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Abstract: In this paper we propose the use of vision grids as state representation to learn to play the game Tron using
neural networks and reinforcement learning. This approach speeds up learning by significantly reducing the
number of unique states. Furthermore, we introduce a novel opponent modelling technique, which is used to
predict the opponent’s next move. The learned model of the opponent is subsequently used in Monte-Carlo
roll-outs, in which the game is simulated n-steps ahead in order to determine the expected value of conducting a
certain action. Finally, we compare the performance using two different activation functions in the multi-layer
perceptron, namely the sigmoid and exponential linear unit (Elu). The results show that the Elu activation
function outperforms the sigmoid activation function in most cases. Furthermore, vision grids significantly
increase learning speed and in most cases this also increases the agent’s performance compared to when the
full grid is used as state representation. Finally, the opponent modelling technique allows the agent to learn
a predictive model of the opponent’s actions, which in combination with Monte-Carlo roll-outs significantly
increases the agent’s performance.

1 INTRODUCTION

Reinforcement learning algorithms allow an agent
to learn from its environment and thereby optimise its
behaviour (Sutton and Barto, 1998). Such environ-
ments can be modelled as a Markov Decision Pro-
cess (MDP) (van Otterlo and Wiering, 2012; Bell-
man, 1957), where an agent tries to learn an op-
timal policy from trial and error. Reinforcement
learning algorithms have been widely applied in the
area of games. A well-known example is backgam-
mon (Tesauro, 1995), where reinforcement learning
has led to great success. This paper examines the ef-
fectiveness of reinforcement learning for the game of
Tron. One of the main challenges of using reinforce-
ment learning in games is the large size of the state
space. Another challenge is how an agent can learn to
model its opponent effectively and use this opponent’s
model to significantly increase its performance.

To deal with large state spaces, in many cases
the agent is constructed using a multi-layer percep-
tron (MLP) (Rumelhart et al., 1988). The MLP will
receive the current game state as its input and has
to determine the move that will result in the high-
est reward in the long term. The combination of an
MLP and reinforcement learning has showed promis-
ing results, for instance in Backgammon (Tesauro,

1995), Ms. PacMan (Bom et al., 2013) and Star-
craft (Shantia et al., 2011). Furthermore, deep rein-
forcement learning using neural networks with many
layers have also obtained impressive results on a vari-
ety of games (Mnih et al., 2013).

In most research on learning to play games with
connectionist reinforcement learning, the MLP uses
only the well-known sigmoid activation function.
However, there are other choices such as the expo-
nential linear unit (Elu). The exponential linear unit
has three advantages compared to the sigmoid func-
tion (Clevert et al., 2015). It alleviates the vanishing
gradient problem by its identity for positive values,
it can return negative values which might improve
learning, and it is better able to deal with a large num-
ber of inputs. This activation function has shown to
outperform the ReLU in a convolutional neural net-
work on the ImageNet dataset (Clevert et al., 2015).
Another way to deal with large state spaces is to give
the agent a partial view of the environment. If we
look at how humans play the game Tron we see that
they mainly focus their attention around the current
position of the agent. Therefore, vision grids (Shan-
tia et al., 2011) can be useful. A vision grid can be
seen as a snapshot of the environment from the agent’s
point of view. An example could be a three by three
square around the ’head’ of the agent. By using a



vision grid of an appropriate size, the agent can ac-
quire the most important information about the dy-
namic state of the environment. Not only does this
dramatically decrease the number of unique states,
it also reduces the amount of irrelevant information,
which can speed up the learning process of the agent.

For most game research, the agent does not learn
an explicit opponent model. In most cases, roll-outs
or lookahead strategies are used that select opponent’s
actions according to how the agent itself would se-
lect actions or according to simple rules. Although
roll-outs have shown to substantially increase per-
formance in games such as Backgammon (Tesauro
and Galperin, 1997), Go (Bouzy and Helmstetter,
2004; Silver et al., 2016a), and Scrabble (Shep-
pard, 2002), the disadvantage of this approach is
that particular weaknesses of the opponent cannot
be exploited, as no true model of how the oppo-
nent selects actions is used. Opponent modelling has
been studied for imperfect-information games such as
poker (Ganzfried and Sandholm, 2011; Southey et al.,
2005). Furthermore, in combination with Q-learning
(Watkins and Dayan, 1992) it has proven to lead to
better performances (He et al., 2016). However, as
noted by (Collins, 2007), the learned models are often
environment specific and take considerable effort to
learn. As a solution to this problem, Mealing (Meal-
ing, 2015) proposed a dynamic opponent modelling
variant, which uses sequence prediction to learn high
rewarding strategies.

