
Model-Based Multi-Objective Reinforcement
Learning

Marco A. Wiering (IEEE Member)
Institute of Artificial Intelligence, University of Groningen, The Netherlands, Email: m.a.wiering@rug.nl

Maikel Withagen
Institute of Artificial Intelligence, University of Groningen, The Netherlands, Email: maikel.withagen@gmail.com

Mădălina M. Drugan
Artificial Intelligence Lab, Vrije Universiteit Brussel, Belgium, Email: mdrugan@vub.ac.be

Abstract—This paper describes a novel multi-objective re-
inforcement learning algorithm. The proposed algorithm first
learns a model of the multi-objective sequential decision making
problem, after which this learned model is used by a multi-
objective dynamic programming method to compute Pareto op-
timal policies. The advantage of this model-based multi-objective
reinforcement learning method is that once an accurate model
has been estimated from the experiences of an agent in some
environment, the dynamic programming method will compute
all Pareto optimal policies. Therefore it is important that the
agent explores the environment in an intelligent way by using
a good exploration strategy. In this paper we have supplied the
agent with two different exploration strategies and compare their
effectiveness in estimating accurate models within a reasonable
amount of time. The experimental results show that our method
with the best exploration strategy is able to quickly learn all
Pareto optimal policies for the Deep Sea Treasure problem.

I. INTRODUCTION

Reinforcement learning (RL) [1], [2] enables an autonomous
agent to learn from its interactions with a particular environ-
ment that emits reward signals to the agent. The objective
of the agent is to learn a policy that obtains the highest
possible discounted cumulative reward intake. In this paper we
consider value-based reinforcement learning, where the agent
estimates a value function denoting the future reward intake
and uses this value function to select actions. Many value-
based reinforcement learning algorithms have been proposed
[2]. These algorithms can be divided into model-free and
model-based reinforcement learning algorithms. Model-free
methods such as Q-learning [3] update the Q-value function
after each interaction with the environment without estimating
a model. Model-based RL methods first learn to estimate
a model of the environment and then use a dynamic pro-
gramming algorithm to compute the policy. The advantage of
model-based RL methods is that experiences of the agent are
used more effectively, leading to faster convergence to optimal
policies.

Although traditionally reinforcement learning algorithms
have been applied solely to single objective decision problems,
during the last decade the amount of research on multi-
objective problems has considerably increased [4], [5]. In
multi-objective reinforcement learning (MORL), the reward
function emits a reward vector instead of a single scalar
reward, and the goal is to learn all Pareto optimal policies.

In this paper we describe a novel model-based reinforcement
learning algorithm for solving multi-objective reinforcement
learning problems. Similar to [6], our multi-objective re-
inforcement learning algorithm considers the Pareto domi-
nance relation to order the policies. The Pareto dominance
relation [7] considers that two policies are incomparable if
one policy is better in one objective and worse in another
objective than the second policy. Intuitively, a policy is better,
or dominates, another policy if it is better (or equal) in all
objectives, and a policy is worse than another policy if it is
worse (or equal) in all objectives. The set of Pareto optimal
policies is the set of policies for which there is no policy that
dominates it.

Related Work. Most state-of-the-art multi-objective re-
inforcement learning algorithms are model-free value-based
reinforcement learning algorithms [4], [5]. The MORL algo-
rithms often use scalarization functions [8] to transform the re-
ward vectors into scalar reward values in order to use standard
reinforcement learning algorithms. Since a single scalarization
function results in a single Pareto optimal policy, the scalarized
MORL methods use multiple scalarization functions that will
converge to a set of Pareto optimal policies. The scalarized
MORL algorithms have difficulties in identifying the complete
set of Pareto optimal policies for non-convex Pareto fronts [5],
[9], but they are efficient for convex Pareto fronts [4], [10].

There are also multi-objective multi-armed bandits algo-
rithms, which are considered reinforcement learning algo-
rithms with a single state used to study the theoretical prop-
erties of reinforcement learning algorithms. The well known
exploration/exploitation trade-off plays a very important role
in this problem [11]. These methods have also used both the
Pareto dominance relation [12] and the scalarization func-
tions [13] to identify the Pareto front. Some multi-objective
reinforcement learning algorithms use the lexicographical or-
der relation [14] that assumes that one objective is more
important than another objective. Finally, the hypervolume
unary indicator has been used [15], [16], which is another
function to transform a set of reward vectors into a single
reward value.

