
Hierarchical Assignment of Behaviours to Subpolicies

Wilco Moerman1, Bram Bakker2 & Marco Wiering3

1Cognitive Artificial Intelligence, Utrecht University, wilco.moerman@gmail.com
2Intelligent Autonomous Systems Group, University of Amsterdam, bram@science.uva.nl

3Intelligent Systems Group, Utrecht University, marco@cs.uu.nl

Abstract

Task decompositions are central in Hierarchical Rein-
forcement Learning, but in most approaches they need
to be designed a priori, and the agent only needs to fill
in the details in the fixed structure. In contrast, the
algorithm presented here autonomously identifies be-
haviours in an abstract higher level state space. Sub-
policies self-organise to specialize for the high level be-
haviours that are identified.

1 Introduction

The use of hierarchies in Reinforcement Learning (RL)
is one of the strategies for dealing with large state
spaces. The idea is to improve normal, flat Reinforce-
ment Learning by giving it the possibility to execute
actions that are temporally extended. The two most
common ways to achieve this are the introduction of

multiple layers (prime example: MAXQ [1]) and the
use of the options framework [2].

In the options framework, extended actions (op-
tions) are added to the flat Reinforcement Learning al-
gorithm, directly augmenting the action space. This
allows taking larger steps, but does not really introduce
layers of abstraction.

Introducing layers, on the other hand, allows for the
use of more abstract representations or states (although
not every layered approach uses abstractions). For ap-
proaches like MAXQ, the designer needs to define a task
decomposition, determining which task is done by which
(sub)policy. The agent only needs to fill in the values in
the value functions, because the structure of the task,
and which subtasks are done by which policies, is al-
ready largely fixed, and only the (sub)policies need to
be learned.

The algorithm presented here takes a different ap-
proach. Instead of thinking in terms of detailed task de-
compositions, a suitable geometric abstract state space

(a higher level representation of the normal state space)
is used for the higher level(s), and subpolicies self-
organise to cover (i.e. specialize for) the needed be-
haviours identified in an abstract Behavior Space.

2 Behaviour Space and

Abstract State Space

Our method is based on having/identifying an abstract,
high-level, geometric state space which captures impor-
tant properties of the underlying task and which is used
for taking higher-level actions to be executed by specia-
list lower-level subpolicies.

For such an abstract state space (or any state space,
for that matter) we define a Behaviour Space as the set
of all possible difference vectors in that state space (see
fig. 1). This means that the Behaviour Space consists
of all possible vectors that are confined within the di-
mensions of the state space. The actions that actually
occur in the state space (because they are transitions
from one state to another) form a subset of all possible
behaviour vectors.

b2

b1

b3

Figure 1: Behaviour Space: the space of all pos-
sible difference vectors in a state space (with dimen-
sions b1, b2, b3).

A suitable abstract representation of the problem
space has the following properties: states that are close
together in the original state space need to be mapped
to abstract states near each other (or the same), and
neighbouring abstract states need to be mapped to
states in the state space that are near each other (fig. 2).
Also, a translation (difference vector) in the abstract
state space should correspond to a meaningful change
in the original state space. Furthermore, a useful ab-
stract state space needs to be significantly smaller than
the original state space. Finally, the actually occuring
transitions between states in the abstract state space
need to be distributed non-uniformly in the abstract
Behaviour Space.

The last requirement is needed to ensure that many
transitions are roughly the same, meaning there are
“pockets” or “clusters” of actual transitions in the Be-
haviour Space.

1



state space abstract state space

mapping
abstract 
actions

primitive
actions

Figure 2: mapping of a state space to an abstract
state space. The small arrows on the left are prim-
itive actions, the arrows on the right depict actions
that can be taken in the abstract space.

Creating such an abstract space is easiest when the
environment has a certain inherent geometry. This is
the case, e.g., in spatial navigation tasks; but this work
is definitely not constrained to pure navigation tasks, as
we will demonstrate in the experiments.

3 HABS

HABS (Hierarchical Assignment of Behaviours to Sub-
policies) has one high level policy that controls a limited
number of low level subpolicies. All these policies learn
with standard Reinforcement Learning techniques like
Q-Learning or Sarsa [3].