Contributions: In this paper, we developed dif-
ferent state representations for the game of Tron. We
show that with vision grids we can reduce the number
of unique states, which helps overcoming the chal-
lenge of using reinforcement learning in problems
with large state spaces. We use the information from
the vision grids as input for a multi-layer perceptron
that is trained using a reinforcement learning algo-
rithm. Next to using the common sigmoid function in
the hidden layer of the MLP, we will also use the Elu
activation function and compare the results of both
activation functions. The most important contribution
of this paper is a novel opponent modelling technique.
In our proposed algorithm, the agent learns the oppo-
nent’s behaviour by predicting the next move of the
opponent, observing the result, and adjusting the neu-
ral network’s parameters based on this observation. If
the opponent is following a policy, the agent should
be able to learn this policy over time. This model
of the opponent is subsequently used in Monte-Carlo
roll-outs. In such a roll-out the game is simulated n
steps ahead in order to determine the expected value
of performing action a in state s and subsequently ex-
ecuting the action that is associated with the highest

Q-value in each state. In these roll-outs, the learned
opponent model is used to select actions for the oppo-
nent. The roll-outs are performed multiple times and
the results are averaged. We performed many differ-
ent experiments to compare all methods (3 state rep-
resentations, sigmoid / Elu, opponent model / no op-
ponent model, different numbers of roll-outs). From
the results we can conclude that vision grids are effec-
tive for faster training and better final performances.
Furthermore, when we combine the vision grids with
opponent modelling and roll-outs, the performances
are very good, reaching very high scores against 2 dif-
ferent fixed opponents.

Outline: In the next section we explain the frame-
work that was built to simulate the game and agent.
Section 3 describes reinforcement learning combined
with multi-layer perceptrons. In Section 4, we explain
the use of vision grids for Tron and the novel oppo-
nent modelling technique. Then in section 5 we de-
scribe the experiments and show their results. Finally,
in section 6 we present our conclusions and possible
future work.

2 THE GAME OF TRON

Tron is an arcade video game released in 1982 and
was inspired by the Walt Disney motion picture Tron.
In this game the player guides a light cycle in an arena
against an opponent. The player has to do this, while
avoiding the walls and the trails of light left behind
by the opponent and player itself. See Figure 1 for
a graphical depiction of the game. We developed a
framework that implements the game of Tron as a se-
quential decision problem where each agent selects
an action for each new game state. In this research
the game is played with two players. The environ-
ment is represented by a 10 by 10 grid in which the
player starts at a random location in the top half of
the grid and the opponent in the bottom half. After
that, both players decide on an action to carry out.
The action space consists of the four directions the
agents can move in. When the action selection phase
is completed, both actions get carried out and the new
game state is evaluated. In case both agents move to
the same location, the game ends in a draw. A player
loses if it moves to a location that is previously vis-
ited by either itself or the opponent or when the agent
wants to move to a location outside of the grid. If
it happens that both agents lose at the same moment,
the game counts as a draw. We estimate the number
of possible different states in the game to be of the
order 1020, which is similar to the game Othello that
consists of a board of 7×7 cells.



Figure 1: Tron game environment with two agents, where
their heads or current location are in a darker colour.

For the opponent we used two different imple-
mentations. Both fixed opponents always first check
whether their intended move is possible and therefore
will never lose unless they are fully enclosed. The
first agent randomly chooses an action from the pos-
sible actions, while the second agent always tries to
execute its previous action again. If this is not pos-
sible, the opponent randomly chooses an action that
is possible and keeps repeating that action. This im-
plies that this opponent only changes its action when
it encounters a wall, the opponent or its own tail. This
strategy is very effective in the game of Tron, because
it is very efficient in the use of free space and it makes
the agent less likely to enclose itself. We tested these
opponents by letting them play against each other,
and observed that the opponent employing the strat-
egy of going straight as long as possible only loses
25% of the games and 20% of the games end in a
draw. From here on we will refer to the agent em-
ploying the collision-avoiding random policy as the
random opponent and the other opponent will be re-
ferred to as the semi-deterministic opponent.