Novel Contributions. Current MORL methods do not make
use of model-based methods that first estimate the model of
the environment and then solve this model. Model-based RL



methods for a single objective have been researched quite
extensively [17], [18] and have been shown to be able to
make effective use of the agent’s experiences. The transi-
tion from standard model-based RL methods to model-based
MORL methods involves different dynamic programming-like
methods that can solve the problem.

Furthermore, MORL is much more challenging than stan-
dard RL, since many policies have to be learned at the same
time during the interaction with the environment. For some
problems the amount of Pareto optimal policies may become
very large, which can make the computational time huge. For
this reason, we consider in this paper deterministic multi-
objective sequential decision making problems, which we
solve with our model-based MORL method. Our method uses
the previously introduced CON-MODP algorithm [19], which
is a multi-objective dynamic programming method that can
solve deterministic multi-objective Markov Decision Processes
(MOMDPs) [19], [20]. Instead of using CON-MODP to solve
an MOMDP, in this paper a model is learned from the
interaction with the environment and CON-MODP uses the
estimated model to compute the Pareto optimal policies.

Although the CON-MODP method is optimal in the sense
that it computes all Pareto optimal policies for deterministic
MOMDPs, the model that is estimated may not be completely
accurate. This is because the agent has to visit all state-action
pairs at least a single time in order to learn the optimal model
underlying the environment. Therefore, we have supplied the
agent with two different exploration strategies which will be
compared on their effectiveness in learning a model that is
useful for computing all Pareto optimal policies. We developed
a least-visited exploration strategy that updates how often
each action in each state has been executed, and then always
chooses the action in a state that has been executed the least
amount of times. This exploration strategy is compared to a
fully randomized exploration strategy that always selects a
random action in each state. Both methods will finally learn
to estimate a perfect model for a deterministic environment,
but it is interesting to see which method learns it faster.

The results show that the proposed model-based MORL
method with the least-visited exploration strategy is very
effective in quickly learning all Pareto optimal policies for the
Deep Sea Treasure problem [5]. Also the use of the random
algorithm leads to finding almost all Pareto optimal policies
within 2000 epochs. The Deep Sea Treasure problem is a
deterministic problem involving two objectives. Furthermore,
it has a discrete state space containing only 110 states.
Therefore, our model-based MORL technique is very effective
for this problem and performs in a near-optimal way.

Outline. In Section II we describe model-based reinforce-
ment learning. Section III explains our model-based MORL
method. In Section IV experimental results are presented for
the Deep Sea Treasure problem. Finally, Section V concludes
with our main findings and some possible future work direc-
tions.

II. MODEL-BASED REINFORCEMENT LEARNING

Reinforcement learning algorithms are very useful to let an
agent learn from its interaction with an environment. Typically,
the RL agent is in some particular state, uses its policy to
select an action, and after executing this action, the agent
makes a transition to a next state and receives a scalar reward
signal. Most often the RL agent is learning without any a-
priori information about the environment, and therefore it has
to learn from trial-and-error which policy can be used to obtain
the highest future cumulative reward intake. In this section we
will explain model-based RL methods that estimate a model
of the environment while interacting with it and use a dynamic
programming-like method to compute the best policy for its
current estimated model.

A. Markov Decision Processes

In reinforcement learning the environment is typically mod-
eled as a Markov Decision Process (MDP). A finite MDP
consists of the following information:
• A set of environmental states S, where st ∈ S is the state

of the environment at time-step t.
• A set of actions A, where at ∈ A is the action executed

by the agent at time-step t.
• A transition function T (s′|s, a) denoting the probability

that the agent finds itself in each possible next state s′

after executing action a in state s.
• A reward function R(s, a) denoting the expected imme-

diate reward obtained by executing action a in state s.
• A discount factor γ, with 0 ≤ γ < 1, which gives more

importance to immediate rewards compared to rewards
obtained in the future.

