Evolving Soccer Strategies

Rafal Satustowicz, Marco Wiering, Jiirgen Schmidhuber

IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland

e-mail: {rafal, marco, juergen}@idsia.ch

In N. KasaBov, R. KozmA, K. Ko, R. O’SHEA, G. COGHILL, AND T. GEDEON, EDITORS, PROGRESS IN
CONNECTIONIST-BASED INFORMATION SYSTEMS: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON
NEURAL INFORMATION PROCESSING ICONIP’97, VOLUME 1, PAGES 502-505. SPRINGER-VERLAG SINGAPORE, 1997.

Abstract

We study multiagent learning in a simulated soccer scenario.
Players from the same team share a common policy for map-
ping inputs to actions. They get rewarded or punished col-
lectively in case of goals. For varying team sizes we compare
the following learning algorithms: TD-Q learning with linear
neural networks (TD-Q-LIN), with a neural gas network (TD-
Q-NG), Probabilistic Incremental Program Evolution (PIPE),
and a PIPE variant based on coevolution (CO-PIPE). TD-Q-
LIN and TD-Q-NG try to learn evaluation functions (EFs)
mapping input/action pairs to expected reward. PIPE and
CO-PIPE search policy space directly. They use adaptive
probability distributions to synthesize programs that calculate
action probabilities from current inputs. We find that learn-
ing appropriate EFs is hard for both EF-based approaches.
Direct search in policy space discovers more reliable policies
and is faster.

1 Introduction

There are at least two classes of candidate algorithms
for multiagent reinforcement learning (RL). The first in-
cludes traditional single-agent RL algorithms based on
adaptive evaluation functions (EFs) [Bertsekas, 1996].
Usually online variants of dynamic programming and
function approximators are combined to model EFs map-
ping input-action pairs to expected discounted future re-
ward. EF's are then exploited to select actions. Methods
from the second class do not require EFs. Their pol-
icy space consists of complete algorithms defining agent
behaviors, and they search policy space directly. Mem-
bers of this class are Levin search [Levin, 1973], Genetic
Programming, e.g., [Cramer, 1985], and Probabilistic In-
cremental Program Evolution (PIPE) [Satustowicz and
Schmidhuber, 1997].

Previous Results. Recently we compared two learn-
ing algorithms [Salustowicz et al., 1997b], each repre-
sentative of its class: TD-Q learning [Lin, 1993] with

linear neural nets (TD-Q-LIN) and PIPE. We let both
approaches compete against a biased random opponent
(BRO). PIPE quickly learned to beat BRO. TD-Q-LIN
had difficulties in learning appropriate shared EFs, espe-
cially in case of multiple agents per team.

Comparisons. The current paper extends our pre-
vious work in several ways: (1) Since TD-Q-LIN’s EF
approximation capabilities are limited we combine TD-Q
with a more powerful function approximator: the neural
gas network (TD-Q-NG). (2) Since good hand-made op-
ponents are not always easy to design, we test whether
PIPE can coevolve good programs by letting them play
against each other instead of BRO (CO-PIPE).

2 Soccer Simulation

There are either 1 or 11 players per team. Players can
move with and without the ball or shoot it. As in in-
door soccer the field is surrounded by impassable walls
except for the two goals centered in the east and west
walls. The ball slows down due to friction (after having
been shot) and bounces off walls obeying the law of equal
reflection angles (we simulate in discrete time). Players
are “solid”. If a player, coming from a certain angle, at-
tempts to traverse a wall then it “glides” on it, losing
only that component of its speed which corresponds to
the movement direction hampered by the wall. Collisions
of players cause them to bounce back to their positions at
the previous time step. If one of them had the ball then
the ball changes owners. There are fixed initial positions
for all players and the ball (see Figure 1). A game lasts
from time ¢t = 0 to time topq-

Action Framework/Cycles. At each discrete time
step 0 <t < tenq each player executes a “cycle”. A cycle
consists of: (1) an attempt to get the ball, if it is close
enough, (2) input computation, (3) action selection and
execution, and (4) another attempt to get the ball, if it
is close enough. Once all players have executed a cycle
we move the ball. If a team scores or t = t.,q then all
players and ball are reset to their initial positions.