HABS uses the original state space and the primi-
tive actions for the subpolicies (as in normal Reinforce-
ment Learning). For the higher level policy it uses a
suitable abstract state space and the subpolicies are
used as its higher level actions.

These subpolicies perform behaviours that are vec-
tors in the abstract Behaviour Space defined by the ab-

stract state space. They are temporally (and spatially)
extended in the original, normal state space. In this way
the relation abstract state space  abstract Behaviour

Space  behaviours mirrors that of state space  be-

haviour space  primitive actions.
Because a suitable abstract state space has its ac-

tually occuring transitions distributed non-uniformly,
there are pockets or clusters of behaviours that are
roughly the same, meaning they can be performed by
one subpolicy. These dense areas in the abstract Be-
haviour Space allow HABS to learn to distribute its
subpolicies to cover most – and if enough subpolicies
are available: all – of the needed high level actions.
This mimics the way primitive actions are applicable
everywhere in the state space: a primitive action like
“go left” matches with transitions between every state
and its left neighbour, so only one action “go left” is
needed.

The high level policy selects one of its actions, which
means one of its subpolicies takes control until a new
(i.e. adjacent) abstract state is reached or timeout oc-
curs. After that, control is returned and a new sub-
policy is selected by the high level policy. This mirrors
the way primitive actions are used: they terminate in

an adjacent state or where they started (because the
action failed).

The high level policy gets high level immediate re-
wards which correspond to the real, original rewards
accumulated between one high level state and the next
high level state. The update rule for the high level pol-
icy is:

Qh(hst, bt) ← (1− α) Qh(hst, bt) +

α (hrt+∆t + γ∆t max
b

Qh(hst+∆t, b))

where the Qh-value denotes the value-function for se-
lecting subpolicy b in high level state hs, where the du-
ration of the behavior is denoted as ∆t and the high
level reward is denoted hr. Note that the discounting
of the value of the next high level state is similar to what
happens in Semi-Markov Decision Processes [1, 2].

The subpolicies need to be rewarded for good be-
haviour. To accomplish this, a characteristic behaviour

vector1 is assigned to each subpolicy. This characteris-
tic behaviour represents the kind of behaviour that the
subpolicy should accomplish, and it acts as a measure
for the training of a subpolicy. If the subpolicy accom-
plishes a behaviour that is closest to its own character-
istic behaviour, it is rewarded, but if it acted more like
the characteristic behaviour of another subpolicy or if
the subpolicy didn’t get the agent out of the abstract
state at all, it is punished. At all other times during
execution of the subpolicy, the reward is 0. Updating is
done using Q-Learning:

Ql(st, at) ← (1 − α) Ql(st, at) +

α (rt+1 + γ max
a

Ql(st+1, a))

When the characteristic behaviour of another sub-
policy is the closest match for the actually experienced
behaviour, the selected action at the high level can be
replaced by the action that was the closest match. After
that the Qh-value can be updated as usual. This allows
for efficient use of all data and speeds up learning.

The characteristic behaviour vector (char) is
moved towards the actually executed behaviour vector
(actt→t+∆t) if and only if the accomplished behaviour is
closer to its own characteristic behaviour vector than to
those of all other subpolicies. This update can be done
using the following simple rule:

chart+∆t ← (1 − α) · chart + α · actt→t+∆t

HABS is suitable for use with function approxima-
tors (needed when the abstract state space becomes too
large for a tabular representation) on the high level be-
cause its higher level has the same structure as normal
state spaces where function approximators are used. It
can also be extended to more layers, because a new
(more) abstract state space can be made out of an ab-
stract state space.

1It does not need to be a vector, but could be any way of
defining a change in the abstract state space.

2



3.1 Self-organizing Structure

The subpolicies need to cover the commonly used parts
of the abstract Behaviour Space, if they are to be useful
as actions for the high level policy. But since there
is no a priori knowledge about what behaviours are
needed, the subpolicies start without meaningful be-
haviour and with randomly initialized characteristic be-
haviour. This is a crucial difference with other hierar-
chical RL approaches, where the structure of desired be-
haviors (macro-actions, options, sub-tasks) is typically
predefined.