The goal is to calculate a policy π(·) mapping states to
actions that will maximize the expected sum of discounted
rewards Jπ defined by:

Jπ ≡ E[

∞∑
t=0

γtR(st, π(st))]

B. Dynamic Programming

Each MDP has one or more optimal policies, with optimal
being a maximized expected sum of (discounted) rewards.
To compute an optimal policy, dynamic programming (DP)
methods use value functions to compute the expected utility
of a certain action given a certain state. The value of a
state V π(s) denotes the expected cumulative discounted future
reward when the agent starts in state s and follows policy π:

V π(s) = E[

∞∑
t=0

γtR(st, π(st))|s0 = s, π]

Another useful function is the Q-function, which stores the
expected value of a state-action pair. Qπ(s, a) denotes the
expected cumulative discounted future reward when the agent
starts in state s, takes action a, and then follows policy π:

Qπ(s, a) = E[

∞∑
t=0

γtR(st, π(st))|s0 = s, a0,= a, π]



If the optimal Q-function Q∗ is known, the agent can select
optimal actions by always taking the action with the largest
Q-value in each state. It can be easily shown that the optimal
state value equals the highest state-action value in each state.

Bellman [21] has shown that the optimal state-action value
of a state relates to the optimal state values of the states that
can be reached in a single step:

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s′|s, a)V ∗(s′),

where V ∗(s′) = maxa′ Q
∗(s′, a′). A number of efficient DP

techniques have been developed that solve this set of non-
linear equations. Value iteration for example uses the Bellman
equation iteratively on all state-action pairs in order to compute
an optimal Q-function:

Q(s, a)← R(s, a) + γ
∑
s′

T (s′|s, a)V (s′),

where V (s′) = maxa′ Q(s′, a′). After a finite amount of such
updates for all states and actions, the optimal Q-function Q∗

is computed, resulting in an optimal policy for the MDP.

C. Model-based Reinforcement Learning

One of the biggest disadvantages of dynamic programming
is that the transition and reward functions should be known
a-priori. This means that a human has to design the MDP for a
particular problem, which can be time-consuming, erroneous,
or infeasible for particular problems.

Model-based RL methods learn to estimate the model from
the experiences of the agent interacting with the environment.
Although model-learning can be hard for particular environ-
ments with continuous or huge state spaces, for moderately
sized problems it can be done efficiently. Furthermore, some
comparisons have shown model-based RL to be much more
effective than model-free methods such as Q-learning [18].
This is why we want to use model-based RL for solving multi-
objective MDPs which are usually difficult to solve due to the
existence of many Pareto optimal policies.

Model-based RL methods learn the transition and reward
models of the environment by making use of counters that are
used in a maximum-likelihood way to compute approximate
transition probabilities and average rewards. Each time the
agent selects action a in state s and makes a transition to state
s′, the transition model’s counter values C(s, a) and C(s, a, s′)
are increased by one. In a similar fashion, the obtained reward
r is added to the value RT (s, a) which computes the sum of
all rewards obtained by selecting action a in state s. Finally,
the maximum likelihood model of the MDP is computed as:

T ′(s′|s, a) =
C(s, a, s′)

C(s, a)
and R′(s, a) =

RT (s, a)

C(s, a)

At each moment in time, the estimated model can be
used by a dynamic programming method to compute a new
policy. Some algorithms such as prioritized sweeping have
been proposed [17] which use a smart strategy to re-compute
the Q-function with much less computational effort.

III. MODEL-BASED MULTI-OBJECTIVE REINFORCEMENT
LEARNING

In multi-objective Markov decision processes (MOMDPs),
instead of the usual scalar reward function R(s, a), a re-
ward vector ~R(s, a) is used. The vector ~R(s, a) consists
of l dimensions or components representing the different
objectives. This means that a reward function ~R(s, a) =
(R1(s, a), . . . Rl(s, a)) is given in an MOMDP that returns
the expected reward vector for each state-action pair.

