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Abstract—Object recognition systems need effective image
descriptors to obtain good performance levels. Currently, the
most widely used image descriptor is the SIFT descriptor that
computes histograms of orientation gradients around points in an
image. A possible problem of this approach is that the number
of features becomes very large when a dense grid is used where
the histograms are computed and combined for many different
points. The current dominating solution to this problem is to use
a clustering method to create a visual codebook that is exploited
by an appearance based descriptor to create a histogram of visual
keywords present in an image. In this paper we introduce several
novel bag of visual keywords methods and compare them with the
currently dominating hard bag-of-features (HBOF) approach that
uses a hard assignment scheme to compute cluster frequencies.
Furthermore, we combine all descriptors with a spatial pyramid
and two ensemble classifiers. Experimental results on 10 and
101 classes of the Caltech-101 object database show that our
novel methods significantly outperform the traditional HBOF
approach and that our ensemble methods obtain state-of-the-art
performance levels.

I. INTRODUCTION

Object recognition algorithms aim to classify images based

on their visual content. During the last decade machine vision

systems have become more effective for dealing with the

complex problem of handling high dimensional pixel rep-

resentations. For this most machine vision systems use an

image descriptor to extract feature vectors from images which

are given to a machine learning algorithm to map the image

features to desired class labels. The most widely used image

descriptor is the SIFT descriptor [1] that describes an image

using a histogram of pixel gradient orientations. Although the

original SIFT algorithm [1] consists of a method to extract

salient keypoints next to the descriptor, many recent machine

vision systems [2], [3], [4] replace the keypoint extractor with

a grid consisting of gridpoints at regular intervals so that the

whole image content is represented.
Using the SIFT descriptor on many points of a dense grid

in an image leads to very large feature representations that are

more complex to handle with a machine learning algorithm.

Therefore, the bag of visual keywords representation has been

proposed [5]. This method can work with dense grids without

increasing the dimensionality of the resulting feature vectors.

This method consists of the following steps: (1) Extract patches

(small parts of an image) and compute their feature vectors

using a visual descriptor, (2) Cluster the feature vectors to

create a visual codebook, (3) Represent an image using a

histogram of visual keywords by using the codebook together

with the feature vectors extracted from the patches. The main

idea of this approach is to describe the content of images by a

histogram of an orderless collection of visual words, similar to

the bag-of-words (BOW) representation that shows very good

performance for classifying text documents [6].

The hard bag-of-features (HBOF) [5] approach can be

considered as the most often used method for creating the

visual keywords histogram. In the HBOF approach the key-

word histogram is computed by following a winner take all

scheme, also referred to as “hard assignment”. In this scheme,

each image patch is used for incrementing a value of a single

cluster in feature space, or keyword in the visual codebook.

The resulting HBOF histogram therefore only contains the

frequencies of winning cluster centroids to represent an image.

In the literature, experimental results have shown that labeling

each region by its nearest cluster center only, is not an

optimal choice [7], [8], [9]. In HBOF other cluster centroids

are ignored to describe the frequency distribution of visual

keywords that occur in images, whereas other cluster centers

also contain specific features that can enhance the complete

description of images. Thus, a number of novel bag of visual

keywords methods have been proposed [7], [8], [9] that use a

”soft assignment” as an improved way for describing images.

A rather different way of using the visual codebook was

developed in the HMAX system [10]. In the last stage of the

HMAX approach a visual keyword receives a value based on

its maximal similarity to one of the patches in an image.

Contributions of this paper. We present a novel object

recognition systems that contributes in several ways to the

state-of-the-art in machine vision. (1) We present and evaluate

a novel soft assignment method using the codebook model.

(2) We describe a novel approach related to the use of image

patches by the HMAX architecture, and compare this and the

original HMAX method to hard and soft assignment methods,

and the use of SIFT without a codebook. (3) We combine

all these methods with spatial pyramids [11] and evaluate how

much they can profit from the use of multiple levels to describe

images. (4) We combine all the used descriptors using two

ensemble algorithms consisting of support vector machines

(SVMs) [12]. As ensemble methods we use the product and
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mean rules [13] to efficiently combine the different classifiers.

(5) All methods are compared on 10 and 101 images from the

Caltech-101 dataset, and the results show that our ensemble

methods obtain state-of-the-art performance levels.