This means that in the beginning (much) exploration
is needed on both levels. The high level selects actions
(subpolicies) to execute and the subpolicy (while ex-
ploring) might stumble upon a new high level state and
when the translation is closest to its characteristic be-
haviour, it is rewarded (and its behaviour reinforced).
The characteristic behaviour is then moved in the di-
rection of the just executed successful behaviour.

b1

b2

b1

b2

b1

b2
time time

Figure 3: Changing characteristic behaviour

vectors. The grey areas depict pockets of behaviours
that actually occur in the abstract state space. The
arrows are the characteristic behaviours organizing
themselves to cover the needed behaviours.

Subpolicies are punished when they don’t succeed
in leaving a high level state, so they are forced out-

ward. This prevents the subpolicies from specializ-
ing in standing still. Assuming that the actually oc-
curring behaviours are not distributed evenly in the
Behaviour Space (because of a suitable abstract state
space), but cluttered together, the characteristic be-
haviours move away from each other. This is because
each time a subpolicy acts close to its characteristic
behaviour, the characteristic behaviour moves towards
what the subpolicy actually did. Each characteristic
behaviour therefore gravitates towards one of the cen-
ters where the density of actually occuring behaviours
is high and it moves away from other centers, leaving
them free for other characteristic behaviours. In this
way, the different characteristic behaviour vectors dis-
tribute themselves over the Behaviour Space (fig. 3).
This is analogous, in an important sense, to competi-
tive learning and self-organising maps, which similarly
attempt to self-organize into a set of “characteristic be-
haviour vectors” for clusters of vectors.

3.2 Related Work

HABS was inspired by an existing algorithm, HAS-
SLE (Hierarchical Assignment of Subgoals to Subpoli-
cies LEarning) [4]. Both are based on abstract states,
and have a set of initially non-committed subpolicies
which self-organize to specialize for subtasks indicated
by a high level policy. However, in contrast to HABS,
HASSLE uses abstract states (subgoals) as its actions

for the higher level. This means that the Q-values table
for the higher level grows quadratically with the size of
the abstract state space, because each HASSLE-subgoal
is only used one time in the entire state space. This is
the reason why HABS-subpolicies have behaviours as-
signed to them instead of subgoals.2

Approaches like MAXQ [1] and HEXQ [5] can ex-
ploit the fact that a subtask may need only a selection
of features or states, which is somewhat similar to the
notion of abstract states; but they do not have the same
concept of behaviors as changes in a high level state

space. Another important feature of HABS is that the
rewards for the subpolicies are independent of the global
reward, in contrast with MAXQ, HEXQ and HAM [6].3

Approaches like HAM depend on discrete represen-
tations. HAM works by designing a hierarchy of finite
state machines, which leaves little room for function ap-
proximators. MAXQ requires that a task decomposition
graph is designed, and it is not immediately obvious
how function approximators can be used in the policies.
The same holds for HEXQ which automatically decom-
poses the problem by looking at variables in the state
space that change more or less frequently resulting in a
MAXQ-like subtask graph.

When using the options approach [2], general-
ization can become a problem because all the be-
haviours/options are added to the flat Reinforcement
Learning policy and a function approximator would
grow in the number of outputs and become very large.

All these approaches have a unique subpolicy for
each unique task. HASSLE and HABS, on the
other hand, dynamically assign subpolicies to subtasks.
They require designing a suitable abstract state space,
whereas most other algorithms need complete task de-
compositions to be designed. In a sense, this means
there is a transfer of the problem of designing task de-
compositions to the problem of finding a suitable ab-
stract state space. We argue, however, that this new
problem can in some ways be easier to solve and pro-
vide a way in which much of the hierarchical structure
can be learned, an issue which is hard given the stan-
dard, task decomposition way of thinking. Our novel
approach allows automatic development of large parts of
the hierarchical structure and the exploitation of useful

2Furthermore, this makes HASSLE unsuitable for function ap-
proximators or more than 2 layers.

3Even though MAXQ-Q uses such independent rewards to
some extent in the form of pseudo-rewards.