The reward vector in MOMDPs has multiple components,
and therefore conflicts can arise between them. For example,
it may be possible that an agent is able to compute a policy
for a very nice sight-seeing tour, but that the cost of this
tour is larger than the cost of other possible (less nice)
tours. Therefore, the algorithms have to deal with several
trade-offs and compute all policies that are not dominated by
another policy. This set of policies is called the Pareto efficient
(optimal) set. When given the set of Pareto optimal policies,
we can let a user or autonomous agent select one of them
given their preferences at that time.

To solve MOMDPs we can use particular multi-objective
dynamic programming (MODP) algorithms that compute the
Pareto front of optimal policies and corresponding value func-
tions. These MODP methods are based on value iteration [20]
or policy iteration [22], [23] and extend conventional dynamic
programming algorithms by computing sets of policies and
value functions.

A. Multi-objective Dynamic Programming

The solution of most multi-objective DP methods is to keep
track of all non-dominated (or Pareto efficient) value functions
and policies. The multi-objective value function has different
cumulative reward components or values and this is denoted
by a value function V i(s) = (V i1 (s), V i2 (s), . . . , V il (s)), where
V ix denotes the discounted cumulative reward intake of reward
component x of policy i.

The dominance function � works on two value vectors for
a state s as follows:

V i(s) � V j(s)⇔ ∃x;V ix(s) > V jx (s) ∧ ¬∃y;V iy (s) < V jy (s)

So a value vector of policy i dominates a value vector of
policy j if policy i has a higher value on some component x
and does not have a lower value on any other component.

We will use V O to denote the set of value functions (and
policies) that are not dominated:

V O(s) = {V i(s)|V i(s) is not dominated by a policy in s}

Furthermore, V D is used for denoting the set of value
functions computed at some given moment that may include
dominated ones.

The same is done for the Q-function, thus the algorithm
keeps track of a set QO that denotes the set of non-dominated
Q-functions. Here the Q-functions should not be dominated
by another Q-vector for the same state-action pair. Thus:

QO(s, a) = {Qi(s, a)|Qi(s, a) is not dominated in s, a}



The non-dominated operator ND tells whether a policy i is
not dominated in the state s by any value function vector of
the set of value functions V D(s):

ND(V i(s), V D(s))⇔ ¬∃V j(s) ∈ V D(s) ;V j(s) � V i(s)

Analogous definitions hold for Q-vector functions.

B. CON-MODP

For our novel model-based MORL algorithm, we combine
model-building methods with a multi-objective dynamic pro-
gramming method. In this paper we will make use of the
CON-MODP algorithm [19] that focuses on only computing
stationary deterministic Pareto optimal policies. This makes
this method more effective than previous dynamic program-
ming methods for solving MOMDPs, although the drawback
is that CON-MODP assumes deterministic problems.

With the previous formulations it is now possible to enhance
dynamic programming to compute non-dominated value func-
tion sets. For simplicity we restrict ourselves to deterministic
MDPs. We define the Pareto optimal operator PO as:

PO(QD(s, a)) = {Qi(s, a)|Qi(s, a) ∈ QD(s, a) ∧
ND(Qi(s, a), QD(s, a))}

Furthermore, we construct the dynamic programming operator
as follows where ⊕ denotes an addition operator working on
sets (and vectors) and s′ is the next state:

DP (QD(s, a)) = (~R(s, a)⊕ γV O(s′)|P (s, a, s′) = 1.0)

Here V O(s) is computed as:

V O(s) = PO(∪aQD(s, a))

Note that this dynamic programming operator is defined for
deterministic environments (therefore P (s, a, s′) = 1 for
some s′). For stochastic environments, this operator should be
changed, but this could lead to a huge increase in the number
of Pareto optimal policies.

It is known that in infinite horizon discounted Markov
decision processes, there is always a single optimal value
function and one or more stationary deterministic policies
belonging to it. The CON-MODP algorithm exploits this fact
and uses a consistency operator that eliminates most non-
stationary policies and reevaluates non-stationary (or incon-
sistent) policies that are only inconsistent in a single state that
is being expanded. Dynamic programming methods usually
expand each state and this could sometimes lead to temporally
inconsistent policies where different actions are selected in the
same state at different time-steps.

CON-MODP detects when a policy is made inconsistent
due to the last lookahead update step, and then changes it to a
consistent policy by forcing the last action in the current state
that is evaluated all the times this state will be visited. In this
way, the policy is consistent again.

