients for SVM S,
b, is its bias, and Kj(-,-) is a kernel function for the hidden-layer SVMs.
For computing the output of the whole ML-SVM, the main SVM maps the
extracted hidden-layer representation to an output:

14
g(f(x(0)) = > (af — o) Ka(£(x,]0), £(x]0)) + b. (1.2)

i=1

Here, K(-,-) is the kernel function in the output layer of the multi-layer SVM.
The primal objective for a linear regression SVM M can be written as:

4
Wl J(w 0.6€0) = Swl* +C) (& +€) (L3)

subject to constraints:
yi—w-f(x;]0) —b<e+¢& ; w-f(x]0)+b—y; <e+¢& (1.4)

and &, & > 0. Here C' is a metaparameter, € is an error tolerance value used
in the Hinge (e-insensitive) loss function, and &; and & are slack variables
that tolerate errors larger than e, but which should be minimized. The dual-
objective function for the regression problem for the main SVM M is:

14

4
minmax J (0, o, ) = —¢ Zl(az‘ + o) + 2(0@‘ — i)y
1= 1=

4
—% Y (af —ai)(a) — a;) Ka(F(xi[6), £(x,16)) (1.5)

4,j=1

subject to: 0 < af,a; < C and Zle(ai — ) = 0. The second constraint
in generally known as the bias constraint.

Our learning algorithm adjusts the SVM coefficients of all SVMs through
the min-max formulation of the dual-objective function J(-) of the main SVM.
Note that the min-max optimization problem is a result of going from the
primal objective to the dual objective. In the primal objective, it is a joint
minimization with respect to 6 and the « coefficients. However, by dualizing
the primal objective of the main SVM, it is turned into a min-max problem.

We have implemented a simple gradient ascent algorithm to train the
SVMs. The method adapts all SVM coefficients o« and «; toward a (local)
maximum of J(-), where X is the learning rate. The resulting gradient ascent
learning rule for «; is:

¢
@i = i+ AM—e—yi + ) _(af — o) Ka(£(x,16), £(x;16))) (1.6)

j=1
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The resulting gradient ascent learning rule for o is:

¢
af «—af + A—e+y; — Z(a; —a;) Ko (f(x;]0),£(x;10))) (1.7)

j=1

The support vector coefficients are set to 0 if they become less than 0, and set
to C'if they become larger than C'. We also added a penalty term to respect the
bias constraint, so actually the gradient ascent algorithm trains the support
vector coefficients to maximize the objective J'(:) = J(-) —c1 - (3, (c; —a}))?,
with ¢; some metaparameter. Although this simple strategy works well, this
ad-hoc optimization strategy could also be replaced by a gradient projection
method for which convergence properties are better understood.

In the experiments we will make use of radial basis function (RBF) kernels
in both layers of a two-layer SVM. Preliminary results with other often used
kernels were somewhat worse. For the main SVM and hidden-layer SVMs the
RBF kernel is defined respectively by:

(F(xil0)a — £(x]0)a)?
o2

M=

Ko (£(xil0),£(x|0)) = exp(- ) (18

9
Il
—

(xf —x)

NE

) (1.9)

Ki(xi,x) = exp(— p
1

Il
-

a

where o9 and o7 determine the widths of the RBF kernels in the output
and hidden layers. The ML-SVM constructs a new dataset for each hidden-
layer SVM S, with a backpropagation-like technique for making examples:
(xi, f(xi]0)a — 1 - OJ(-)/0f(x;]0)s), where p is some metaparameter, and
0J(-)/0f(x;]0), for the RBF kernel is given by:

9J() _
8f(x,»|9)a o

¢
(07 = ) S0 = ay) e (8, £, )
j=1

(1.10)
We constrain the target values for hidden-layer features between -1 and 1, so if
some target output is larger than 1 for a feature we simply set the target value
to 1. To allow the hidden-layer SVMs to extract different features, symmetry
breaking is necessary. For this, we could randomly initialize the trainable pa-
rameters in each hidden-layer SVM. However, we discovered that a better way
to initialize the hidden-layer SVMs is to let them train on different perturbed
versions of the target outputs. Therefore we initially construct a dataset (x;,
yi + %), with ¢ some random value € [—v,v] for the hidden-layer SVM
Sa, where 7 is another metaparameter. In this way, the ML-SVM resembles
a stacking ensemble approach [30], but due to the further training with the
min-max optimization process, these approaches are still very different. The

complete algorithm is given in Algorithm 1.
In the algorithm alternated training of the main SVM and hidden-layer
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Algorithm 1 The multi-layer SVM algorithm

Initialize output SVM

Initialize hidden-layer SVMs

Compute kernel matrix for hidden-layer SVMs

Train hidden-layer SVMs on perturbed dataset

repeat
Compute kernel matrix for output-layer SVM
Train output-layer SVM
Use backpropagation to create training sets for hidden-layer SVMs
Train hidden-layer SVMs

until maximum number of epochs is reached

SVMs is executed a number of epochs. An epoch here is defined as training
the main SVM and the hidden-layer SVM a single time on their respective
datasets with our gradient ascent technique that uses a small learning rate and
a fixed number of iterations. The bias values of all SVMs are set by averaging
over the errors on all examples.

Theoretical insight. Due to the min-max optimization problem and the
two layers with non-linear kernel functions, the ML-SVM loses the property
that the optimization problem is convex. However, similar to multiple-kernel
learning, training the output-layer SVM given the outputs of the hidden
layer remains a convex learning problem. Furthermore, the datasets gener-
ated with the backpropagation technique explained above, are like normal
training datasets. Since training an SVM on a dataset is a convex learning
problem, these newly created datasets are also convex learning problems for
the hidden-layer SVMs. By using the pre-training of hidden-layer SVMs on
perturbed versions of the target outputs, the learning problem of the output-
layer SVM becomes much simpler. In fact, this resembles a stacking ensemble
approach [30], but unlike any other ensemble approach, the ML-SVM is fur-
ther optimized using the min-max optimization process. This is interesting,
because it is different from other approaches in which the same error function
is minimized by all model parameters. Still, it could also be seen as a disad-
vantage, because min-max learning is not yet well understood in the machine
learning community.

1.3 Multi-layer Support Vector Machines for Classifica-
tion Problems

In the multi-layer SVM classifier, the architecture contains multiple sup-
port vector classifiers in the output layer. To deal with multiple classes, we
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use a binary one vs. all classifier M, for each class ¢. We do this even with 2
classes for convenience. We use a classification dataset for each classifier M.,.:
{(x1,95), ..., (xe,y§)}, where x; are input vectors and y¢ € {—1,1} are the
target outputs that denote if the example x; belongs to class ¢ or not. All
classifiers M. share the same hidden-layer of regression SVMs. M, determines
its output on an example x as follows:

4
9e(£(x10)) = > yiaf Ka(f(xi[0), f(x]0)) + be. (1.11)

i=1

Here f(x;|0) is computed with the hidden-layer SVMs as before. The values
af are the support vector coefficients for classifier M.. The value b. is its
bias. After computing all output values for all classifiers, the class with the
highest output is assumed to be the correct class label (with ties being broken
randomly). The primal objective for a linear support vector classifier M, can
be written as:

4
. c 1 cl12
mlnﬂJc(W 6,0.0) = 5w +c;gi (1.12)

we.E.b

subject to: yS(we-f(x;]0)+b.) > 1—¢;, and & > 0. Here C is a metaparameter
and &; are slack variables that tolerate errors, but which should be minimized.
The dual-objective function for the classification problem for classifier M, is:

¢ ¢
: (&) C 1 c_.c, c, C
min max J.(0,a¢) = Zai —5 Z ajafyiyi Ko (f(x:0), £(x;10))  (1.13)

i=1 ij=1

subject to: 0 < of < C, and Zle afys = 0. Whenever the ML-SVM is
presented a training pattern x;, each classifier in the multi-layer SVM uses
gradient ascent to adapt its of values towards a local maximum of J.(-) by:

14
af —aof + A\(1— Z aSysyi Ko (£(xi]0), f(x;10))) (1.14)

j=1

where X is a metaparameter controlling the learning rate of the values af.
As before the support vector coefficients are kept between 0 and C. Be-
cause we use a gradient ascent update rule, we use an additional penalty
term 01(2§:1 aSy§)? with metaparameter ¢; so that the bias constraint is
respected.