3 REINFORCEMENT LEARNING

When the agent starts playing the game, it will
randomly choose actions from its action space. In or-
der to improve its performance, the agent has to learn
the best action in a given game state and therefore we
train the agent using reinforcement learning. Rein-
forcement learning is a learning method in which the
agent learns to select the optimal action based on in-
game rewards. Whenever the agent loses a game it re-
ceives a negative reward or punishment and if it wins

it will receive a positive reward. As it plays a large
number of games, the agent should learn to select the
action that leads to the highest possible expected re-
ward given the current game state. Reinforcement
learning techniques are often applied to environments
that can be modelled as a so-called Markov Decision
Process (MDP) (Bellman, 1957). An MDP is defined
by the following components:

• A finite set of states S, where st ∈ S is the state at
time t.

• A finite set of actions A, where at ∈ A is the action
executed at time t.

• A transition function T (s,a,s′). This function
specifies the probability of ending up in state s′

after executing action a in state s. Whenever the
environment is fully deterministic, we can ignore
the transition probability. This is not the case in
the game of Tron, since it is played against an op-
ponent for which we cannot perfectly anticipate
its next move.

• A reward function R(s,a,s′), which specifies the
reward for executing action a in state s and sub-
sequently going to state s′. In our framework, the
reward is equal to 1 for a win, 0 for a draw, and
−1 in case the agent loses. Note that there are no
intermediate rewards.

• A discount factor γ to discount future rewards,
where 0≤ γ≤ 1.

To let the agent act in this MDP, we need a mapping
from states to actions. This is given by the policy π(s),
which returns for any state s the action to perform.
The value of a policy is given by the sum of the dis-
counted future rewards starting in a state s following
the policy π:

V π(s) = E
( ∞

∑
t=0

γ
trt |s0 = s,π

)
(1)

Where rt is the reward received at time t. The
value function gives the expected outcome of the
game if both players select the actions given by their
policy. The value of a state is the long-term reward the
agent will receive, while the reward of a state is only
short-term. Therefore, the agent has to choose the
state with the highest possible value. We can rewrite
equation 1 in terms of the components of an MDP:

V π(s) = ∑
s′

T (s,π(s),s′)(R(s,π(s),s′)+ γ V π(s′)) (2)

From equation 2 we see that the value of a par-
ticular state s depends on the transition function, the



probability of going to state s′ times the reward ob-
tained in this new state s′ and the value of the next
state times the discount factor. In practice, the transi-
tion function is often unknown and therefore we have
to use a reinforcement learning algorithm. Next, we
will look at the particular reinforcement learning al-
gorithm employed in this research: Q-learning.

3.1 Q-learning

In this research we will be using Q-learning (Watkins
and Dayan, 1992), for which the value of a state be-
comes a Q-value of a state-action pair, Q(s,a), which
gives the value of performing action a in state s. This
Q-value for a given policy is given by equation 3.

Qπ(s,a) = E
( ∞

∑
t=0

γ
trt |s0 = s,a0 = a,π

)
(3)

The value of performing action a in state s is the
expected sum of the discounted future rewards fol-
lowing policy π. The Q-value of an individual state-
action pair is given by:

Q(st ,at) = E(rt)+ γ ∑
st+1

T (st ,at ,st+1)max
a

Q(st+1,a) (4)

The Q-value of a state-action pair depends on the
expected reward and the highest Q-value in the next
state. However, we do not know st+1 as it depends
on the action of the opponent. Therefore, Q-learning
keeps a running average of the Q-value of a certain
state-action pair. The Q-learning algorithm is given
by:

Q̂(st ,at)← Q̂(st ,at)+α(rt +γmax
a

Q̂(st+1,a)−Q̂(st ,at))

Where 0 ≤ α ≤ 1 denotes the learning rate. As we
encounter the same state-action pair multiple times,
we update the Q-value to find the average Q-value of
this state-action pair. This kind of learning is called
temporal-difference learning (Sutton, 1988).