Because the sequence of actions from which the value func-
tion has been computed is changed, policy evaluation is used
by CON-MODP to compute the true value of the consistent

policy. The CON-MODP algorithm uses the operators CON ,
PO, and DP . The CON operator may make the policy π
consistent (in case it was not) and recomputes its Q-value
vector as:

CON(Qπ(s, a)) = π with Qπ(s, a), if π(s) = a

= π′ with Eval(π′), if π(s) 6= a is the only

inconsistency, and ND(Qπ(s, a), QO(s, a))

where π′(s) = a and π′(s′) = π(s′) ∀s′ 6= s

= ∅, otherwise

Here Eval(π′) means that policy π′ is evaluated using
policy evaluation for the same number of steps as the original
policy π is computed. Evaluation is only done if the original
inconsistent policy was not already dominated. If the previous
policy was dominated, the policy can be discarded anyway,
since its values will never be larger than those of the previous
policy.

We also let CON work immediately on sets of Q-functions
and policies. The CON-MODP algorithm is now defined as:

QO∗ = (PO(CON(DP (Q0))))∗

Where X(·)∗ means that operator X is repeated until conver-
gence, and Q0 is the initial Q-vector containing for example
only zero-values. This algorithm is able to compute all station-
ary Pareto optimal policies and corresponding value functions
for deterministic finite MOMDPs.

C. Exploration Strategies

We have developed two different exploration policies to
obtain experiences by interacting with the environment from
which the model is learned. The simplest exploration strategy
is the Random-exploration approach, where actions are taken
randomly and the findings are used to update the model. This
will finally converge to a perfect environmental model, but
faster methods exist. The other exploration strategy we used,
is a Least-Visited approach, which chooses the actions to take
according to the times it has explored a certain state-action
combination.

1) Least-Visited exploration: As stated before, Least-
Visited exploration chooses the actions to take according to
the times it has taken those actions before. More specifically,
it keeps track of the actions in each state and counts the times
it has explored them. This gives a value for each possible
action in each possible state. Action selection is then done by
choosing the action with the lowest counter. After an action is
taken, its corresponding state-action counter is incremented. If
there are multiple actions with the lowest state-action counter
value, the last equal action is chosen.

2) Random-exploration: In Random-exploration, actions
are chosen completely randomly. The agent starts at its starting
state and takes randomly chosen actions until it lands in a
final state, while observing and updating rewards and transition
probabilities in its model.



IV. EXPERIMENTAL RESULTS

In order to test our approach, we have used a multi-
objective reinforcement learning problem known as the “Deep
Sea Treasure” [5]. The Deep Sea Treasure environment states
an episodic task where an agent has to explore the sea
bottom for treasures. The world consists of a 10×11 grid
with 10 goal states. The goal state value is increased as the
location is further away from the starting state. There are four
deterministic actions possible; Go Up, Go Down, Go Left, Go
Right. The two objectives are to minimize the number of steps
taken before reaching a goal state, and maximizing the goal
reward. The agent receives a reward of -1 for every step taken
(the first objective). If a goal state is reached, the goal reward
is the value of the treasure (the second objective). The fastest
path to each goal state is part of the Pareto optimal set, so the
Pareto front exists of 10 policies. The distribution of the goal
state values causes an entirely concave Pareto front. Figure 1
shows an illustration of the problem.

Fig. 1. A visual representation of the Deep Sea Treasure world. The starting
state is shown as S and the numbers in the cells represent the goal state
values.

Set-up We will compare our model-based MORL method
with the two exploration strategies to Scalarized Q-Learning
[9]. This method uses scalarization functions in order to
transform the multi-objective Q-values into a single Q-value
and then selects actions with an ε-greedy exploration strategy.
Because this approach works with linear scalarization func-
tions, it can only find Pareto optimal policies in a convex
Pareto front. Therefore, in the Deep Sea Treasure world, it
can only find the (-1,1) and the (-19.124) solutions. We have
supplied this method with scalarization weights of (1, 0) and
(0, 1) for the two objectives.