Fig. 1: 22 players and ball in initial positions. Players
of 1 player teams are the goalkeepers in the back.

Inputs. Player p’s input at a given time ¢ is an input
vector i(p,t). Vector i(p, t) has 14 components: (1) Three
boolean inputs that tell whether the player/a team mem-
ber/an opponent has the ball. (2) Polar coordinates (dis-
tance, angle) of both goals and the ball with respect to a
player-centered coordinate system. (3) Polar coordinates
of both goals with respect to a ball-centered coordinate
system. (4) Ball speed. Note that these inputs do not
make the environment fully observable.

Actions. Players may execute actions from action
set ASET. ASET contains: go_forward, turn_to_ball,
turn_to_goal and shoot. Shots are noisy and noise makes
long shots less precise than close passes. For a detailed
description of the simulator see [Salustowicz et al., 1997a].

3 Probabilistic Incremental Pro-
gram Evolution (PIPE)

PIPE [Satustowicz and Schmidhuber, 1997] synthesizes
programs which select actions from ASET, given player
p’s input vector f(p, t).

Action Selection. Action selection depends on 5 vari-
ables: g € R, A; € IR, Vi € ASET. Action i € ASET is
selected with probability P4, according to the Boltzmann

distribution at temperature é:

eAig

Py, =

i

JEASET

All A; and g are calculated by a program.

Programs. A main program PROGRAM consists of
a program PROGY which computes the “greediness” pa-
rameter g and 4 “action programs” ProG! (i € ASET).
The result of applying ProG to data z is denoted
ProG(z). Given i(p,t), PROG!(i(p,t)) returns 4; and g¢
:= |PROGY (i(p, t))]- An action i € ASET is then selected
according to (1).

Program Instructions. A program PROG contains
instructions from a function set F' and a terminal set
T. We use F = {+,—,*,%,sin, cos,exp,rlog} and
T= {;(p,)1, ey Z(p, t),, R}, where % denotes protected
division (Vy,z € R,z # 0: y%z = y/z and y%0 =

1), rlog denotes protected logarithm (Vy € IR,y # 0:
rlog(y)=log(abs(y)) and rlog(0) = 0), i(p,t); 1 <1 < v
denotes component [of a vector Z(p, t) with v components
and R represents the generic random constant from [0;1).

PIPE Overview. PIPE programs are encoded in n-
ary trees that are parsed depth first from left to right,
with n being the maximal number of function arguments.
PIPE generates programs according to a probability dis-
tribution over all possible programs composable from the
instruction set (F' U T'). The probability distribution is
stored in an underlying probabilistic prototype tree (PPT).
The PPT contains at each node a probability for each in-
struction from F U T and a random constant from [0;1).
Programs are generated by traversing the PPT depth first
from left to right starting at the root node. At each node
an instruction is picked according to the node’s proba-
bility distribution. In case the generic random constant
is picked it is instantiated either to the value stored in
the PPT node or a random value from [0;1), depending
on the instruction’s probability. To adapt PPT’s prob-
abilities PIPE generates successive populations of pro-
grams. It evaluates each program of a population and
assigns it a scalar, non-negative “fitness value”, which re-
flects the program’s performance. To evaluate a program
we play one entire soccer game against a hand-made bi-
ased random opponent and define the program’s fitness
to be: 100 - number of goals scored by learner + number
of goals scored by opponent. The offset 100 is sufficient
to ensure a positive score difference. PIPE then adapts
PPT’s probabilities so that the probability of creating
the best program of the current population increases. Fi-
nally PPT’s probabilities are mutated to better explore
the search space. All details can be found in [Satustowicz
and Schmidhuber, 1997].