The paper is organized as follows. Section II describes

previous image descriptors related to our work. After that

we describe our novel bag of visual keywords approaches

in Section III. Section IV describes the ensemble methods

and how we used the support vector machine as classifiers.

Experimental results on 10 and 101 image classes of Caltech-

101 are presented in Section V, and Section VI concludes the

paper.

II. RELATED WORK

In this section we will first describe the SIFT descriptor

[1], since all methods presented in this paper use it to describe

image patches or complete images. After that we will describe

previous methods that use a codebook to create a visual

keywords histogram. We will end with a description of the

method used in the HMAX architecture.

A. SIFT descriptor

There are many types of image descriptors, which rely on

features such as color, texture and shapes. Nowadays, the most

successful image descriptors extract information about edges

and shapes. The best known ones are SIFT [1] and histograms

of orientation gradients (HOGs) [14]. The original SIFT al-

gorithm first computes salient points, and then describes the

regions around these extracted keypoints using an orientation

histogram. In contrast to the use of salient points, we use a

fixed partitioning scheme, which is a simpler method with

similar performance [15]. Furthermore, using this approach

the spatial relationships between the SIFT features can be

represented more efficiently. The fixed partitioning method

keeps the order of the keypoints always the same, whereas

when the SIFT keypoint extraction method is used, the order

of image parts is lost. Therefore, the SIFT keypoint extraction

method is either combined with a keypoint matching method

as in SIFT [1] or with a clustering method [5], [2]. In our

case, we are not obliged to use clustering, but can also use

the features computed by SIFT at the gridpoints of the fixed

partitioning grid.

The orientation histogram we use is computed from a

smoothed region in the image. For each pixel intensity in a

cell, I(x, y), the gradient magnitude m(x, y) and orientation

θ(x, y) are computed using the differences in pixel intensities:

Ix(x, y) = I(x + 1, y) − I(x − 1, y)

Iy(x, y) = I(x, y + 1) − I(x, y − 1)

m(x, y) =
√

Ix(x, y)2 + Iy(x, y)2

θ(x, y) = tan−1

(

Ix(x, y)

Iy(x, y)

)

where Ix and Iy are image derivatives of I(x, y) for x and y

directions respectively.

Fig. 1. Orientation histogram is constructed from a specific region.

To compute the image descriptor, an input image is first

convolved with a Gaussian filter. Then a fixed number of

regions to construct the descriptor is generated. After that,

the center point of each region is determined by its location

and dividing its width and height with 2. The descriptor is

then constructed by a circular region around the center point

of the region. The circular region radius r is determined by:

r =
√

(width
2 )2 + (height

2 )2. After that, the descriptor breaks

apart a window around the center point into 4 × 4 sub-blocks

and calculates a gradient orientation histogram, whereby each

gradient is weighted by its magnitude to better reflect strong

orientations. Each histogram has 8 bins and in total there are

128 bins per histogram for each region. Fig. 1 shows the

orientation histogram constructed from a given region.

B. Bags of visual keywords

The bag of visual keywords approach has been widely used

and demonstrated impressive levels of performance in image

categorization applications [16], [17]. This approach works

by clustering local feature vectors such as computed by the

SIFT descriptor, extracted from separate regions or patches,

into similar group patterns or clusters. The k-means clustering

algorithm is for example widely used to cluster image features.

The k-means method is quite fast, simple and has been applied

and shown to be useful in many applications. It works by

subdividing samples consisting of feature values into a set

of clusters, based on the distances between the samples [18].

When applied to image features, this results in a visual

codebook. The codebook contains a compact representation

of the local image features and is used to build the histogram

of visual keywords. There are a number of methods that create

the histogram values in different ways.

C. Hard bag-of-features (HBOF)

In HBOF [5], a winner take all scheme is used, where the

cluster centroid which corresponds to the minimum distance

to the feature vector of the patch is used to label the specific

patch or region. Therefore, HBOF is also termed as a “hard

assignment” approach. Using this approach, it is quite common

that two similar patches are assigned to different visual words,

especially when the size of the visual codebook and the

dimensionality of features are increased [7], [8]. Therefore,

similar images can be mapped to very different histograms.

The traditional HBOF works with a given vocabulary of

visual keywords that are extracted using a clustering method.