3.2 Function Approximator

Whenever the state space is relatively small, one can
easily store the Q-values for all state-action pairs in
a lookup table. However, since the state space in the
game of Tron is far from small the use of a lookup
table is not feasible in this research. In addition, since
there are many different states it could happen that
even after training, some states have not been encoun-
tered before. When a state has not been encountered
before, action selection happens without information

from experience. Therefore, we use a neural network
as function approximator. To be more precise, we
will be using a multi-layer perceptron (MLP) to es-
timate Q(s,a). This MLP will receive as input the
current game state s and its output will be the Q-value
for each action given the input state. One could also
choose to use four different MLPs, which output one
Q-value each (one for every action). We have tested
both set-ups and there was a small advantage of using
a single action neural network. The neural network
is trained using back-propagation (Rumelhart et al.,
1988), where the target Q-value is calculated using
equation 5. As a simplification we set the learning
rate α in this equation equal to 1, because the back-
propagation algorithm of the neural network already
contains a learning rate, which controls for the speed
of learning. The target Q-value for action at in state
st is therefore:

Qtarget(st ,at)← rt + γmax
a

Q̂(st+1,a) (5)

This target is valid as long as the action taken in the
state-action pair does not result in the end of the game.
Whenever that is the case, the target Q-value is equal
to the first term of the right-hand side of equation 5,
the reward received in the final game:

Qtarget(st ,at)← rt (6)

3.2.1 Activation function

In order to allow the neural network’s value function
approximation to be non-linear we use an activation
function in the hidden layer. One of the most often
used activation functions is the sigmoid function:

O(a) =
1

1+ e−a (7)

This function transforms the weighted sum of inputs
for a hidden unit to a value between 0 and 1. Re-
cently, it has been proposed that the exponential linear
unit performs better in some domains (Clevert et al.,
2015). We will compare the performance of the agent
using the sigmoid function and the exponential linear
unit (Elu) in the hidden layer. The exponential linear
unit is given by the following equation:

O(a) =

{
a if a≥ 0
β(ea−1) if a < 0

(8)

We set β equal to 0.01 after some preliminary exper-
iments. This function transforms negative activations
to a small negative value, while positive activation
is unaffected. We will compare the performance of
the agent with both activation functions to determine
which performs better for learning to play Tron.



4 STATE REPRESENTATION AND
OPPONENT MODELS

In this section, we will first describe the different
state representations that will be used by the agent.
Then, we will describe how a model of the opponent
can be learned and used for selecting actions using
roll-outs.

4.1 Vision Grids

The first state representation used as input to the MLP
is the entire game grid (10× 10). This translates to
100 input nodes, which have a value of one whenever
it is visited by one of the agents and zero otherwise.
Another 10 by 10 grid is fed into the network, but this
time only the current position of the agent has a value
of one. This input allows the agent to know its own
current position within the environment. The second
type of state representation and input to the MLP that
will be tested are vision grids. A vision grid can be
seen as a snapshot of the environment taken from the
point of view of the agent. This translates to a square
grid with an uneven dimension centred around the
head of the agent. To receive the most relevant in-
formation from the state of the game, three different
types of vision grids are combined (in all these grids
the standard value is zero):

• The player grid contains information about the lo-
cations visited by the agent itself: whenever the
agent has visited the location it will have a value
of one instead of zero.

• The opponent grid contains information about the
locations visited by the opponent: if the opponent
is in the ’visual field’ of the agent these locations
are encoded with a one.

• The wall grid represents the walls: whenever the
agent is close to a wall the wall locations will get
a value of one.

An example game state and the three associated vision
grids can be found in Figure 2. We will test vision
grids with a size of three by three (small vision grids)
and five by five (large vision grids) and compare the
performance of the agents with these small and large
vision grids to an agent that receives all information
from the game state.

