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Abstract—In deep learning, data augmentation is important
to increase the amount of training images to obtain higher
classification accuracies. Most data-augmentation methods adopt
the use of the following techniques: cropping, mirroring, color
casting, scaling and rotation for creating additional training
images. In this paper, we propose a novel data-augmentation
method that transforms an image into a new image containing
multiple rotated copies of the original image in the operational
classification stage. The proposed method creates a grid of n×n
cells, in which each cell contains a different randomly rotated
image and introduces a natural background in the newly created
image. This algorithm is used for creating new training and
testing images, and enhances the amount of information in an
image. For the experiments, we created a novel dataset with
aerial images of cows and natural scene backgrounds using
an unmanned aerial vehicle, resulting in a binary classification
problem. To classify the images, we used a convolutional neural
network (CNN) architecture and compared two loss functions
(Hinge loss and cross-entropy loss). Additionally, we compare
the CNN to classical feature-based techniques combined with a
k-nearest neighbor classifier or a support vector machine. The
results show that the pre-trained CNN with our proposed data-
augmentation technique yields significantly higher accuracies
than all other approaches.

Keywords—Data Augmentation, Convolutional Neural Net-
works, Classical Feature Descriptors, Supervised Learning, and
Aerial Image Classification

I. INTRODUCTION

The use of unmanned aerial vehicles (UAV) has a lot of
potential for precision agriculture as well as for livestock
monitoring. A previous study [1] recommended that the com-
bination between precision agriculture and remote sensing and
UAV methods can be very beneficial for agricultural purposes.
Other research [2]–[4] has examined this area of research
with the use of UAVs for different tasks. A novel area of
research is recognizing aerial imagery with the use of deep
neural networks. The study in [5] demonstrates that the use of
a convolutional neural network for ground-to-aerial localiza-
tion yielded a good performance on some datasets. Another
interesting study is the use of deep reinforcement learning for
active localization of cows [6]. Next to the task of localization,
there exists some recent research on the use of UAVs for

motion detection and tracking of objects. The study in [7]
analysed the merits of the use of optical flow with a coarse
segmentation approach for aerial motion detection of animals
from several videos. Furthermore, in [8] the authors extended
the idea of using UAVs with object detection and tracking
algorithms for monitoring wildlife animals. Another approach
is detection and tracking of humans from UAV images using
local feature extractors and support vector machines [9].

The idea of data augmentation (DA) has been successfully
applied to UAV data as well. In [10], the authors studied
augmentation of drone sounds using a publicly available
dataset that contains several real-life environmental sounds.
Furthermore, the research in [11] explored the use of a DA
method for training a deep learning algorithm for recognizing
gaits. Another interesting use of DA is the development of a
model for 3D pose estimation using motion capture data [12].

Most of the previous data-augmentation techniques trans-
form a training image to multiple training images using tech-
niques such as: cropping, mirroring, color casting, scaling and
rotation. In this paper, we propose a novel data-augmentation
method that transforms a single input image to another image
containing n × n rotated copies of the original image. This
method enhances the amount of information in an image,
especially if the image contains a single object like in our
study (cow or non-cow background). The aim of this paper
is to assess if this novel data-augmentation method leads to
higher classification accuracies when combined with different
machine learning techniques such as convolutional neural
networks or classical feature descriptors on a novel dataset
containing aerial images of animals.

Contributions: This paper proposes a novel data-
augmentation technique that transforms a train or test image
into a novel single image with multiple randomly rotated
copies of the input image. To combine the different rotated
images, the proposed method puts them in a grid and adds
realistic background pixels to glue them together. This ap-
proach presents some merits: 1) It provides more informative
images which may aid to yield higher accuracies, 2) It does not
require an increase in the number of training images compared
to other conventional data-augmentation methods, and 3) The978-1-5090-5795-5/17/$31.00 c© 2017 European Union



method can also be used to perform data augmentation on test
images in the operational stage. The utility of the proposed
approach is evaluated by using a CNN which is derived
from the original GoogleNet [13] architecture by keeping
only several inception modules. For training this CNN we
evaluate if there are differences in using the cross-entropy
loss function (softmax classifier) compared to using a Hinge
loss function. Furthermore, we compared the CNNs to several
classical computer vision techniques using original images
and data-augmented images. All techniques were used to
investigate the recognition accuracies of aerial images of cows
in natural scenes, for which we created our own dataset with
an unmanned aerial vehicle.