After that, the minimum (Euclidean) distance is computed

between the codebook cluster centroids and the feature vectors

of some image patch to compute a histogram that contains the

frequencies of winning visual words. For each visual word w

in the visual vocabulary V , the histogram of visual words is

computed as follows:

HBOF (w) =

n
∑

i=1

{

1 if w = arg minc(dist(c, ri))
0 otherwise

where n is the number of local regions in an image, ri is the

feature vector computed at local image region i, dist(c, ri) is

the (Euclidean) distance between a cluster centroid c and the

feature vector ri, and c ∈ V .

D. Soft assignment methods

Recently, bags of visual keywords with the soft assignment

scheme have attracted more attention. This approach is be-

lieved to be more efficient than HBOF, because it uses multiple

combinations of visual keywords to describe each image patch

that allows the complete description of an input image. The

main idea of this approach is to give a certain weight to

multiple nearby clusters, instead of only to the winning cluster.

In [8], the authors proposed a soft-weighting scheme where for

each image patch a cluster centroid receives a weight of 1
2i−1 ,

where i is the ith nearest neighbor in the codebook.

Besides this approach, Philbin et al [9] uses weights to

each cluster centroid according to exp(− d2

2σ2 ), where d is the

distance between the cluster centroid and the feature vector of

the image patch. The authors found that the parameter σ and

the number of nearest neighbors most influenced the image cat-

egorization performance. Both approaches have demonstrated

significant improvements compared to the hard assignment

approach. Following this, a new state-of-the-art soft assignment

method called Codeword uncertainty (UNC) was proposed [7]

that indicated a significant improvement when combining the

kernel distances to multiple nearby neighbors. This approach

can be defined as follows:

UNC(c) =
1

n

n
∑

i=1

Kσ(dist(c, ri))
∑|V |

j=1 Kσ(dist(vj , ri))

where Kσ is the one-dimensional Gaussian kernel. In contrast

to [9], given a codeword c, UNC normalizes the amount of

probability mass and distributes the weight over all codewords.

E. HMAX visual keywords approach (MAX)

In the hard assignment model, the keyword frequency

measures how often the cluster centroid has the minimum

distance to one of the patches in the image. A rather different

way is proposed in the HMAX architecture [10], which we

will compare in our study to other bag of visual keywords

approaches. Although the HMAX architecture consists of mul-

tiple layers, somewhat mimicking the workings of the visual

cortex, here we only consider the workings of layer C2 in

the HMAX architecture. Furthermore, in the original HMAX

architecture no clustering was applied to compute a visual

codebook, but distances to random patches were computed.

We will call the method that uses a visual codebook the Max

similarity map or simply MAX descriptor.

Given a set of feature vectors computed in the patches of an

image, MAX computes the maximum similarity of all patches

to a keyword from the codebook and use this similarity in

the resulting histogram. Therefore, instead of a competition

between cluster centroids, here there is a competition between

patches. The resulting feature vector describes how much each

keyword is present in the image. The MAX descriptor is

described more formally with the following equation:

MAX(c) = max
r

(exp(−λ · dist(c, r)))

Here, an exponential function is used together with the param-

eter λ to calculate similarity scores between 0 and 1. The λ

parameter is optimized empirically.

III. NOVEL VISUAL KEYWORD DESCRIPTORS

In this section three novel descriptors based on codebooks

will be described. The first method is a novel soft assignment

method, the second one is a variant of the MAX descriptor

explained before that does not need an additional parameter,

and the last descriptor computes histograms for whole images

instead of using small patches.

A. Weighted centroid maps (WCM)

WCM is a soft assignment approach and thus increments

multiple keyword counters when examining each patch. WCM

uses a ranking scheme where the closest centroid receives

the highest increment and centroids not within a predefined

number of nearest neighbors do not receive anything. Let

Rank(p, ci) ∈ [1, k], where k is the number of cluster

centroids, be the rank of nearest cluster ci from the set of

cluster centroids, where p is an image patch. The clusters

having a rank below some number N contain the most relevant

information. Thus, the weight associated with the centroid ci

for patch p is:

W (ci) =

{

(N−Rank(p,ci))+1
N

if Rank(p, ci) ≤ N

0 otherwise

For each keyword in the codebook all these weights are

added up when examining all patches in an image.