4.2 Opponent Modelling

This paper introduces an opponent modelling tech-
nique with which a model of the opponent is learned
from observations. This model can subsequently be

Figure 2: Vision grid example with the current location of
both players in a darker color.

used in planning algorithms such as Monte-Carlo roll-
outs. Planning is one of the key challenges of arti-
ficial intelligence (Silver et al., 2016b). Many op-
ponent modelling techniques focus on probabilistic
models and imperfect-information games (Southey
et al., 2005; Ganzfried and Sandholm, 2011), which
makes them very problem specific. Our novel oppo-
nent modelling technique predicts the opponent’s ac-
tion using the multi-layer perceptron and learns from
the observed actions using the back-propagation al-
gorithm (Rumelhart et al., 1988). Over time the agent
learns to model which action the opponent will likely
select when it is in a specific state. The model is a
probability distribution of the opponent’s next move
given the state representation. Because of its simplic-
ity, this technique can be generalised to any setting in
which the opponent’s actions are observable. Another
benefit of this technique is that the agent simultane-
ously learns a policy and a model of the opponent,
which means that no extra phase is needed for the
learning process. In addition, the opponent modelling
happens with the same neural network that calculates
the Q-values for the agent. This might allow the agent
to learn hidden features regarding the opponent’s be-
haviour, which could further increase performance.

For modelling the opponent, four output nodes are
appended to the network, which represent the prob-
ability distribution over the opponent’s possible ac-
tions. The output can be interpreted as a probability
distribution, because we use a softmax layer over the
four appended output nodes. The softmax function
transforms the vector o containing the output mod-
elling values for the next K = 4 possible actions of
the opponent to values in the range [0,1] that add up



to one:

P(st ,oi) =
eoi

∑
K
k=1 eok

(9)

This transforms the output values to the probability of
the opponent conducting action oi in state st . In addi-
tion to these four extra output nodes, the state repre-
sentation for the neural network changes when mod-
elling the opponent. In the case of the standard input
representation by the full grid, an extra grid is added
where the head of the opponent has a value of one.
In the case of vision grids, an extra 4 vision grids are
constructed. The first three are the same as before, but
then from the opponent’s point of view. In addition,
an opponent-head grid is constructed which contains
information about the current location of the head of
the opponent. If the opponent’s head is in the agent’s
visual field, this location will be encoded with a one.

In order to learn the opponent’s policy, the net-
work is trained using back-propagation where the tar-
get vector is one for the action taken by the opponent
and zero for all other actions. If the opponent is fol-
lowing a deterministic policy, this allows the agent to
perfectly forecast the opponent’s next move after suf-
ficient training. Although in reality a policy is seldom
entirely deterministic, players use certain rules to play
a game. Therefore, our semi-deterministic agent is a
perfect example to test opponent modelling against.

Once the agent has learned the opponent’s policy,
its prediction about the opponent’s next move will be
used in so-called Monte Carlo roll-outs (Tesauro and
Galperin, 1997). Such a roll-out is used to estimate
the value Qsim(s,a), the expected Q-value of perform-
ing action a in state s and subsequently performing
the action suggested by the current policy for n− 1
steps. The opponent’s actions are selected on the ba-
sis of the agent’s model of the agent. If one roll-out
is used the opponent’s move with the highest prob-
ability is carried out. When more than one roll-out
is performed, the opponent’s action is selected based
on the probability distribution. At every action selec-
tion moment in the game m roll-outs of length n are
performed and the results are averaged. The expected
Q-value is equal to the reward obtained in the simu-
lated game (1 for winning, 0 for a draw, and -1 for
losing) times the discount factor to the power of the
number of moves conducted in this roll-out i:

Q̂sim(st ,at) = γ
irt+i (10)

If the game is not finished before reaching the roll-
out horizon the simulated Q-value is equal to the dis-
counted Q-value of the last action performed:

Q̂sim(st ,at) = γ
nQ̂(st+n,at+n) (11)

See algorithm 1 for a detailed description.

This kind of roll-out is also called a truncated roll-
out as the game is not necessarily played to its conclu-
sion (Tesauro and Galperin, 1997). In order to deter-
mine the importance of the number of roll-outs m, we
will compare the performance of the agent with one
roll-out and ten roll-outs.