3



properties of geometric state spaces and corresponding
techniques developed for geometric state spaces, such as
self-organising vector quantisation. On the other hand,
this approach does not have the same theoretical conver-
gence guarantees as MAXQ and the options framework
(yet); it is intended to provide a different, complemen-
tary way of thinking about hierarchical RL that may
eventually lead to algorithms which do have such con-
vergence guarantees.

4 Experiments

The first experiment illustrates that HABS handles
large environments well, the second that HABS can use
a function approximator, in this case a neural network,
for the higher level Q-function on a task where the state
space is too big to use discrete states. Furthermore, the
first experiment compares HABS to flat RL that uses a
table-based representation; the second experiment com-
pares HABS to flat RL using a neural network as its
function approximator.

Both experiments were done in grid worlds (see
fig. 4) with some cells marked as walls, doors (only pro-
viding extra observational clues about small passages)
or drop areas. The agent has the primitive actions
North, East, South, West, Pickup and Drop (similar
to Dietterich’s well-known taxi task [1]). In the first ex-
periment one object was present (at a random location)
which needed to be picked up and dropped at a drop
area. In the second experiment, the agent needed to
clean an environment with many objects. The agent re-
ceived a non-zero high level reward only when an object
was delivered at a drop area.

Both experiments illustrate that HABS can han-
dle problems whose state space have some inherent geo-
metric elements (spatial navigation), but also elements
which are not geometric: objects which can be picked
up and dropped and which can either be or not be in
the agent’s possession.

(a) big maze (b) cleaner

Figure 4: environments: (a) Big Maze with 39×
36 ≈ 1.4 · 103 cells and 50 clusters (colored areas).
Black cells are walls, crosses are doors and the striped
cells are drop zones. (b) Cleaning Task: black dots
are examples of the randomly scattered objects.

4.1 Big Maze Task

For the first experiment, a big maze is used (fig. 4(a)).
The lower level states correspond to observation vectors,
part of which is generated by a sensor grid (fig. 5). Each
of the 32 areas is represented by its average wall/drop
area/door/object4 density, resulting in 4 × 32 values.
To this, features are added for being at a drop area, for
being in the same cell as the object, and for carrying
the object. HABS uses (linear) function approxima-
tors for the lower level subpolicies because they need to
generalize.

1
1 1

1/32/3

2/3

3/8

1/6 4/24

2/241/28 3/28

00

1 0

0

0

0

0

0

0 0

1

0

Figure 5: sensor grid. The density of each of the 24
areas (8 per ring) is a value in the observation vector,
in this example: 〈 1

28
, 2

24
, 3

28
, 4

24
, . . . , 3

8
, 0, 0, 1

6
, . . . , 1,

2

3
, 0, 1

3
, 1, 2

3
, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0〉.

The flat learner uses a Q-values table, and has states
defined by its coordinates. It needs (39× 36)2 ≈ 2 · 106

states to describe the problem, resulting in 1 · 107 Q-
Values. HABS needed to store only n× 50× 50× 2 ≈
5 · 103 × n Q-Values for the higher level and n small
linear function approximators for the lower level, where
n is the number of low-level policies.

The abstract states are tuples consisting of the area
(i.e. cluster of low level states) the agent and the object
are in, and a boolean for having the object, for example
〈3, 1, false〉. The high level Q-function is represented
by a table.

 100

 1000

0 1 ⋅108 2 ⋅108 3 ⋅108 4 ⋅108

av
er

ag
e 

nr
. o

f s
te

ps
 to

 g
oa

l

number of steps

 HABS
flat

Figure 6: big maze experiment results, showing
best performances for HABS and the flat learner
after tuning a range of parameters.

4Actually, in this first experiment (but not the second) a value
of 1 or 0 was given instead of the object density, because the
density would make the object nearly ”invisible” in the outer rings
since there was only one object

4



The convergence time for the flat learner is approx-
imately 3.5 · 108 steps (see fig. 6). HABS solved the
problem in approximately 4 to 5 · 107 steps for a range
of parameters, using 25 subpolicies.