Coevolution (CO-PIPE). CO-PIPE works exactly
like PIPE, except that: (a) the population contains only
two programs and (b) we let both programs play against
each other rather than against a prewired opponent. CO-
PIPE adapts PPT’s probabilities so that the probability
of creating the winning program increases.

4 TD-Q Learning

In a previous paper [Satustowicz et al., 1997b] we found
that learning correct soccer EFs was hard for an offline
TD(A) Q-variant [Lin, 1993] with linear neural nets. Here
we use a neural gas network instead [Fritzke, 1995]. The
goal is to map a player-specific input i(p, t) to action eval-
uations Q(i(p,t),aq), where ag € ASET. We use the
same neural gas network for all policy-sharing players.
We reward the players equally whenever a goal has been
made or the game is over.

Action Selection. We use a set of Z neurons:
{ni,...,nz} (initially Z = Z;,;+). They are placed in
the input space by assigning to each a location), € R™
(with (p, t)’s dimension). Vk € {1,..., Z}, nj, contains a

Q-value Q(aq) for each ay € ASET. To select an action
we calculate overall Q-values by combining Q-values of
all neurons. First we calculate a weighting factor g for
each neuron ny:

e dist(@i,i(p,t))
gk = Z . - 7)
—n dist(w;,i(p,t
ijle n (10 ,i(p,t))

where dist(,i(p,t)) is the Manhattan distance between
player input and the location of neuron ny, and n € IR is
a user-defined constant. The overall Q-value of an action
agq, given input Z(p, t), is

VA
Q(i(p, 1), aq) = Z 9iQj(aq)

Once all Q-values have been calculated, a single action
is chosen according to the Max-Random rule: select the
action with highest Q-value with probability Pp,.., oth-
erwise select a random action.

TD-Q Learning. Each game consists of separate tri-
als. A given trial stops at time ¢* once one of the teams
scores or the game is over (t* = teng). To achieve an
optimal strategy we want the Q-value Q(f(p, t),aq) for
selecting action ag given input f(p, t) to approximate

Qi(p,t),aq)

where £ denotes the expectation operator, 0 < v < 1
the discount factor which encourages quick goals (or a
lasting defense against opponent goals), and R(t*) the
reinforcement at trial end (-1 if opponent team scores, 1
if own team scores, 0 otherwise).

To learn these Q-values we monitor player experiences
(inputs and selected actions) in player-dependent history
lists with maximum size H,,,.. After each trial we calcu-
late examples using the TD-Q method. For each player
history list, we compute desired Q-values Q"% (p,t) for
selecting action ag4, given f(p, t) (t=t',...,t*) as follows:

Q" (p,t*) :== R(t");
QU (pt) == -N- Q" (p,t +1) +(1—A)-

Mazag{Q(i(p,t +1),aq)}] Vt#t*.

~ E(y"TER(EY)),

A determines subsequent experiences’ degree of influence.

Learning Rules. There are two goals: (1) learning
network structure — move the neurons to locations where
they help to minimize overall error, and (2) learning Q-
values — make individual neurons correctly evaluate the
inputs for which they are used.

For learning a specific example (Z(p, t),aq, Q™" (p, 1)),
we introduce for each neuron nj, a responsibility variable
which is adapted at each cycle: Cy := Cy + gy-

(1) Learning Structure. If the error |Q(i(p, t), aq) —
Q™" (p,t)| of the system is larger than an error-threshold
Tg, the number of neurons is less than Z,,,., and the clos-
est neuron’s responsibility C}, exceeds the responsibility

threshold T, then we add a new neuron nz,;. We set its
location Wz 1 to ;(p, t), copy all Q-values from the clos-
est neuron to the new neuron except for the Q-value of
action ag which is set to the desired Q-value Q™% (p,t).
Finally we set Z := Z + 1.