The results show that using fine-tuned CNN models with the
proposed data-augmentation technique leads to significantly
better results than all other approaches.

Paper Outline: Section II describes the used UAV dataset
and the proposed data-augmentation technique. Section III
discusses the methods used for classifying the aerial imagery.
The experimental results of the derived CNN and the classical
techniques are reported in Section IV. Finally, the conclusion
is presented in Section V.

II. DATASET AND DATA AUGMENTATION

A. Dataset Collection

We employed the DJI Phantom 3 Advanced Unmanned
Aerial Vehicle (UAV) for collecting video frames of cows and
natural backgrounds at different positions and orientations. An
illustration of the UAV is shown in Figure 1.

Fig. 1. A photo of the UAV used for this study

We applied manual cut-outs with a fixed size of 100× 100
pixels to obtain positive samples of images that contain a
cow, while we employed an automatic extraction of negative
samples which have no presence of cows in the image. We
flew the drone three times over different fields containing cows
in order to obtain different samples. A summary of the three
subsets of the obtained images with the amount of positive and
negative samples, the video streaming time, and the amount
of unique objects is reported in Table I. The unique objects
denote cows that are recorded at different time frames and
therefore have different appearances in time. Figure 2 shows
some samples of images of our aerial dataset.

B. Cross-Set Splits

We used cross-set splits whereby each recorded subset is
considered as a separate fold. One subset is used for testing
and the other subsets are used for the training set. This process
is repeated for the three available subsets. The classical feature
descriptors combined with supervised learning algorithms and

Fig. 2. Sample images of the aerial dataset, showing the presence of cow
(positive samples) and non-cow (negative samples). Please note that non-cow
images are also diverse.

the derived CNN technique are employed for determining the
existence of cows in the natural images. We maintain the same
dataset splits for all the experiments using the CNN and the
feature extraction techniques. The classical techniques employ
two image resolutions; 100 × 100 and 250 × 250 pixels, and
for the experiments carried out with the derived CNN we only
used 250× 250 pixels.

Algorithm 1 Multi-Orientation Data-Augmentation Algorithm
Input : Given images Ii(x, y) from an input directory, where
x, y denote the pixel row and column, and a grid size of n×n.

Output : The data-augmentated versions of the images.
1: procedure C ONSTRUCT A FILELIST WITH N IMAGES

FROM AN INPUT DIRECTORY.
2: for each image Ii, i ∈ N do
3: Initialize the total number of cells n× n =M
4: for each image Ii, for each cell m ∈ M do
5: Define the size of the image resolution Ii.
6: Compute a pad-size Iq = ceil(Ii)/2.
7: Compute a pad-array Ip using a pixel repli-

cation padding technique, given Ii, Iq , pad value set to
’replicate’ and the pad direction set to ’both’.

8: Rotate Ip with a random angle within the
bound [1, 180o], this yields a new image Ir.

9: Adjust the image Ir to Ia such that undesired
background introduced during rotation is filled with arti-
ficial pixels from the nearest-neighbor pixels.

10: Concatenate each Ia into M cells.
11: Ic = [Ia(m), .., Ia(m+ 3); ...; ...; .., Ia(M)]
12: end for
13: Convert the cell structure of Ic into a matrix Im.
14: Resize the image Im to a size 250× 250 pixels.
15: Store each Im(i) into an output directory
16: end for
17: end procedure

C. Multi-Orientation Data Augmentation

We propose a new offline data-augmentation (OFL-DA)
algorithm that transforms an input image to a new single
image containing multiple randomly rotated versions put in
n × n cells. The use of a larger value for n leads to a new
image containing more different poses. The value of n was
set to 4 in the experiments, because using higher values of
n resulted in making the cow images look very small. An
illustration of the proposed data-augmentation method and
the overall classification system using the CNN is shown in



TABLE I
STATISTICS OF VIDEO RECORDS AND ANNOTATED DATASETS

Video ID Time (s) Unique Objects Positive Samples Negative Samples
1 Subset 1 11 10 37 225
2 Subset 2 43 82 475 2094
3 Subset 3 22 10 50 1100

Fig. 3. Block diagram illustrating the proposed method and overall system using the CNN. The column (’:’) symbol between different layers represents the
connections of neural network layers within the derived CNN architecture. The data-augmented image on the top-left is a multi-orientation image without
padding and the image on the top-right is the resulting multi-orientation image with padding.