Our results are collected and averaged over 10 trials of
each 2000 epochs. For the Scalarized Q-learning algorithm,
the learning rate α = 0.1, γ = 0.9 and ε = 0.1. For our
model-based MORL methods we set γ = 0.9 as well. The
maximum amount of steps to find a solution was 1000.

A. Results

We first present the cardinality results, which are the number
of Pareto optimal policies found after a specific number of

epochs. For the three methods we use a greedy exploration
strategy to compute the Pareto optimal policies after each 10
epochs. As mentioned before, the maximal number of Pareto
optimal policies is 10 for the Deep Sea Treasure problem.
Table I shows results after 200, 500, 1000, and 2000 epochs.
The table clearly shows that our model-based method with
the random or least-visited exploration strategy significantly
outperforms the scalarized Q-learning algorithm. Furthermore,
the results also show that our model-based MORL method
with the least-visited exploration strategy finds all Pareto
optimal solutions within 2000 epochs.

TABLE I
The number of different Pareto optimal policies found during the learning

process and the standard deviations.

Epochs Q-learning Random Least-visited
200 1.1 ± 0.3 6.6 ± 0.8 7.8 ± 0.8
500 1.2 ± 0.4 8.3 ± 0.8 9.4 ± 0.5
1000 1.8 ± 0.4 9.1 ± 0.7 9.4 ± 0.5
2000 2.0 ± 0.0 9.6 ± 0.5 10.0 ± 0.0

In Figure 2 we also show the entire learning performance
of the three methods. The model-based MORL methods learn
to find a number of Pareto optimal policies much faster and
will finally converge to having learned all 10 of them.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

11

Iterations

C
a
rd

in
a
lit

y

 

 

Least Visited

Random

Q−Learning

Fig. 2. Learning performance on the Deep Sea Treasure problem measured
in the number of found Pareto optimal policies.

We also show the results of the three methods using the
hypervolume assessment metric. The hypervolume gives the
volume between the summed rewards obtained by the Pareto
optimal policies and the reference point (-25,0). Table II shows
that the hypervolume is maximized after 2000 epochs by the
model-based MORL method with the least-visited exploration
strategy.

The hypervolume has as maximal value 1155. It is inter-
esting to see that the hypervolume of our best method after
200 epochs is already larger than the one of the scalarized
Q-learning algorithm.

We finally show the learning performance as measured by
the hypervolume assessment function in Figure 3.



TABLE II
The values of the Hypervolume unary indicator during the learning process

and the standard deviations.

Epochs Q-learning Random Least-visited
200 98 ± 2331 686 ± 264 852 ± 164
500 172 ± 311 890 ± 211 1101 ± 90
1000 614 ± 311 971 ± 183 1101 ± 90
2000 762 ± 0 1055 ± 141 1155 ± 0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

Iterations

H
y
p

e
rv

o
lu

m
e

 

 

Least Visited

Random

Q−Learning

Fig. 3. Learning performance on the Deep Sea Treasure problem measured
using the hypervolume unary indicator.

B. Discussion

The two policies that the scalarized Q-learning algorithm
finds are the two ends of the Pareto front. This confirms the
results obtained in [9]. The model-based MORL methods will
both converge to learning all Pareto optimal policies. If every
state-action pair is visited at least one time, the CON-MODP
algorithm is able to compute all Pareto optimal solutions.
Some other methods in MORL literature have been used for
the Deep Sea Treasure problem, but none of them was as
effective as our method. Finally, we want to note that a single
call of CON-MODP does not cost more than one second for
this problem.

V. CONCLUSION AND FUTURE WORK

This paper described a model-based reinforcement learning
algorithm for solving deterministic multi-objective reinforce-
ment learning problems. The method learns a model of the
environment while the agent is interacting with it, and uses a
previously introduced multi-objective dynamic programming
method to compute the set of Pareto optimal policies. The
results on the Deep Sea Treasure problem have shown that
the proposed method is near-optimal for this problem. It finds
all Pareto optimal policies within a short learning period. The
only way to improve on our method would be to develop a
smarter exploration method.

Although the current results are promising, in future work
we intend to use multi-objective dynamic programming meth-
ods that can handle stochastic environments. Although this
may lead to a slow algorithm, the structure of the problem
may be exploited to make such algorithms faster.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT press, Cambridge MA, A Bradford Book, 1998.