As in the regression ML-SVM, the classification ML-SVM constructs a
new dataset for each hidden-layer SVM S, with a backpropagation-like tech-
nique for making examples. However, in this case the aim of the hidden-layer
SVMs is to minimize the sum of objectives ) _J.(-). Therefore, the algorithm
constructs a new dataset using: (x;, f(x;|60)q — p >, 0Jc(-)/0f(x4|6),), where
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1 is some metaparameter, and 0J.(-)/0f(x;|0), for the RBF kernel is:

8(]79 ayZZa £(x]0)q UQf(Xj‘lg)a-KQ(f(xi|9),f(xj|9)) (1.15)

The target outputs for hidden-layer features are again kept between -1 and 1.
The datasets for hidden-layer SVMs are made so that the sum of the dual-
objective functions of the output SVMs is minimized. All SVMs are trained
with the gradient ascent algorithm on their constructed datasets. Note that
the hidden-layer SVMs are still regression SVMs, since they need to output
continuous values. For the ML-SVM classifier, we use a different initialization
procedure for the hidden-layer SVMs. Suppose there are d hidden-layer SVMs
and a total of ¢y classes. The first hidden-layer SVM is first pre-trained on
inputs and perturbed target outputs for class 0, the second on the perturbed
target outputs for class 1, and the £t hidden-layer SVM is pre-trained on the
perturbed target outputs for class k modulo ¢t The bias values are com-
puted in a similar way as in the regression ML-SVM, but for the output
SVMs only examples with non-bound support vector coefficients (which are
not 0 or C) are used.

1.4 Multi-layer Support Vector Machines for Dimen-
sionality Reduction

The architecture of the ML-SVM autoencoder differs from the single-
output regression ML-SVM in two respects: (1) The output layer consists
of D nodes, the same number of nodes the input layer has. (2) It utilizes a
total of D support vector regression machines M., which each take the entire
hidden-layer output as input and determine the value of one of the outputs.

The forward propagation of a pattern x of dimension D determines the
representation in the hidden layer. The hidden layer is then used as input for
each support vector machine M. that determines its output with:

9.(£(x[6)) = Z(af* — ) K5 (£(xi0), £(x[6)) + be. (1.16)

Again we make use of RBF kernels in both layers. The aim of the ML-SVM
autoencoder is to reconstruct the inputs in the output layer using a bottleneck
of hidden-layer SVMs, where the number of hidden-layer SVMs is in general
much smaller than the number of inputs. The ML-SVM autoencoder tries
to find the SVM coefficients 6 such that the hidden-layer representation f(-)
is most useful for accurately reconstructing the inputs, and thereby codes
the features most relevant to the input distribution. This is similar to neural
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network autoencoders [23, 12]. Currently popular deep architectures [14, 4, 25]
stack these autoencoders one by one, which is also possible for the ML-SVM
autoencoder.

The dual objective of each support vector machine M, is:

¢
3 C( ) _ ck c
min max Jo(0, =—c Z ait +af Z(Ozz os)y;

i=1

LS (o - aDaf — ) Kalf G EGI) (117

ij=1

subject to: 0 < of,af* < C, and Zle(af* — «f) = 0. The minimization of
this equation with respect to 6 is a bit different from the single-node ML-SVM.
Since all SVMs share the same hidden layer, we cannot just minimize J(-) for
every SVM separately. It is actually this shared nature of the hidden layer
which enables the ML-SVM to perform autoencoding. Therefore the algorithm
creates new datasets for the hidden-layer SVMs by backpropagating the sum
of the derivatives of all dual objectives Je(+). Thus, the ML-SVM autoencoder
uses: (x,f(x[0), —p ZC 1 af(x|9) ) to create new datasets for the hidden-layer
SVMs.