Figure 3. The pseudo-code in Algorithm 1 explains the various
transformations of the original image to obtain the multi-
orientation image.

After inserting the images in the newly created image,
background pixels are added to glue them together. This is
done by using the nearest-neighbor pixels around the edges of
the images. We will also perform experiments with OFL-DA
without rotations (OFL-DA-NR), but we do this only for the
classical feature-based techniques.

III. IMAGE RECOGNITION METHODS

A. Three Inception Module CNN Architecture

This architecture is directly derived from the famous
GoogleNet architecture as proposed in [13]. We eliminated
all the layers after the inception 4a module, except for layers
which lead to the first classifier. We do this because the
problem under study is more of a binary classification problem
and the dataset is quite small. We want to know how the
reduced architecture can handle this problem compared to the
original GoogleNet. Another modification made with respect
to the original GoogleNet architecture is the use of Nesterov’s
Accelerated Gradient Descent (NAGD) rather than using the
conventional stochastic gradient descent (SGD) to update the
weights in the deep neural network. The NAGD optimization

update rule [14] is described in equations 1 and 2:

ui+1 = µui − αL∇L (Wi + µui) (1)

Wi+1 =Wi + ui+1 (2)

where L ∈ {Lh, Lc} is the loss function, µ is the momentum
value, αL is the learning rate, ui is the momentum variable,
∇ is the rate of change in L, i is the iteration number and
Wi denote the learnable weights. We employed randomly
initalized weights for the scratch CNN and pretrained weights
from the ImageNet dataset for the fine-tuned CNN (GoogleNet
architecture). In addition to our modification, we remark that
the original GoogleNet (in Caffe framework) uses a simple
online data-augmentation that involves cropping (with a de-
fault crop size of 224 × 224 pixels), i.e. cutting out several
patches from an input image at 5 positions (as five in a dice),
and additionally flipping (horizontal reflection) to obtain more
samples. During training of the CNN model, it automatically
flips each cropped image to double the effective dataset size.
The cropping means an act of extracting some portions from
an input image. In our customized CNNs, we considered the
original and two additional crop sizes: 125×125 and 250×250
pixels. The crop size of 250×250 implies the single actual size
of the input image. Furthermore, we evaluated flip and non-flip
conditions. All the input images to the CNN have image sizes



TABLE II
THREE INCEPTION MODULE CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE

Layer Type Patch Size / Stride Output Size Depth Number of Convolutional Filters (6 possible conv) Blob Parameters
Conv 1 7× 7/2 112× 112× 64 1 16.06M
Max Pool 1 3× 3/2 56× 56× 64 0 4.01M
Conv 2 3× 3/2 56× 56× 192 2 0, 64, 192, 0, 0, 0 12.04M
Max Pool 2 3× 3/2 28× 28× 192 0 3.01M
Inception 3a 28× 28× 256 2 64, 96, 128, 16, 32, 32 4.01M
Inception 3b 28× 28× 480 2 128, 124, 192, 32, 96, 64 7.53M
Max Pool 3 3× 3/2 14× 14× 480 0 1.88M
Inception 4a 14× 14× 512 2 192, 96, 208, 16, 48, 64 2.01M
Average Pool 1 4× 4× 512 0 163.84K
Top Conv-1 1× 1/1 4× 4× 128 1 40.96K
FC 1 / 70% Dropout layer 1× 1× 1024 1 / 0 20.48K
FC 2 1× 1× 2 1 0.04K
Cross Entropy (Softmax) / Hinge Loss 1× 1× 2 0

of 250× 250 pixels. For the OFL-DA image, each cell of the
4×4 grid contains a copy of the input image in a reduced size
and the method fills up empty spaces with nearest neighbor
pixels.

