
Evolving Soccer StrategiesRafa l Sa lustowicz, Marco Wiering, J�urgen SchmidhuberIDSIA, Corso Elvezia 36, 6900 Lugano, Switzerlande-mail: frafal, marco, juergeng@idsia.chIn N. Kasabov, R. Kozma, K. Ko, R. O'Shea, G. Coghill, and T. Gedeon, editors, Progress inConnectionist-based Information Systems: Proceedings of the Fourth International Conference onNeural Information Processing ICONIP'97, volume 1, pages 502-505. Springer-Verlag Singapore, 1997.
AbstractWe study multiagent learning in a simulated soccer scenario.Players from the same team share a common policy for map-ping inputs to actions. They get rewarded or punished col-lectively in case of goals. For varying team sizes we comparethe following learning algorithms: TD-Q learning with linearneural networks (TD-Q-LIN), with a neural gas network (TD-Q-NG), Probabilistic Incremental Program Evolution (PIPE),and a PIPE variant based on coevolution (CO-PIPE). TD-Q-LIN and TD-Q-NG try to learn evaluation functions (EFs)mapping input/action pairs to expected reward. PIPE andCO-PIPE search policy space directly. They use adaptiveprobability distributions to synthesize programs that calculateaction probabilities from current inputs. We �nd that learn-ing appropriate EFs is hard for both EF-based approaches.Direct search in policy space discovers more reliable policiesand is faster.1 IntroductionThere are at least two classes of candidate algorithmsfor multiagent reinforcement learning (RL). The �rst in-cludes traditional single-agent RL algorithms based onadaptive evaluation functions (EFs) [Bertsekas, 1996].Usually online variants of dynamic programming andfunction approximators are combined to model EFs map-ping input-action pairs to expected discounted future re-ward. EFs are then exploited to select actions. Methodsfrom the second class do not require EFs. Their pol-icy space consists of complete algorithms de�ning agentbehaviors, and they search policy space directly. Mem-bers of this class are Levin search [Levin, 1973], GeneticProgramming, e.g., [Cramer, 1985], and Probabilistic In-cremental Program Evolution (PIPE) [Sa lustowicz andSchmidhuber, 1997].Previous Results. Recently we compared two learn-ing algorithms [Sa lustowicz et al., 1997b], each repre-sentative of its class: TD-Q learning [Lin, 1993] with

linear neural nets (TD-Q-LIN) and PIPE. We let bothapproaches compete against a biased random opponent(BRO). PIPE quickly learned to beat BRO. TD-Q-LINhad di�culties in learning appropriate shared EFs, espe-cially in case of multiple agents per team.Comparisons. The current paper extends our pre-vious work in several ways: (1) Since TD-Q-LIN's EFapproximation capabilities are limited we combine TD-Qwith a more powerful function approximator: the neuralgas network (TD-Q-NG). (2) Since good hand-made op-ponents are not always easy to design, we test whetherPIPE can coevolve good programs by letting them playagainst each other instead of BRO (CO-PIPE).2 Soccer SimulationThere are either 1 or 11 players per team. Players canmove with and without the ball or shoot it. As in in-door soccer the �eld is surrounded by impassable wallsexcept for the two goals centered in the east and westwalls. The ball slows down due to friction (after havingbeen shot) and bounces o� walls obeying the law of equalre
ection angles (we simulate in discrete time). Playersare \solid". If a player, coming from a certain angle, at-tempts to traverse a wall then it \glides" on it, losingonly that component of its speed which corresponds tothe movement direction hampered by the wall. Collisionsof players cause them to bounce back to their positions atthe previous time step. If one of them had the ball thenthe ball changes owners. There are �xed initial positionsfor all players and the ball (see Figure 1). A game lastsfrom time t = 0 to time tend.Action Framework/Cycles. At each discrete timestep 0 � t < tend each player executes a \cycle". A cycleconsists of: (1) an attempt to get the ball, if it is closeenough, (2) input computation, (3) action selection andexecution, and (4) another attempt to get the ball, if itis close enough. Once all players have executed a cyclewe move the ball. If a team scores or t = tend then allplayers and ball are reset to their initial positions.