1.5 Experiments and Results

We first performed experiments on regression and classification problems
to compare the multi-layer SVM (we used 2 layers) to the standard SVM and
also to a multi-layer perceptron. Furthermore, we performed experiments with
an image dataset where it was the goal to obtain the smallest reconstruction
error with a limited number of hidden components.

1.5.1 Experiments on Regression Problems

We experimented with 10 regression datasets to compare the multi-layer
SVM to an SVM, both using RBF kernels. We note that both methods are
trained with the simple gradient ascent learning rule, adapted to also consider
the penalty for obeying the bias constraint, although standard algorithms for
the SVM could also be used. The first 8 datasets are described in [11] and
the other 2 datasets are taken from the UCI repository [1]. The number of
examples per dataset ranges from 43 to 1049, and the number of input features
is between 2 and 13. The datasets are split into 90% training data and 10%
test data. For optimizing the metaparameters we have used particle swarm
optimization (PSO) [15]. There are in total around 15 metaparameters for the
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ML-SVM such as the learning rates for the two layers, the values for the error
tolerance e, the values for C, the number of gradient ascent iterations in the
gradient ascent algorithm, the values for respecting the bias constraint ¢;, the
RBF kernel widths o1 and o5, the number of hidden-layer SVMs, the value for
the perturbation value v used for pre-training the hidden-layer SVMs, and the
maximal number of epochs. PSO saved us from laborious manual tuning of
these metaparameters. We made an effective implementation of PSO that also
makes use of the UCB bandit algorithm [2] to eliminate unpromising sets of
metaparameters. We always performed 100,000 single training-runs to obtain
the best metaparameters that took at most 2 days on a 32-CPU machine
on the largest dataset. For the gradient ascent SVM algorithm we also used
100,000 evaluations with PSO to find the best metaparameters, although our
implementation of the gradient ascent SVM has 7 metaparameters, which
makes it easier to find the best ones. Finally, we used 1000 or 4000 new cross
validation runs with the best found metaparameters to compute the mean
squared error and its standard error of the different methods for each dataset.

TABLE 1.1: The mean squared errors and standard errors of the gradient
ascent SVM, the two-layer SVM, and results published in [11] for an MLP on
10 regression datasets. N/A means not available.

Dataset Gradient ascent SVM  ML-SVM MLP

Baseball 0.02413 + 0.00011 0.02294 + 0.00010 0.02825
Boston Housing 0.006838 £ 0.000095  0.006381 + 0.000091 0.007809
Concrete Strength  0.00706 + 0.00007 0.00621 + 0.00005 0.00837

Diabetes 0.02719 £ 0.00026 0.02327 + 0.00022 0.04008
Electrical Length  0.006382 £+ 0.000066  0.006411 £ 0.000070  0.006417
Machine-CPU 0.00805 £ 0.00018 0.00638 + 0.00012 0.00800
Mortgage 0.000080 £ 0.000001  0.000080 £ 0.000001  0.000144
Stock 0.000862 £ 0.000006  0.000757 £ 0.000005 0.002406
Auto-MPG 6.852 + 0.091 6.715 £ 0.092 N/A
Housing 8.71 £ 0.14 9.30 £+ 0.15 N/A

In Table 1.1 we show the results of the standard SVM trained with gradient
ascent and the results of the two-layer SVM. The table also shows the results
for a multi-layer perceptron (MLP) reported in [11] on the first 8 datasets.
The MLP used sigmoidal hidden units and was trained with backpropagation.
We note that Graczyk et al. [11] only performed 10-fold cross validation and
did not report any standard errors.

The results show that the two-layer SVM significantly outperforms the
other methods on 6 datasets (p < 0.001) and only performs worse than the
standard SVM on the Housing dataset from the UCI repository. The average
gain over all datasets is 6.5% error reduction. The standard errors are very
small because we performed 1000 or 4000 times cross validation. We did this
because we observed that with less cross validation runs the results were less
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trustworthy due to their stochastic nature caused by the randomized splits
into different test sets. We also note that the results of the gradient ascent
SVM are a bit better than the results obtained with an SVM in [11]. We think
that the PSO method is more capable in optimizing the metaparameters than
the grid search employed in [11]. Finally, we want to remark that the results
of the MLP are worse than those of the two other approaches.