The derived three inception module CNN architecture is
described in Table II. This architecture involves the use of
three inception modules that allow the concatenation of filters
of different dimensions and sizes into a single new filter [15].
In each inception module, there exist six convolution layers
and one pooling layer. Moreover, there exist several rectifiers
(ReLUs) which are placed immediately after the convolutional
and fully-connected layers. Furthermore, there exist four pool-
ing layers excluding those within the inception modules, two
bottom convolutional layers and one top convolutional layer
which comes after the average pooling layer. We use one top-
1 loss function which employs either the Hinge loss or the
cross-entropy loss (for the Softmax classifier). The L1-norm
Hinge loss Lh used in our study can be defined as:

Lh(xi) =
1

N

N∑
i=1

K∑
k=1

(
max

(
0, 1− yki zk(xi)

))
(3)

where yki = {1,−1}, yki = 1 if xi belongs to the target class of
the k-th class output unit, and yki = −1 if xi does not belong
to the target class. The variable N denotes the total number
of training images in a batch. K accounts for the number of
class labels and zk = xTw is the final activation of the output
units. Here, x ∈ RD denote the D-dimensional features of the
previous hidden layer, and the learnable weights of the last
layer are w ∈ RD×K .
The Cross-Entropy Loss Lc used in our study is defined as:

Lc(xi) = −
1

N

N∑
i=1

log

(
exp(zd(xi))∑K
k=1 exp(zk(xi))

)
(4)

Where d denotes the target class. The fraction within the
log accounts for the softmax activation function [16], which
computes the probability distribution of the classes in a multi-
class classification problem. Note that in this study we are
dealing with a binary classification problem and we use 2
output units in the CNN.

The CNN under study consists of two fully connected
(FC) layers: FC 1 with a corresponding ReLU computes the
hidden unit activations, which is immediately followed by a

regularization dropout of 0.7, and the second FC 2 contains
the output neurons which represent the negative and positive
class. The working operations of the CNN are well explained
in the paper [13].

1) CNN Experimental Setup: All experiments were run on
the Caffe deep learning framework on a Ge-Force GTX 960
GPU model. The used experimental parameters are as follows:
training display interval is set to 40, average loss is set to 40,
learning rate is set to 0.001, learning policy is set to step,
the step size is set to 4000 iterations, power is set to 0.5,
gamma is set to 0.1, the momentum value is set to 0.9, weight
decay is set to 0.0002, and maximum iteration is set to 10000,
which generates a snapshot model after every 500 iterations
(which represent an epoch). This resulted in 20 epochs for
the entire training process. The mentioned parameters were
not altered during all the experiments for the different model
configurations. The training images from the combination of
any of the two subsets as reported in Table I, is further split
into the ratio 80% for training and 20% for validation. We
employed a training batch size set to 20 and testing batch size
set to 5 for all experiments, but with different test iterations.
The altered parameters for the three subsets of the aerial
dataset used with their corresponding splits are described in
Table III.

TABLE III
CNN PARAMETERS AND DATASET SPLIT INFORMATION

Parameters Subset 1 Subset 2 Subset 3
Test Images 262(∼ 7%) 2569(∼ 65%) 1150(∼ 29%)
Training Images 2975(∼ 74%) 1129(∼ 28%) 2264(∼ 57%)
Validation Images 744(∼ 19%) 283(∼ 7%) 567(∼ 14%)
Total Images 3981(100%) 3981(100%) 3981(100%)
Solver Test Iteration (Val/Train) 148 56 113
Test Iterations for Evaluation 52 514 230

We first performed experiments with both the original and
our derived CNN trained from scratch on the original images.
The preliminary results show that our proposed architecture
requires less memory usage and a decrease in training com-
puting time. This is summarized in Table IV. Additionally, our
architecture obtains a similar level of performance compared
to the original CNN.



TABLE IV
PRELIMINARY EXPERIMENT USING ORIGINAL AND OUR PROPOSED CNN

ON THREE CROSS SPLITS OF THE AERIAL IMAGE DATASET

Evaluation/Methods Derived CNN, NAGD Original CNN, NAGD
Time (min) 25.1 ≤ t ≤ 26.8 63.2 ≤ t ≤ 69.1
Memory Usage (MB) 752 1079
Average Validation % 99.94 99.94
Average Test % 97.87 97.71
Time Improvement % 61.3 (decrease) -

B. Classical Features Combined with Supervised Learning
Algorithms

In this subsection, we describe the three feature extraction
techniques which we use and combine with the k-nearest
neighbor classifier and the support vector machine (SVM) with
a linear kernel or a radial basis function (RBF) kernel.