Fig. 1: 22 players and ball in initial positions. Playersof 1 player teams are the goalkeepers in the back.Inputs. Player p's input at a given time t is an inputvector~i(p; t). Vector~i(p; t) has 14 components: (1) Threeboolean inputs that tell whether the player/a team mem-ber/an opponent has the ball. (2) Polar coordinates (dis-tance, angle) of both goals and the ball with respect to aplayer-centered coordinate system. (3) Polar coordinatesof both goals with respect to a ball-centered coordinatesystem. (4) Ball speed. Note that these inputs do notmake the environment fully observable.Actions. Players may execute actions from actionset ASET. ASET contains: go forward, turn to ball,turn to goal and shoot. Shots are noisy and noise makeslong shots less precise than close passes. For a detaileddescription of the simulator see [Sa lustowicz et al., 1997a].3 Probabilistic Incremental Pro-gram Evolution (PIPE)PIPE [Sa lustowicz and Schmidhuber, 1997] synthesizesprograms which select actions from ASET, given playerp's input vector ~i(p; t).Action Selection. Action selection depends on 5 vari-ables: g 2 IR, Ai 2 IR, 8i 2 ASET . Action i 2 ASET isselected with probability PAi according to the Boltzmanndistribution at temperature 1g :PAi := eAi�gPj2ASET eAj �g 8i 2 ASET (1)All Ai and g are calculated by a program.Programs. A main program Program consists ofa program Progg which computes the \greediness" pa-rameter g and 4 \action programs" Progi (i 2 ASET).The result of applying Prog to data x is denotedProg(x). Given ~i(p; t), Progi(~i(p; t)) returns Ai and g:= jProgg(~i(p; t))j. An action i 2 ASET is then selectedaccording to (1).Program Instructions. A program Prog containsinstructions from a function set F and a terminal setT . We use F = f+;�; �;%; sin; cos; exp; rlogg andT = f~i(p; t)1, . . . ,~i(p; t)v ; Rg, where % denotes protecteddivision (8y; z 2 IR; z 6= 0: y%z = y=z and y%0 =

1), rlog denotes protected logarithm (8y 2 IR; y 6= 0:rlog(y)=log(abs(y)) and rlog(0) = 0), ~i(p; t)l 1 � l � vdenotes component l of a vector~i(p; t) with v componentsand R represents the generic random constant from [0;1).PIPE Overview. PIPE programs are encoded in n-ary trees that are parsed depth �rst from left to right,with n being the maximal number of function arguments.PIPE generates programs according to a probability dis-tribution over all possible programs composable from theinstruction set (F [T). The probability distribution isstored in an underlying probabilistic prototype tree (PPT).The PPT contains at each node a probability for each in-struction from F [T and a random constant from [0;1).Programs are generated by traversing the PPT depth �rstfrom left to right starting at the root node. At each nodean instruction is picked according to the node's proba-bility distribution. In case the generic random constantis picked it is instantiated either to the value stored inthe PPT node or a random value from [0;1), dependingon the instruction's probability. To adapt PPT's prob-abilities PIPE generates successive populations of pro-grams. It evaluates each program of a population andassigns it a scalar, non-negative \�tness value", which re-
ects the program's performance. To evaluate a programwe play one entire soccer game against a hand-made bi-ased random opponent and de�ne the program's �tnessto be: 100 - number of goals scored by learner + numberof goals scored by opponent. The o�set 100 is su�cientto ensure a positive score di�erence. PIPE then adaptsPPT's probabilities so that the probability of creatingthe best program of the current population increases. Fi-nally PPT's probabilities are mutated to better explorethe search space. All details can be found in [Sa lustowiczand Schmidhuber, 1997].Coevolution (CO-PIPE). CO-PIPE works exactlylike PIPE, except that: (a) the population contains onlytwo programs and (b) we let both programs play againsteach other rather than against a prewired opponent. CO-PIPE adapts PPT's probabilities so that the probabilityof creating the winning program increases.4 TD-Q LearningIn a previous paper [Sa lustowicz et al., 1997b] we foundthat learning correct soccer EFs was hard for an o�ineTD(�) Q-variant [Lin, 1993] with linear neural nets. Herewe use a neural gas network instead [Fritzke, 1995]. Thegoal is to map a player-speci�c input~i(p; t) to action eval-uations Q(~i(p; t); ad), where ad 2 ASET . We use thesame neural gas network for all policy-sharing players.We reward the players equally whenever a goal has beenmade or the game is over.Action Selection. We use a set of Z neurons:fn1; : : : ; nZg (initially Z = Zinit). They are placed inthe input space by assigning to each a location ~wk 2 IR14(with ~i(p; t)'s dimension). 8k 2 f1; : : : ; Zg, nk contains a