1.5.2 Experiments on Classification Problems

We compare the multi-layer classification SVM to the standard SVM and
a multi-layer perceptron trained with backpropagation with one hidden layer
with sigmoid activation functions. Early stopping was implemented in the
MLP by optimizing the number of training epochs. For the comparison we
use 8 datasets from the UCI repository. In these experiments we have used
SVMLight as standard SVM and optimized the metaparameters (o and C)
with grid search (also with around 100,000 evaluations). We also optimized
the metaparameters (number of hidden units, learning rate, number of epochs)
for the multi-layer perceptron. The metaparameters for the multi-layer SVM
are again optimized with PSO.

TABLE 1.2: The accuracies and standard errors on the 8 UCI classification
datasets. The results are shown of an MLP, a support vector machine (SVM),
and the two-layer SVM.

Dataset MLP SVM ML-SVM
Hepatitis 84.3 + 0.3 819+ 0.3 85.1 +0.1
Breast Cancer W. 97.0 £ 0.1 96.9 &£0.1 97.0 £ 0.1
Tonosphere 91.1 £0.1 940+£0.1 95.5+0.1
Ecoli 87.6 £ 0.2 87.0+0.2 87.3+0.2
Glass 64.5 =04 70.1 £0.3 74.0 £ 0.3
Pima Indians 774 +01 771401 772402
Votes 96.6 £ 0.1 96.5+0.1 96.84+0.1
Iris 97.8 £ 0.1 96.5+0.2 98.4+0.1
Average 87.0 87.5 88.9

We report the results on the 8 datasets with average accuracies and stan-
dard errors. We use 90% of the data for training data and 10% for test data.
We have performed 1000 new random cross validation experiments per method
with the best found metaparameters (and 4000 times for Iris and Hepatitis,
since these are smaller datasets). The results are shown in Table 1.2. The
multi-layer SVM significantly (p < 0.05) outperforms the other methods on 4
out of 8 classification datasets. On the other problems the multi-layer SVM
performs equally well as the other methods. We also performed experiments
with the gradient ascent SVM on these datasets, but its results are very simi-
lar to those obtained with SVMLight, so we do not show them here. On some
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datasets such as Breast Cancer Wisconsin and Votes, all methods perform
equally well. On some other datasets, the multi-layer SVM reduces the error
of the SVM a lot. For example, the error on Iris is 1.6% for the multi-layer SVM
compared to 3.5% for the standard SVM. The MLP obtained 2.2% error on
this dataset. Finally, we also optimized and tested a stacking ensemble SVM
method, which uses an SVM to directly map the outputs of the pretrained
hidden-layer SVMs to the desired output without further min-max optimiza-
tion. This approach obtained 2.3% error on Iris and is therefore significantly
outperformed by the multi-layer SVM.

1.5.3 Experiments on Dimensionality Reduction Problems

The used dataset in the dimensionality reduction experiment contains a
total of 1300 instances of gray-scaled images of the left eyes manually cropped
from pictures in the 'Labeled faces in the wild’ dataset. The images, shown in
figure 1.2, are normalized and have a resolution of 20 by 20 pixels, and thus
have 400 values per image. The aim of this experiment is to see how well the
autoencoder ML-SVM performs compared to some state-of-the-art methods.
The goal of the used dimensionality reduction algorithms is to accurately
encode the input data using fewer dimensions than the number of inputs. A
well known, but suboptimal technique for doing this is the use of principal

component analysis.

FIGURE 1.2: Examples of some of the cropped gray-scaled images of left
eyes that are used in the dimensionality reduction experiment.