If no neuron is added, we calculate for each neuron
ny (Vk € {1,...,7Z}) a gate-value hy, which reflects the
posterior belief that neuron nj evaluates the input best:

gre— (@ (PH)=Qx(aa))’
Z]'Zzl gje~ (@ " (p.t)=Q;(aa))®

hk =

We then move each neuron ny towards the example f(p, t)
according to hy:

Wy, := W+ Irph (i(p, t) — W),
where Iry, := Iry(Cy)™?, Iry is the system learning rate
and g is the learning rate decay factor.

(2) Learning Q-values. Each neuron k’s Q-value for
selecting action ag4 is updated as follows:

Qr(aq) := Qrlaq) + Irhi(Q" (p, t) — Qr(aq))

5 Experiments

For each combination of learning algorithm (TD-Q-LIN,
TD-Q-NG, PIPE, and CO-PIPE) and team size (1 and
11) we perform 10 independent runs, each comprising
3300 games of length t.,,q4 = 5000. Every 100 games we
test current performance by playing 20 test games (no
learning) against a biased random opponent BRO and
summing the score results. BRO randomly executes ac-
tions from ASET. BRO is not bad due to the initial bias
in the action set. If we let BRO play against a non-acting
opponent NO (all NO can do is block) for twenty 5000
time step games then BRO wins against NO with on av-
erage 71.5 to 0.0 goals for team size 1 and 108.6 to 0.5
goals for team size 11.

PIPE and CO-PIPE Set-ups. Parameters for PIPE
runs are: Pr=0.8, ¢ = 1, P, = 0, PS=10, r=0.2,
Py=0.1, mr=0.2, Tp=0.3, Tp=0.999999 (see [Saltusto-
wicz and Schmidhuber, 1997] for details). For CO-PIPE
we keep the same parameters except for PS, which is set
to 2 (see Section 3). During performance evaluations we
test the best-of-current-population program (except for
the first evaluation where we test a random program).

TD-Q-LIN and TD-Q-NG Set-ups. After a thor-
ough parameter search we found the following best pa-
rameters for TD-Q-LIN runs: ~+=0.99, Lr~=0.0001,
A=0.9, Ha.=100. Weights are randomly initialized
in [-0.01,0.01]. For TD-Q-NG we used: ~=0.98,
Irn=0.1, A=0.9, Hy,,,=100, 8 = 0.1, n = 30, Z;:+=10,
Zmaz=100, Ppq. = 0.7, Tg=0.5, T = 1000. w; compo-
nents are randomly initialized in [—1.0,1.0], Q-values are
zero-initialized.

Results. We plot goals scored by learner and oppo-
nent during test phases against number of games in Fig-
ure 2. PIPE’s score differences continually increase. It

PIPE 1-player CO-PIPE 1-player
300 L learner —— 300 L learner ——— ‘
opponent 7~ opponent
250 250
» 200 f » 200 f
g 150 g 150 b
100 100 -
50 50
0 T P 0 - [r— L
0 1000 2000 3000 0 1000 2000 3000
#games #games
TD-Q-LIN 1-player TD-Q-NG 1-player
300 L learner ——— "] 300 L learner ——— ‘
opponent opponent
250 1 250
» 200 f] » 200 f
g 150 g 150 b
100 - R 100 -
50 L
0 LT pns [JASSSEENENAN eoopee ey Y
0 1000 20 3000 0 1000 2000 3000
#games #games
PIPE 11-players CO-PIPE 11-players
500 | leaner ——' 500 | leaner ——' ‘
opponent - opponent ==
400 - 400 -
£ 300 £ 300
(=] (=]
(=2} (=2}
200 200 [
100 | 100 ¢
0 L T \’\ 0 o L b \77"7' L
0 1000 2000 3000 0 1000 2000 3000
#games #games
TD-Q-LIN 11-players TD-Q-NG 11-players
500 | leaner ——' "] 500 [leamner —— ' ‘
opponent - opponent -
400 - 1 400 -
£ 300 £ 300
(=] [=]
(=2} (=2}