Q-value Qk(ad) for each ad 2 ASET . To select an actionwe calculate overall Q-values by combining Q-values ofall neurons. First we calculate a weighting factor gk foreach neuron nk:gk := e�� dist(~wk;~i(p;t))PZj=1 e�� dist(~wj ;~i(p;t)) ;where dist(~wk ;~i(p; t)) is the Manhattan distance betweenplayer input and the location of neuron nk, and � 2 IR isa user-de�ned constant. The overall Q-value of an actionad, given input ~i(p; t), isQ(~i(p; t); ad) := ZXj=1 gjQj(ad)Once all Q-values have been calculated, a single actionis chosen according to the Max-Random rule: select theaction with highest Q-value with probability Pmax, oth-erwise select a random action.TD-Q Learning. Each game consists of separate tri-als. A given trial stops at time t� once one of the teamsscores or the game is over (t� = tend). To achieve anoptimal strategy we want the Q-value Q(~i(p; t); ad) forselecting action ad given input ~i(p; t) to approximateQ(~i(p; t); ad) � E(
t��tR(t�));where E denotes the expectation operator, 0 �
 � 1the discount factor which encourages quick goals (or alasting defense against opponent goals), and R(t�) thereinforcement at trial end (-1 if opponent team scores, 1if own team scores, 0 otherwise).To learn these Q-values we monitor player experiences(inputs and selected actions) in player-dependent historylists with maximum size Hmax. After each trial we calcu-late examples using the TD-Q method. For each playerhistory list, we compute desired Q-values Qnew(p; t) forselecting action ad, given~i(p; t) (t = t1; : : : ; t�) as follows:Qnew(p; t�) := R(t�);Qnew(p; t) :=
 � [� �Qnew(p; t + 1) + (1 � �) �MaxdfQ(~i(p; t + 1); ad)g] 8t 6= t�:� determines subsequent experiences' degree of in
uence.Learning Rules. There are two goals: (1) learningnetwork structure | move the neurons to locations wherethey help to minimize overall error, and (2) learning Q-values | make individual neurons correctly evaluate theinputs for which they are used.For learning a speci�c example (~i(p; t); ad; Qnew(p; t)),we introduce for each neuron nk a responsibility variablewhich is adapted at each cycle: Ck := Ck + gk.(1) Learning Structure. If the error jQ(~i(p; t); ad)�Qnew(p; t)j of the system is larger than an error-thresholdTE , the number of neurons is less than Zmax, and the clos-est neuron's responsibility Ck exceeds the responsibility

threshold TC , then we add a new neuron nZ+1. We set itslocation ~wZ+1 to ~i(p; t), copy all Q-values from the clos-est neuron to the new neuron except for the Q-value ofaction ad which is set to the desired Q-value Qnew(p; t).Finally we set Z := Z + 1.If no neuron is added, we calculate for each neuronnk (8k 2 f1; : : : ; Zg) a gate-value hk, which re
ects theposterior belief that neuron nk evaluates the input best:hk := gke�(Qnew(p;t)�Qk(ad))2PZj=1 gje�(Qnew(p;t)�Qj(ad))2We then move each neuron nk towards the example~i(p; t)according to hk:~wk := ~wk + lrkh2k(~i(p; t) � ~wk);where lrk := lrN (Ck)�� , lrN is the system learning rateand � is the learning rate decay factor.(2) Learning Q-values. Each neuron k's Q-value forselecting action ad is updated as follows:Qk(ad) := Qk(ad) + lrkhk(Qnew(p; t) �Qk(ad))5 ExperimentsFor each combination of learning algorithm (TD-Q-LIN,TD-Q-NG, PIPE, and CO-PIPE) and team size (1 and11) we perform 10 independent runs, each comprising3300 games of length tend = 5000. Every 100 games wetest current performance by playing 20 test games (nolearning) against a biased random opponent BRO andsumming the score results. BRO randomly executes ac-tions from ASET. BRO is not bad due to the initial biasin the action set. If we let BRO play against a non-actingopponent NO (all NO can do is block) for twenty 5000time step games then BRO wins against NO with on av-erage 71.5 to 0.0 goals for team size 1 and 108.6 to 0.5goals for team size 11.PIPE and CO-PIPE Set-ups. Parameters for PIPEruns are: PT=0.8, " = 1, Pel = 0, PS=10, lr=0.2,PM=0.1, mr=0.2, TR=0.3, TP=0.999999 (see [Sa lusto-wicz and Schmidhuber, 1997] for details). For CO-PIPEwe keep the same parameters except for PS, which is setto 2 (see Section 3). During performance evaluations wetest the best-of-current-population program (except forthe �rst evaluation where we test a random program).TD-Q-LIN and TD-Q-NG Set-ups. After a thor-ough parameter search we found the following best pa-rameters for TD-Q-LIN runs:
=0.99, LrN=0.0001,�=0.9, Hmax=100. Weights are randomly initializedin [�0:01; 0:01]. For TD-Q-NG we used:
=0.98,lrN=0.1, �=0.9, Hmax=100, � = 0:1, � = 30, Zinit=10,Zmax=100, Pmax = 0.7, TE=0.5, TC = 1000. ~wk compo-nents are randomly initialized in [�1:0; 1:0], Q-values arezero-initialized.