-

We compared the ML-SVM to principal component analysis (PCA) and a
neural network autoencoding method. We used a state-of-the-art neural net-
work autoencoding method, named a denoising autoencoder [25], for which we
optimized the metaparameters. The autoencoders were trained using stochas-
tic gradient descent with a decreasing learning rate. In each epoch, all samples
in the training set were presented to the network in a random order. To im-
prove generalization performance of the standard neural network autoencoder
[23], in the denoising autoencoder each input sample is augmented with Gaus-
sian noise, while the target stayed unaltered. We also added [y regularization
on the hidden layer of the network to increase sparsity. These additions im-
proved the performance of this non-linear autoencoder.

We also compared the ML-SVM to principal component analysis using a
multi-variate Partial-Least Squares (PLS) regression model with standardized
inputs and outputs [29]. It can easily be shown that the standard PLS algo-
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rithm in autoencoder mode is actually equivalent with a principal component
projection (with symmetric weights in the layer from the latent variable bot-
tleneck layer to the output layer). The attractiveness of applying the PLS
autoencoder in this case is the elegant and efficient implementation of the
standard PLS algorithm to compute the principal components.

For these experiments, random cross validation is used to divide the data
in a training set containing two thirds (867 examples) of the dataset, and a
test set containing one third. The methods are compared by measuring the re-
construction error for different numbers of (non-linear) principal components:
we used 10, 20, and 50 dimensions to encode the eye images. The root mean
square error of 10 runs and standard errors are computed for the comparison.

TABLE 1.3: The RMSE and standard errors for different numbers of prin-
cipal components for principal component analysis, a denoising autoencoder
(DAE), and a multi-layer support vector machine (ML-SVM)

#dim PCA DAE ML-SVM

10 0.1242 £0.0004 0.1211 £0.0002 0.1202 £ 0.0003
20 0.0903 = 0.0003 0.0890 £ 0.0002 0.0875 £ 0.0003
50 0.0519 £ 0.0002 0.0537 £ 0.0001 0.0513 £ 0.0002

The results of these experiments can be found in Table 1.3. These results
show a significantly better (p<0.05) performance for autoencoding with the
use of a multi-layer support vector machine compared to the denoising autoen-
coder and PCA. As known from literature, the difference to PCA decreases
when more principal components are used.

1.5.4 Experimental Analysis of the Multi-layer SVM

We also studied why the multi-layer SVM outperforms the SVM in many
cases. For this we will examine the Iris dataset again, but in more detail. For
this dataset the multi-layer SVM and the MLP perform much better than
the standard SVM with an RBF kernel (see Table 1.2). We performed the
experiments again with the previous best found metaparameters, but set the
C-values to 3.0 for all methods so that the dual-objectives of different methods
can be easily compared. This did not significantly change the performances.
Furthermore, we set the number of epochs to 14.

Figure 1.3 shows the evolution of the training and test errors for three
methods. The reported errors are averaged over 1000 simulations. We com-
pare the standard SVM trained with gradient ascent, the multi-layer SVM,
and a multi-layer SVM in which the hidden-layer SVMs were not pre-trained
on perturbed class labels, but completely randomly initialized. In the case of
the standard SVM, the epochs refer to the number of repetitions of the gradi-
ent ascent algorithm. For the multi-layer SVMs, the epoch counter is increased
after only training the output SVMs or after only training the hidden-layer
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SVMs. The training times on a single training set are less than one second
for the Iris dataset for all methods. In epoch 0, the output layer SVMs were
initialized with constant positive support vector coefficients and by PSO op-
timized kernel widths. Therefore, they immediately work quite well since the
SVM and the ML-SVM behave like a k-nearest neighbor or locally weighted
learning method in this case.

0.1 0.14 -
. —Multi-layer SVM —Multi-layer SVM
[ - =" Multi-layer SVM not pretrained 0.121 -='Multi-layer SVM not pretrained
0.08f | Standard SVM * Standard SVM
§ 01
S 0.06 s
5 5 0.08 ‘
c — v
= 173 )
E 0.04 ° 0.06
0.04
0.02
0.02
00 5 10 15 C'O 5 10 15
Epoch number Epoch number

FIGURE 1.3: (A) Training error results on the Iris dataset. (B) Test error
results on the Iris dataset.