B. Min distance map (MIN)

Our MIN approach is inspired by the HMAX architecture

[10] and is quite similar to the MAX descriptor. The problem

of the MAX descriptor is that it requires fine-tuning the pa-

rameter λ to get the best results. The MIN approach computes

a minimum distance map without the use of any parameter.

The minimum distance map MIN for each visual word c in

the visual vocabulary V is computed as follows:

MIN(c) = min
r

(dist(c, r))

In our experiments the Euclidean distance is used to com-

pute the distances. The size of the descriptor is equal to the

number of cluster centroids in the codebook.



C. Spatial correspondence distance map (SCDM)

In the previous visual keywords descriptors, the image

was split up in regions using overlapping or non-overlapping

patches. After that, these regions are clustered to produce a

codebook. The SCDM does not use patches, but computes a

feature vector based on the whole image. It is combined with

spatial pyramids [11] to compute spatial correspondences.

One of the simplest and most efficient ways to capture the

spatial correspondence is to use the spatial pyramid approach

[11]. This approach consists of one global (single level, L = 0)

and several local regions to describe multiple levels of resolu-

tion. The local region numbers are increased with increasing

the number of levels by 2L, where L = 0, 1, 2, . . . , N . The idea

is simply to split up an image in 1, 2×2, 4×4, etc. local regions

and combine them all. Although we use the spatial pyramids

with all previously described descriptors in the experiments,

for the SCDM it computes spatial correspondence codebooks

for all levels independently.

The spatial correspondence distance map is constructed

using distances between a (local) region feature vector and the

cluster centroids from the spatial correspondence codebooks

at multiple resolutions. If IL is the image feature vector at

level L, and Ci(L) is a cluster centroid at level L then SCDM

computes the following histogram for each level L:

Sscdm(Ci(L)) = dist(IL, Ci(L)) (1)

The method therefore computes a distance map from an

image to cluster centroids representing other images, and does

this using different pyramid levels.

IV. CLASSIFICATION METHODS

A. SVM classifier

We employ an SVM [12] to learn to classify the images.

The one-vs-one approach is used to train and classify images

in the Caltech-101 dataset. For the SVMs, we use Radial-

Basis-Function (RBF) kernels in all experiments. Initially, all

attributes in the training and testing sets were normalized to the

interval [-1,+1]. We did not use the fixed weighting scheme for

the spatial pyramid classifier [11]. Our previous experiments

[4] indicated that this did not improve the results.

We also need to find the SVM parameters C and γ that

perform best for the descriptors. To optimize the classification

performance, the parameters were determined by using the

libsvm grid-search algorithm [19]. We tried the following

values {2−5,2−3,...,215} and {2−15,2−13,...,23} for C and

γ, respectively. The values which gave the best accuracy

performance with 5-fold cross-validation are picked and used

to train on the training set.

B. Ensemble methods for combining classifiers

Our previous research [15], [3], [4] showed that combining

multiple features and classifiers with ensemble methods signifi-

cantly increases classification performance. Ensemble methods

have received considerable attention in the machine learning

community to increase the effectiveness of classifiers. In order

to construct a good ensemble classifier, the ensemble needs

to construct accurate and diverse classifiers and to combine

outputs from the classifiers effectively [20]. There exist several

methods to obtain and combine the diverse classifiers. Here we

employ two ensemble algorithms namely (1) product rule and

(2) mean rule [13].

The product rule is one of the simplest and most effi-

cient ways for combining outputs of classifiers [13]. When

the classifiers have small errors and operate in independent

feature spaces, it is efficient to combine their (probabilistic)

outputs by multiplying them. Thus, we use this product rule to

determine the final decision of the ensemble. First the posterior

probability outputs P k
j (xk) for class j of n different classifiers

are combined by the product rule:

P
p
j (x1, ..., xn) =

n
∏

k=1

P k
j (xk) (2)

where xk is the pattern representation of the kth descriptor.

Then the class with the largest probability product is consid-

ered as the final class label belonging to the input pattern.

When estimators of the different classifiers contain large

errors, it can be more efficient to combine their estimated

probabilities by the mean rule [13] as follows:

Pm
j (x1, ..., xn) =

1

n

n
∑

k=1

P k
j (xk) (3)

Similar to the product rule, the class with the largest

probability mean is considered as the final class label.