1) Color Histogram: The color histogram (Color-Hist) is
a feature extraction technique that analyses the pixel color
values within an image. For this, the pixel color values of an
image which exist as RGB (Red, Green and Blue) are first
transformed to HSV (Hue, Saturation, and Value). After that,
the value of each pixel in a channel is put in a histogram
consisting of different bins. In the experiments, only the
saturation channel with a bin size of 32 is used, because it
obtained the best performance in preliminary experiments. The
resulting feature vector containing 32 values is given to the
supervised learning algorithms.

2) Histogram of Oriented Gradients: The histogram of
oriented gradients (HOG) [17] feature descriptor analyses
patches (local regions) from an image. Then histograms are
constructed based on the occurrences of orientation gradients
within the patches. The HOG descriptor can process gray or
color image information. In this study, we only considered
the gray option. The procedure for constructing the HOG is
as follows: convert the color images of the aerial imagery
into grayscale, then compute the gradients with two gradient
kernels to compute the gradient values for each pixel from the
grayscale image. The gradients for each pixel within a small
block (cell) are put in bins [18], [19], where each bin defines
a specific orientation range. The following parameters were
used, because they worked best in preliminary experiments: a
grid of 2 × 2 blocks is used, where each block is split into
2 × 2 cells. The number of orientation bins is set to 4. This
results in a feature dimension size of 64. This feature vector
is fed as input to the supervised learning algorithms.

3) The Combination of HOG and the Color Histogram: In
this technique, the features from both the HOG and Color-Hist
are combined to form the HOG-Color-Hist feature descriptor.
The features from both HOG and Color-Hist are first computed
separately. The optimal parameters used for HOG in the
combined feature are different from the HOG descriptor alone,
because they gave slightly better results in the preliminary
experiments. The HOG parameters used in this technique use
32×32 pixels per cell, for which we used 9 cells in total from
100 × 100 pixel images with a single block. The number of
orientation bins is set to 4 and the final feature dimensionality

is 36. We used the hue channel from the color-histogram with
32 bins. These features are normalized and concatenated to
obtain the final feature vector with 68 elements.

Several experiments were conducted to determine the best
choice of parameters for the used classifiers with the different
classical feature descriptors. For the K parameter in K-nearest
neighbor (KNN) we tried K = {1, 2, 3, 4, 5, 10}. The C
parameter of the linear SVM is set to C = 2q−1, with the
explored values q ∈ {1, 2, ..., 19}. For the SVM with the RBF
kernel, we tried C = {1, 2, 3, 5} with γ = 10p−1, where
p ∈ {1, 2, ..., 4}. The optimal parameters used for each of
the classifiers are reported in Table V. All the algorithms used
for the classical techniques were developed in Python.

TABLE V
BEST FOUND PARAMETERS USED FOR THE VARIOUS CLASSIFIERS WITH

THE CLASSICAL FEATURE DESCRIPTORS

Classical Techniques RBF-SVM Linear SVM K-NN
HOG C = 3, γ = 1000 C = 8 K = 1
Color-Hist C = 1, γ = 100 C = 8192 K = 3
HOG-Color-Hist C = 1, γ = 100 C = 256 K = 3

IV. EXPERIMENTAL RESULTS

To compute the average results of the different subsets, we
compute the weighted average accuracy, which is computed
by summing over the relative dataset sizes multiplied with the
average accuracies on the different datasets.

A. Evaluation of the CNN Architecture

In our preliminary studies, we carried out experiments on
the data-augmentation (OFL-DA) version of our dataset to
determine the optimal crop size. We used models generated
from the train-validation experiments for evaluating our test
sets. We initially employed the scratch CNN with the cross-
entropy classification loss, which is combined with or without
flipping and with different crop sizes: 125× 125, 224× 224,
and 250× 250. The results of these experiments are shown in
Figure 4a, and suggest that the optimal method uses a crop
size of 224×224 pixels with flipping. This yields an accuracy
of 98.18% that occurred at the 5th epoch. We observed in
general, that there exist marginal differences between the
various settings.