4.2 Cleaning Up Task

The second experiment involved ”cleaning” an environ-
ment (fig. 4(b)) of objects scattered everywhere. The
goal was to collect objects (“trash”) and drop them in
the drop zone. The agent received a reward for every
object deposited on a drop area (making it a continuous
task). Lower level actions were the same as in the first
experiment. Essentially the same sensor grid was used
as in the first experiment. However, the sensor grid was
used without the outermost areas and there were no
doors (so only 3×24 inputs for the subpolicies) and the
object density was used. Information about the number
of objects carried by the agent (maximum capacity was
10), was also included.

For the higher level a coarser version of the sensor
grid was used, with each square in fig. 5 representing 5×
5 cells, and only 2 rings were used (giving 3×16 inputs).
For the higher level Q-values, a multi-layer feedforward
neural network with 5 hidden units was used, and the
usual linear networks for the 10 subpolicies.

The flat learner used the same neural network archi-
tecture as the HABS high level policy. It received the
same state information as HABS, but all combined in
one vector, instead of separate vectors for the lower and
higher level.

Neural networks were used for both HABS and the
flat system because the state space was very large and
generalization was needed (see [3] for examples of this
approach); this allowed us to compare HABS and flat
RL when both use function approximators.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1.0 ⋅ 107 2.0 ⋅ 107 3.0 ⋅ 107 4.0 ⋅ 107

co
lle

ct
ed

 o
bj

ec
ts

 in
 1

00
0 

st
ep

s

number of steps

HABS
flat (learningrate 0.01)
flat (learningrate 0.02)

Figure 7: cleaning experiment with flat learners
(5 hidden units) and HABS (5 hidden units in higher
level) showing performance over a range of parame-
ters (discount, selection temperature).

The flat learner took longer to reach a good per-
formance, but it could (after extensive tuning) reach a
higher performance than HABS (fig. 7). It did so only

rarely, however, as can be seen from the wide spread of
the results for the flat learner. HABS not reaching the
same maximum performance was probably due to the
rather simple abstract state space and/or characteristic
behaviour vector that was used, leading to suboptimal
results.

5 Discussion

HABS outperformed flat Reinforcement Learning by a
large factor, especially for large problems where tabular
value functions are used. HABS is also suitable for the
use of function approximators, such as neural networks,
to approximate the value functions at all levels in its
hierarchy. It was faster – both in time per step and
in steps until convergence – but suboptimal. This is
probably because the characteristic behaviours are too
simple, or the abstract state space doesn’t allow opti-
mal policies. In fact, this is a common characteristic
of hierarchical approaches: optimal behavior given the
hierarchy may be near optimal, but slightly suboptimal
given the space of all policies. However, often this is
a price worth paying for more efficient learning in gen-
eral, and the ability to learn in cases where flat RL is
completely infeasible.

In future work we want to study how well HABS

performs on larger problems, where more layers (to-
gether with function approximators) are needed. It is
also interesting to find methods for improving the iden-
tification of characteristic behaviors.

References

[1] Thomas G. Dietterich, “Hierarchical Reinforcement

Learning with the MAXQ Value Function Decomposi-

tion” (Journal of Artificial Intelligence Research, 2000)

[2] Richard S. Sutton, Doina Precup & Satinder Singh
“Between MDPs and Semi-MDPs: A Framework for

Temporal Abstraction in Reinforcement Learning” (Ar-
tificial Intelligence, 1999)

[3] Richard S. Sutton & Andrew G. Barto “Reinforcement

Learning: An Introduction”. MIT Press, 1998

[4] Bram Bakker & Jürgen Schmidhuber, “Hierarchi-

cal Reinforcement Learning with Subpolicies Special-

izing for Learned Subgoals” Proceedings of the 2nd
IASTED International Conference on Neural Networks
and Computational Intelligence, 2004)

[5] Bernard Hengst, “Discovering Hierarchy in Reinforce-

ment Learning with HEXQ” (In Maching Learning:
Proceedings of the Nineteenth International Conference
on Machine Learning, 2002)

[6] Ronald Parr & Stuart Russell, “Reinforcement learning

with hierarchies of machines” (In Proceedings of Ad-
vances in Neural Information Processing Systems 10.
MIT Press, 1997)

5