. . . 0 . . .
0 1000 2000 3000 0 1000 2000 3000

#games #games

Fig. 2: Average number of goals scored during all test
phases, for team sizes 1 and 11.

always quickly learns an appropriate policy regardless of
team size. CO-PIPE also finds successful policies. Its
score differences are smaller than PIPE’s. This, how-
ever, is an expected outcome since CO-PIPE never met
BRO during training. CO-PIPE’s performance increases
with increasing team size, since it becomes easier to dis-
tinguish between good and bad policies. PIPE and CO-
PIPE achieve much better performance than TD-Q-LIN
and TD-Q-NG. This is partially due to PIPE’s and CO-
PIPE’s ability to efficiently select relevant input features
for each action. TD-Q-LIN’s score differences first in-

crease until TD-Q-LIN runs into an “outlier problem”,
which lets its linear nets unlearn previously discovered
good policies (see [Satustowicz et al., 1997b] for details).
TD-Q-NG initially learns faster than TD-Q-LIN, but does
not continue improving. It stays quite stochastic during
the entire run.

6 Conclusion

We compared two direct policy search methods (PIPE
and CO-PIPE) and two EF-based ones (TD-Q-LIN and
TD-Q-NG) in a simulated soccer case study with policy-
sharing agents. PIPE, TD-Q-LIN, and TD-Q-NG were
trained against a biased random opponent (BRO). CO-
PIPE evolved its policies by coevolution. PIPE and CO-
PIPE quickly learned to beat BRO, CO-PIPE even with-
out being explicitly trained to do so. TD-Q-LIN and TD-
Q-NG achieved performance improvements, too. Despite
our efforts to improve EF-based approaches by using dif-
ferent function approximators (linear nets and the more
powerful neural gas nets) their results remain less excit-
ing. TD-Q-LIN’s and TD-Q-NG’s problems are due to
difficulties in learning EF's in partially observable stochas-
tic environments.

Acknowledgments

Thanks for valuable discussions to Jieyu Zhao, Nic
Schraudolph, Luca Gambardella, and Cristina Versino.

References

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and
Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA.

[Cramer, 1985] Cramer, N. L. (1985). A representation
for the adaptive generation of simple sequential pro-
grams. In Grefenstette, J., editor, Proceedings of an
International Conference on Genetic Algorithms and
Their Applications, Hillsdale NJ. Lawrence Erlbaum
Associates.

[Fritzke, 1995] Fritzke, B. (1995). A growing neural gas
network learns topologies. In Tesauro, G., Touretzky,
D. S., and Leen, T. K., editors, Advances in Neural
Information Processing Systems 7, pages 625-632. MIT
Press, Cambridge MA.

[Levin, 1973] Levin, L. A. (1973). Universal sequential
search problems. Problems of Information Transmis-
sion, 9(3):265-266.

[Lin, 1993] Lin, L. J. (1993). Reinforcement Learning for
Robots Using Neural Networks. PhD thesis, Carnegie
Mellon University, Pittsburgh.

[Satustowicz and Schmidhuber, 1997] Satustowicz, R. P.
and Schmidhuber, J. (1997). Probabilistic incremental
program evolution. Evolutionary Computation, 5(2).

[Salustowicz et al., 1997a] Satustowicz, R. P., Wiering,
M. A., and Schmidhuber, J. (1997a). Learning team
strategies with multiple policy-sharing agents: A soc-
cer case study. Technical Report IDSTA-29-97, TDSTA.

[Salustowicz et al., 1997b] Satustowicz, R. S., Wiering,
M. A., and Schmidhuber, J. (1997b). On learn-
ing soccer strategies. In Proceedings of the 7th In-
ternational Conference on Artificial Neural Networks
(ICANN’97), Lecture Notes in Computer Science.
Springer-Verlag Berlin Heidelberg. To appear.