The results show that the standard SVM quicker obtains a low training
error than the other methods, but that its test error is higher (its best test
error is 3.7%). The best test error is obtained by the (pre-trained) multi-layer
SVM after 13 epochs, when it obtains a test error of 1.9%. The error of the
multi-layer SVM that is not pre-trained starts much higher than with the
other methods, but this method is still able to obtain a test error of 2.8%
and significantly outperforms the standard SVM. The standard SVM obtains
its best performance after a single training epoch with the gradient ascent
algorithm during which 10 training iterations of the support vector coefficients
were executed. Figures 1.3(A) and 1.3(B) show that for the multi-layer SVMs
the test errors are very close to the training errors, except for the beginning.
This behavior is due to the strong regulatization power of the output-layer
SVMs. Even with many hidden-layer SVMs generalization performance can
be excellent by setting the regularization parameter C' to a small value.

We also plotted the evolution of the average values of the dual-objective
function that correspond to the evolution of the training and test errors shown
before. Again this plot shows averages of 1000 simulations. Figure 1.4 shows
that the gradient ascent SVM monotonically increases the dual-objective func-
tion (between epochs 1 and 14, the dual-objective value increases from 33 to
70). As can be seen in Figure 1.3(B), this does not lead to always improving
test errors. This may have to do with not exactly fulfilling the bias constraint.
However, when PSO is used it optimizes the number of epochs to overcome
this problem (it found the best value of 1 for the number of epochs). The multi-
layer SVMs alternate between minimizing and maximizing the dual-objective
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function. The min-max optimization process is quite complex, because multi-
ple metaparameters influence the learning updates. Therefore, the dual objec-
tive does not just increase, then in the next epoch decreases, etc. Instead, the
dual-objective function increases for some epochs, then decreases, etc., without
any signs of convergence. The three figures show that the dual-objective should
be minimized to obtain the lowest test errors. However, standard SVMs can
only maximize the dual-objective function. Therefore, the flexibility of the hid-
den layer in the ML-SVM is especially fruitful to minimize the dual-objective
function and thereby obtain lower test errors.

2000
0

S -2000
B — Multi-layer SVM
S -4000 - - Multi-layer SVM not pretrained
0 Standard SVM
£ -6000
2
S -8000

~10000-

-12000 5 10
Epoch number

FIGURE 1.4: The evolution of the dual-objective value on the Iris dataset.

1.6 Discussion and Future Work

The multi-layer SVM consists of a hidden-layer of SVMs and an output
layer of SVMs that learn to approximate the target function using the out-
puts of the hidden-layer SVMs. The results show that the ML-SVM can out-
perform other state-of-the-art machine learning algorithms. By going from a
single SVM to the multi-layer SVM, we have made the SVM a deeper architec-
ture. Compared to other deep neural network architectures, the ML-SVM has
the advantage that due to the strong regularization power of the output-layer
SVMs, the system does not easily overfit the data. Therefore, the ML-SVM
could potentially perform very well with very large input vectors and few
training examples. On the other hand, training an SVM with many exam-
ples is more computationally demanding than training a deep neural network
architecture.

There are several advantages of the ML-SVM algorithm. First, the method
is very flexible in adapting the kernel functions compared to other multiple-
kernel learning algorithms. Second, the algorithm is straightforward to im-
plement by using the gradient ascent algorithm and the backpropagation
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technique. Finally, the training method uses a min-max optimization process,
which is interesting and not (yet) applicable to neural network training.

There remains future work to be done in order to increase the power of
the ML-SVM. First of all, the current implementation uses many metaparam-
eters. Instead of using PSO to optimize the metaparameters, many different
real-coded optimization algorithms can be employed. Second, the ML-SVM
becomes very large for large datasets and then needs a lot of training time. To
deal with large datasets, we want to explore stochastic gradient ascent tech-
niques instead of the batch gradient ascent method we used in this chapter.
We can also include more diversity in the hidden-layer SVMs, for example by
letting them use different subsets of inputs, different examples, or different
kernels. Finally, we want to develop more rigorous theory to explain why the
ML-SVM performs so well and test the ML-SVM on challenging handwriting
and image recognition datasets.
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