Based on the outcome of this, we used the best crop size
with flip settings to carry out the experiments using the scratch
and fine-tuned versions of the CNN. For this, we used both
the data-augmented dataset (OFL-DA) and the original (ORIG)
images. The validation results from Figure 4b show that the
scratch and the fine-tuned CNN applied on the two kinds of
images converge to a near maximum level of performance. The
reason for this lies in the fact that most of the validation images
contain similar objects as in the training set. The validation
results at the 5th epoch are reported in Table VI. From the
table, we can see that the use of the original dataset leads
to more overfitting. The results of the different CNNs with
the cross-entropy loss function are shown in Figure 4c. From
this figure we can observe that the best obtained test accuracy



is obtained by the fine-tuned CNN applied on the OFL-DA
images in the 2nd epoch. We further investigated the CNN
with the L1 Hinge Loss, using the earlier mentioned CNN
settings (scratch and fine-tuned versions) applied on the two
sets of images (OFL-DA and ORIG). The results obtained are
shown in Figure 4d.

Based on the performances recorded during this preliminary
investigation, we only compared results obtained at the 5th

epoch as reported in Table VI. The results show that the
fine-tuned CNN trained on the data-augmented images yields
higher test classification accuracies when compared to the fine-
tuned CNN trained on the original images of the dataset. We
compared the different approaches using the binomial distri-
bution of correctly classifying test images. The results show
that the fine-tuned CNN trained on the data-augmented images
yields significantly higher classification accuracies (p = 0.01)
when compared to the fine-tuned CNN trained on the original
images of the dataset. Overall, the fine-tuned CNNs obtain the
best results and combined with the data-augmented images,
the results are very good (99.65%). Finally, the results show
that overall the use of the cross-entropy loss function leads to
better results than the use of the Hinge loss function.

TABLE VI
WEIGHTED MEAN OF THE TEST AND VALIDATION

CLASSIFICATION ACCURACIES OF THE CNN APPLIED ON THE
AERIAL IMAGERY DATASET AFTER 5 EPOCHS

Evaluation Method Cross Entropy Loss Hinge Loss
Test Fine-tuned CNN, OFL-DA 99.65 99.65

Fine-tuned CNN, ORIG 98.67 98.19
Scratch CNN, OFL-DA 98.18 96.16

Scratch CNN, ORIG 97.87 97.51
Validation Fine-tuned CNN, OFL-DA 99.94 99.94

Fine-tuned CNN, ORIG 100.00 100.00
Scratch CNN, OFL-DA 99.68 99.81

Scratch CNN, ORIG 99.94 99.94

B. Evaluation of Classical Descriptors
The weighted mean test accuracies of the classical tech-

niques on the aerial imagery dataset are reported in Table
VII. We observe that the RBF-SVM outperforms the other
two classifiers (K-NN and linear SVM) when combined with
each of the feature descriptors. Another observation is that
the classifiers with the Color-Hist or HOG-Color-Hist features
yield better performances than using the HOG descriptor
alone. This shows the importance of using color information
for this classification problem. Still, the results are significantly
worse than the results using the CNN methods.

Table VII also shows the results of using the RBF-SVM with
different datasets and different feature descriptors using larger
images (250 × 250 pixels). The results show that here data-
augmentation does not lead to significantly better results. This
can be explained by the fact that the best feature descriptor,
the color histogram, is not affected by this data-augmentation
method. Finally, we note that the original image with the
smaller 100×100 resolution works better for the HOG feature
descriptor and therefore also for HOG combined with the color
histogram. This can be explained by the fact that we optimized
the HOG parameters using the smaller images.
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(b) Validation set evaluation of the CNN with cross entropy loss (CE-L)
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DA means the augmented dataset and ORIG means the originally up-scaled
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Fig. 4. Weighted mean classification accuracy while training for 10000
iterations (20 Epochs).



Although the performances of the CNN techniques are much
better, the classical techniques have a lower training computing
time: t ≤ 1 min. This is because of the low dimensionality
of the extracted features and the low number of trainable
parameters.