Results. We plot goals scored by learner and oppo-nent during test phases against number of games in Fig-ure 2. PIPE's score di�erences continually increase. It
0

50

100

150

200

250

300

0 1000 2000 3000

go
al

s

#games

PIPE 1-player

learner
opponent

0

50

100

150

200

250

300

0 1000 2000 3000

go
al

s

#games

CO-PIPE 1-player

learner
opponent

0

50

100

150

200

250

300

0 1000 2000 3000

go
al

s

#games

TD-Q-LIN 1-player

learner
opponent

0

50

100

150

200

250

300

0 1000 2000 3000

go
al

s

#games

TD-Q-NG 1-player

learner
opponent

0

100

200

300

400

500

0 1000 2000 3000

go
al

s

#games

PIPE 11-players

learner
opponent

0

100

200

300

400

500

0 1000 2000 3000

go
al

s

#games

CO-PIPE 11-players

learner
opponent

0

100

200

300

400

500

0 1000 2000 3000

go
al

s

#games

TD-Q-LIN 11-players

learner
opponent

0

100

200

300

400

500

0 1000 2000 3000

go
al

s

#games

TD-Q-NG 11-players

learner
opponent

Fig. 2: Average number of goals scored during all testphases, for team sizes 1 and 11.always quickly learns an appropriate policy regardless ofteam size. CO-PIPE also �nds successful policies. Itsscore di�erences are smaller than PIPE's. This, how-ever, is an expected outcome since CO-PIPE never metBRO during training. CO-PIPE's performance increaseswith increasing team size, since it becomes easier to dis-tinguish between good and bad policies. PIPE and CO-PIPE achieve much better performance than TD-Q-LINand TD-Q-NG. This is partially due to PIPE's and CO-PIPE's ability to e�ciently select relevant input featuresfor each action. TD-Q-LIN's score di�erences �rst in-

crease until TD-Q-LIN runs into an \outlier problem",which lets its linear nets unlearn previously discoveredgood policies (see [Sa lustowicz et al., 1997b] for details).TD-Q-NG initially learns faster than TD-Q-LIN, but doesnot continue improving. It stays quite stochastic duringthe entire run.6 ConclusionWe compared two direct policy search methods (PIPEand CO-PIPE) and two EF-based ones (TD-Q-LIN andTD-Q-NG) in a simulated soccer case study with policy-sharing agents. PIPE, TD-Q-LIN, and TD-Q-NG weretrained against a biased random opponent (BRO). CO-PIPE evolved its policies by coevolution. PIPE and CO-PIPE quickly learned to beat BRO, CO-PIPE even with-out being explicitly trained to do so. TD-Q-LIN and TD-Q-NG achieved performance improvements, too. Despiteour e�orts to improve EF-based approaches by using dif-ferent function approximators (linear nets and the morepowerful neural gas nets) their results remain less excit-ing. TD-Q-LIN's and TD-Q-NG's problems are due todi�culties in learning EFs in partially observable stochas-tic environments.AcknowledgmentsThanks for valuable discussions to Jieyu Zhao, NicSchraudolph, Luca Gambardella, and Cristina Versino.References[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. andTsitsiklis, J. N. (1996). Neuro-Dynamic Programming.Athena Scienti�c, Belmont, MA.[Cramer, 1985] Cramer, N. L. (1985). A representationfor the adaptive generation of simple sequential pro-grams. In Grefenstette, J., editor, Proceedings of anInternational Conference on Genetic Algorithms andTheir Applications, Hillsdale NJ. Lawrence ErlbaumAssociates.[Fritzke, 1995] Fritzke, B. (1995). A growing neural gasnetwork learns topologies. In Tesauro, G., Touretzky,D. S., and Leen, T. K., editors, Advances in NeuralInformation Processing Systems 7, pages 625{632. MITPress, Cambridge MA.[Levin, 1973] Levin, L. A. (1973). Universal sequentialsearch problems. Problems of Information Transmis-sion, 9(3):265{266.[Lin, 1993] Lin, L. J. (1993). Reinforcement Learning forRobots Using Neural Networks. PhD thesis, CarnegieMellon University, Pittsburgh.

[Sa lustowicz and Schmidhuber, 1997] Sa lustowicz, R. P.and Schmidhuber, J. (1997). Probabilistic incrementalprogram evolution. Evolutionary Computation, 5(2).[Sa lustowicz et al., 1997a] Sa lustowicz, R. P., Wiering,M. A., and Schmidhuber, J. (1997a). Learning teamstrategies with multiple policy-sharing agents: A soc-cer case study. Technical Report IDSIA-29-97, IDSIA.[Sa lustowicz et al., 1997b] Sa lustowicz, R. S., Wiering,M. A., and Schmidhuber, J. (1997b). On learn-ing soccer strategies. In Proceedings of the 7th In-ternational Conference on Arti�cial Neural Networks(ICANN'97), Lecture Notes in Computer Science.Springer-Verlag Berlin Heidelberg. To appear.