In the experiments we will compare these ensemble meth-

ods to the naive approach that combines the feature vectors

computed at all spatial resolution levels in one large feature

vector.

V. EXPERIMENTS AND RESULTS

A. Caltech dataset

Our experiments contain two stages. In the first stage,

10 categories were selected and a total of 10 × 30 = 300
images for evaluation. The first ten categories were as fol-

lows: airplane, cameras, cars, cell phones, cups, helicopters,

motorbikes, scissors, umbrellas, and watches. All images are

in JPEG format with medium resolution (about 300 × 300

pixels). Based on results of the first stage, we extended the

experiment to all categories of the dataset (Caltech-101). Fig.

2 shows some images of the Caltech-101 dataset with large

intra-class variations.

In order to evaluate the described approaches, we used

the region of interest (ROI) taken from [2] for our images.

For evaluating the combination methods and the other single

descriptors, we used 15 training and 15 testing images for

each image class. We chose 10 times different training and

test images randomly from a set of candidate images from

the 10 and 101 classes of the Caltech-101 dataset. Finally, we

report the performances using mean and standard deviation to

verify significances of the obtained classification results.



Fig. 2. Some examples of images from the Caltech-101 dataset with intra-

class variations namely chair, cup, Buddha, bonsai, beaver, and umbrella,

respectively.

B. Experimental setup

For SIFT, we use the maximum angle 180◦. We applied

Gaussian blur with σ = 1.0 to smooth the images. Feature

vectors are quantized into visual words using k-means cluster-

ing where we tried k=300, 650, 700 and 750. The best value

for each descriptor is used to compute the final results. For

extracting the patches, we used a rectangular grid of 32 × 32

pixels with spacing of 8 pixels in each image. We used several

levels of the spatial pyramid, L = 0, 1 and 2.

C. Results on Caltech-10

Table I shows the average classification accuracy (%) and

the standard deviation of the different descriptors to classify

images in 10 classes. In our experiments, increasing the

number of levels in HBOF and WCM from 1 to 2 made

classification performance much worse, thus we do not report

their results. In this case, we believe that levels 0 and 1 have

sufficiently rich information to describe objects at these levels,

and that using too many clusters (like at level 2) leads to

less discriminative descriptors. The table clearly shows that

the proposed methods (MIN, WCM, and SCDM) outperform

the commonly used HBOF approach. This demonstrates that

each cluster centroid alone is not the best method to describe

the appearance of local regions.
Combining all levels of a single descriptor often improves

the performance of the best single level as shown in the last

three columns of Table I. The best combination method is the

mean rule with the MIN descriptor that achieves an accuracy of

96.2%. The same training and testing images are applied to the

state-of-the-art method, UNC, with normalization of feature

vectors [7]. The results show that the MIN descriptor works

very well and significantly outperforms the other approaches,

including the MAX descriptor.
We extended our experiments to combine all classifiers of

the different descriptors (except for UNC) on 10 classes. We

TABLE I
THE AVERAGE CLASSIFICATION ACCURACY (MEAN AND SD) OF THE

DIFFERENT DESCRIPTORS FOR EACH LEVEL AND COMBINATION METHOD

ON 10 CLASSES. NAIVE=NAIVE FEATURE COMBINATION METHOD,
PR=PRODUCT RULE, MR=MEAN RULE.