TABLE VII
SUMMARY OF THE WEIGHTED MEAN TEST PERFORMANCES

FOR ALL CNNS AND THE CLASSICAL METHODS ON OUR
DATASET

METHODS Sub 1 Sub 2 Sub 3 Weighted Mean
Fine-tuned-CNN, OFL-DA, Cross Entropy Loss 100.00 99.73 99.39 99.65
Fine-tuned-CNN, OFL-DA, Hinge Loss 99.62 99.77 99.39 99.65
Fine-tuned-CNN, ORIG, Cross Entropy Loss 99.62 98.29 99.30 98.67
Fine-tuned-CNN, ORIG, Hinge Loss 99.62 97.55 99.30 98.19
Scratch-CNN, OFL-DA, Cross Entropy Loss 98.23 98.72 96.96 98.18
Scratch-CNN, OFL-DA, Hinge Loss 98.08 96.19 95.65 96.16
Scratch-CNN, ORIG, Cross Entropy Loss 98.85 99.34 94.35 97.87
Scratch-CNN, ORIG, Hinge Loss 97.69 98.83 94.52 97.51
RBF-SVM-HOG, ORIG-100×100 96.56 86.99 95.30 90.02
RBF-SVM-Color-Hist, ORIG-100×100 96.56 96.07 96.87 96.33
RBF-SVM-HOG-Color-Hist, ORIG-100×100 96.56 96.11 96.69 96.31
Linear-SVM-HOG, ORIG-100×100 85.88 81.51 95.65 85.88
Linear-SVM-Color-Hist, ORIG-100×100 96.95 93.77 95.83 94.57
Linear-SVM-HOG-Color-Hist, ORIG-100×100 95.80 94.08 93.74 94.09
KNN-HOG, ORIG-100×100 88.17 84.35 96.78 88.19
KNN-Color-Hist, ORIG-100×100 96.56 96.50 94.86 96.03
KNN-HOG-Color-Hist, ORIG-100×100 96.95 96.46 94.78 96.01
RBF-SVM-HOG, ORIG-250×250 85.88 81.51 95.65 85.88
RBF-SVM-Color-Hist, ORIG-250×250 96.57 95.37 96.52 95.78
RBF-SVM-HOG-Color-Hist, ORIG-250×250 85.88 81.51 95.65 85.88
RBF-SVM-HOG, OFL-DA-250×250 85.88 81.51 95.65 85.88
RBF-SVM-Color-Hist, OFL-DA-250×250 96.18 95.25 96.70 95.73
RBF-SVM-HOG-Color-Hist, OFL-DA-250×250 95.04 93.97 96.08 94.65
RBF-SVM-HOG-OFL-DA-NR-250×250 94.66 81.51 86.61 83.84
RBF-SVM-Color-Hist-OFL-DA-NR-250×250 96.56 95.13 96.43 95.60
RBF-SVM-HOG-Color-Hist-OFL-DA-NR-250×250 95.04 91.98 96.43 93.47

V. CONCLUSION

We developed a novel data-augmentation method that trans-
forms an image into a new image containing multiple random
transformations of the image. The new augmentation method
does not lead to an increase in the number of training images
compared to previously used data-augmentation techniques.
We evaluated this method with deep neural networks and fea-
ture descriptors combined with supervised learning algorithms
on a new dataset of aerial images of cows.

Our study shows that the use of the data-augmented images
leads to the best performances when combined with fine-tuned
CNNs. Furthermore, the results show that all CNN approaches
significantly outperform the classical approaches with or with-
out the use of data augmentation. The performances of the
scratch CNNs are worse than the accuracies of the fine-
tuned CNNs with data-augmented images which obtain an
accuracy of 99.65%. Furthermore, the RBF-SVM yields better
classification performances than the K-NN and a linear SVM
when combined with the used feature descriptors. It should be
noted that our DA algorithm is useful for the CNNs, because
although our CNNs are more or less translational invariant,
they are not rotational invariant.

The idea of our data-augmentation method can be extended
by including different techniques to create new images such as
color casting with different illumination effects. Furthermore,
the proposed data-augmentation technique can also be com-
bined with other data-augmentation methods to create more
training images, which may be useful when dealing with small
datasets.

REFERENCES

[1] C. Zhang and J. M. Kovacs, “The application of small unmanned
aerial systems for precision agriculture: a review,” Precision agriculture,
vol. 13, no. 6, pp. 693–712, 2012.

[2] P. Katsigiannis, L. Misopolinos, V. Liakopoulos, T. K. Alexandridis, and
G. Zalidis, “An autonomous multi-sensor UAV system for reduced-input
precision agriculture applications,” in Control and Automation (MED),
24th Mediterranean Conference on. IEEE, 2016, pp. 60–64.

[3] V. Lukas, J. Novák, L. Neudert, I. Svobodova, F. Rodriguez-Moreno,
M. Edrees, and J. Kren, “The combination of UAV survey and landsat
imagery for monitoring of crop vigor in precision agriculture,” ISPRS-
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, pp. 953–957, 2016.
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