[2] M. Wiering and M. van Otterlo, Reinforcement Learning: State-of-the-
art. Springer, 2012.

[3] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, England, 1989.

[4] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey of
multi-objective sequential decision-making,” J. Artif. Intell. Res. (JAIR),
vol. 48, pp. 67–113, 2013.

[5] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker,
“Empirical evaluation methods for multiobjective reinforcement learning
algorithms,” Machine Learning, vol. 84, no. 1-2, pp. 51–80, 2011.

[6] K. van Moffaert, M. M. Drugan, and A. Nowe, “Learning sets of Pareto
optimal policies,” in Thirteenth International Conference on Autonomous
Agents and Multiagent Systems - Adaptive Learning Agents Workshop
(ALA), 2014.

[7] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. da Fonseca,
“Performance assessment of multiobjective optimizers: An analysis and
review,” IEEE T. on Evol. Comput., vol. 7, pp. 117–132, 2003.

[8] G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Opti-
mization. Springer, 2008.

[9] K. V. Moffaert, M. M. Drugan, and A. Nowé, “Scalarized multi-objective
reinforcement learning: Novel design techniques,” in Proceedings of
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL),
2013, pp. 191–199.

[10] D. J. Lizotte, M. Bowling, and S. A. Murphy, “Efficient reinforcement
learning with multiple reward functions for randomized clinical trial
analysis,” in Proceedings of the Twenty-Seventh International Confer-
ence on Machine Learning (ICML), 2010.

[11] S. Q. Yahyaa, M. M. Drugan, and B. Manderick, “Exploration vs
exploitation in the multi-objective multi-armed bandit problem,” in
Proceedings of International Joint Conference of Neural Networks
(IJCNN), 2014.

[12] M. M. Drugan and A. Nowe, “Designing multi-objective multi-armed
bandits: a study,” in Proceedings of International Joint Conference of
Neural Networks (IJCNN), 2013.

[13] ——, “Scalarization based Pareto optimal set of arms identification al-
gorithms,” in Proc of International Joint Conference on Neural Networks
(IJCNN). IEEE, 2014.

[14] Z. Gabor, Z. Kalmar, and C. Szepesvari, “Multi-criteria reinforcement
learning,” in Proceedings of the Fifteenth International Conference on
Machine Learning, M. K. P. Inc., Ed., 1998.

[15] K. van Moffaert, M. M. Drugan, and A. Nowe, “Hypervolume-based
multi-objective reinforcement learning,” in Proc of Evolutionary Multi-
objective Optimization (EMO). Springer, 2013.

[16] W. Wang and M. Sebag, “Hypervolume indicator and dominance reward
based multi-objective Monte-Carlo tree search,” Machine Learning,
vol. 92, no. 2-3, pp. 403–429, 2013.

[17] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement
learning with less data and less time,” Machine Learning, vol. 13, pp.
103–130, 1993.

[18] M. A. Wiering, “Explorations in efficient reinforcement learning,” Ph.D.
dissertation, University of Amsterdam, February 1999.

[19] M. A. Wiering and E. D. de Jong, “Computing optimal stationary
policies for multi-objective markov decision processes,” in Proc of
Approximate Dynamic Programming and Reinforcement Learning (AD-
PRL). IEEE, 2007, pp. 158–165.

[20] D. White, “Multi-objective infinite-horizon discounted Markov decision
processes,” Journal of Mathematical Analysis and Applications, vol. 89,
pp. 639–647, 1982.

[21] R. Bellman, Dynamic Programming. Princeton University Press, 1957.
[22] L. Thomas, “Constrained Markov decision processes as multi-objective

problems,” in Multi-Objective Decision Making, S. French, L. Thomas,
R. Hartley, and D. White, Eds. Academic Press, 1983, pp. 77–94.

[23] N. Furukawa, “Vector valued Markovian decision processes within
countable state space,” in Recent Developments in Markov Decision
Processes, R. Hartley, L. Thomas, and D. White, Eds. Academic Press,
New York, 1980, pp. 205–223.