L0 L1 L2 Naive PR MR
SIFT 79.7 89.7 89.4 91.5 91.3 91.7

±2.5 ±2.3 ±3.8 ±2.1 ±2.5 ±2.5
HBOF 77.7 72.1 - 78.8 75.9 76.3

±2.4 ±10.0 - ±3.5 ±6.2 ±6.9
MIN 79.1 86.9 90.7 86.7 95.5 96.2

±2.6 ±5.3 ±3.6 ±2.5 ±3.8 ±3.7
MAX 80.1 85.0 88.2 89.0 89.6 89.5

±1.8 ±2.5 ±2.4 ±2.3 ±1.7 ±1.6
WCM 79.2 85.9 - 84.4 84.1 83.9

±3.0 ±1.6 - ±3.3 ±1.7 ±1.7
SCDM 75.3 87.9 91.5 89.9 90.9 91.1

±1.8 ±2.0 ±2.0 ±1.9 ±1.4 ±1.8
UNC 64.4 80.2 79.1 81.7 83.1 83.5

±3.7 ±3.4 ±2.2 ±2.9 ±2.5 ±1.8

TABLE II
THE AVERAGE CLASSIFICATION ACCURACY (MEAN AND SD) OF

DIFFERENT COMBINATION CLASSIFIERS AND ENSEMBLE METHODS ON 10
CLASSES. M1=CLASSIFIERS BASED ON ALL LEVELS COMBINED,

M2=CLASSIFIERS BASED ON SEPARATE LEVELS, M3=CLASSIFIERS BASED

ON THE BEST SINGLE LEVEL

Product Rule Mean Rule
M1 96.5±1.3 97.0±1.3
M2 93.5±1.9 94.1±2.1
M3 94.7±1.9 95.3±2.1

compare three combination methods with the two ensemble

methods (product and mean rules). (1) Combining the classifier

output probabilities when the features are combined from all

levels. (2) Combining the outputs from classifiers based on

features from separate levels (note that this leads to more

probabilities that are combined). (3) Combining the outputs

from the classifiers using the best single level only. The results

are reported in Table II. In this experiment, combining the

naive classifiers from Table I with the mean rule gives the

best performance of 97.0%. This is probably caused by the

fewer and more accurate values that are combined compared

to combining all classifiers from separate levels. Furthermore,

this method does not throw away information which only

combining the classifiers from the best level does.

D. Results on Caltech-101

Based on the Caltech-10 dataset findings, we extend our

experiments to the whole dataset. We used the same optimal

parameters as in 10 classes for generating feature descriptors

and for the k-means clustering algorithm. However, the learn-

ing parameters for each SVM classifier are adjusted to the

need of many categories using libsvm grid-search. Table III

shows the average categorization performance of the single

combined descriptors on 101 classes, where the naive com-

bination method is used. These results also clearly show that

using WCM and methods inspired by the HMAX architec-

ture (MIN and MAX) significantly outperform the standard

hard bag-of-features approach, although the immediate use of



SIFT features without using visual codebooks obtains the best

performance. We also performed experiments with the UNC

approach without normalization of feature vectors (our results

with normalization of feature vectors are worse). This confirms

that HMAX based visual keywords descriptors and also our

weighted centroid maps improve classification performance

compared to previous bag of visual keywords descriptors.

TABLE III
THE AVERAGE CLASSIFICATION ACCURACY (MEAN AND SD) OF THE

SINGLE DESCRIPTORS ON 101 CLASSES.

Naive
SIFT 62.7±1.3

HBOF 51.8±1.5
MIN 57.9±1.0
MAX 59.0±0.9
WCM 57.6±1.2
SCDM 55.1±1.6
UNC 51.6±0.9

Table IV shows that a combination of the descriptors

(without UNC) performed very well with an ensemble of

support vector machines. It gives 66.8 ± 1.6 with the mean

rule on 101 classes of the Caltech 101 dataset.

TABLE IV
THE AVERAGE CLASSIFICATION ACCURACY (MEAN AND SD) OF USING

THE SINGLE CLASSIFIERS AND ENSEMBLE METHODS ON 101 CLASSES

Product Rule Mean Rule
M1 66.6±1.2 66.8±1.6

VI. CONCLUSIONS

In this paper, we have introduced several novel approaches

for exploiting visual codebooks. We have reported a significant

comparison between these approaches and current state of

the art bag of visual keywords descriptors, and shown that

our novel approaches significantly outperform the previous

methods. Still, the best single descriptor on the 101 classes

is the SIFT descriptor that computes and combines feature

vectors at various gridpoints. This may be caused by its ability

to keep structural relationships between parts of the image. The

visual keywords descriptors all compute an orderless collection

of features that leads to losing information about structures.

Although this problem is slightly overcome by using the spatial

pyramid, when using too many levels of the pyramid these

approaches lead to a very large number of features.

Another problem of the combination of the descriptors with

an SVM is that particular very relevant keywords (such as

a wheel for recognizing a car) receive a small value in the

resulting complete image representation when these relevant

parts only occupy a small part of the image.

In future work we want to research novel methods that

can deal with dense grids and keep the structural relationships

between parts of the image in the resulting image representa-

tion. This is not a simple problem, since there can be many

relationships between image parts. Therefore the system should

be able to represent relevant parts that co-occur with other

relevant parts in discriminative spatial structures.
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