Algorithm 1 Monte-Carlo Roll-out with Opponent
Model
Input: Current game state st , starting action at , hori-

zon N, number of roll-outs M
Output: Average reward of performing action at at

time t and subsequently following the policy over
M roll-outs
for m = 1,2, ..M do

i = 0
Perform starting action at
if M = 1 then

ot ← argmaxoP(st ,o)
else if M > 1 then

ot ← sample P(st ,o)
end if
Perform opponent action ot
Determine reward rt+i
rolloutRewardm = γrt+i
while not game over do

i = i+1
at+i← argmaxaQ(st+i,a)
Perform action at+i
if M = 1 then

ot+i← argmaxoP(st+i,o)
else if M > 1 then

ot+i← sample P(st+i,o)
end if
Perform opponent action ot+i
Determine reward rt+i
if Game over then

rolloutRewardm = γ irt+i
end if
if not Game over and i = N then

game over← True
rolloutRewardm = γ NQ(sN ,aN)

end if
end while
rewardSum = rewardSum+ rolloutRewardm
m = m+1

end for
return rewardSum/M



5 EXPERIMENTS AND RESULTS

To compare the different state representations, the
use of different activation functions in the MLP and
the usefulness of the opponent modelling technique
and roll-outs, many different experiments have been
conducted. In all experiments the agent is trained for
1.5 million games against two different opponents,
which lasts for around one day for one simulation.
After that, 10,000 test games are played. In these test
games, the agent makes no explorative actions. In or-
der to obtain meaningful results, all experiments are
conducted ten times and the results are averaged. The
performance is measured as the number of games won
plus 0.5 times the number of games tied. This number
is divided by the number of games to get a score be-
tween 0 and 1. This is a common performance score
for games.

With the use of different game state representa-
tions as input to the MLP, the number of input nodes
varies. The number of hidden nodes varies from 100
to 300 and is chosen such that the number of hidden
nodes is at least equal but preferably larger than the
number of input nodes. This was found to be opti-
mal in the trade-off between representation power and
complexity. Also, the use of several hidden layers has
been tested, but this did not significantly improve per-
formance and we therefore chose to use only one hid-
den layer.

5.1 State Representations

For setting all hyper-parameters of the different al-
gorithms, we ran many preliminary experiments. In
the first part of this research, without opponent mod-
elling, the number of input nodes for the full grid
is equal to 200 and the number of hidden nodes is
300. When vision grids are used, the number of input
nodes decreases to 27 and 75 for vision grids with a
dimension of three by three and five by five respec-
tively. The number of hidden nodes when using small
vision grids is equal to 100, while for large vision
grids 200 hidden nodes are used. In all these cases
the number of output nodes is four.

During training, exploration decreases linearly
from 10% to 0% over the first 750,000 games af-
ter which the agent always performs the action with
the highest Q-value. This exploration strategy has
been selected after performing preliminary experi-
ments with several different exploration strategies.
There is one exception to this exploration strategy.
When large vision grids are used against the semi-
deterministic opponent, exploration decreases from
10% to 0% over the 1.5 million training games. In

this condition the exploration policy is different, be-
cause the standard exploration settings led to unstable
results. The learning rate α and discount factor γ are
0.005 and 0.95 respectively and are equal across all
conditions except for one. These values have been se-
lected after conducting preliminary experiments with
different learning rates and discount factors. When
the full grid is used as state representation and the
agent plays against the random opponent, the learn-
ing rate α is set to 0.001. The learning rate is lowered
for this condition, because a learning rate of 0.005 led
to unstable results. All weights and biases of the net-
work are randomly initialised between −0.5 and 0.5.

In Figure 3, 4, and 5 the performance score during
training is displayed for the three different state repre-
sentations. In every figure we see the performance of
the agent against the random and semi-deterministic
opponent with both the sigmoid and Elu activation
function. For every 10,000 games played we plot the
performance score, which ranges from 0 to 1. We see
that for all three state representations performance in-
creases strongly as long as some explorative actions
are made. When exploration stops at 750,000 games,
performance stays approximately the same, except for
the full grid state representation with the Elu acti-
vation function against the semi-deterministic oppo-
nent. We have also experimented with a constant
exploration of 10% and with exploration gradually
falling to 0% over all training games, however this
did not lead to better performances. After training the
agent, we tested the agent’s performance on 10,000
test games. The results are displayed in Table 1 and
2. These results are gathered from ten independent
trials, for which also the standard error is reported.
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Figure 3: Performance score for small vision grids as state
representation over 1.5 million training games. Note that
after 750,000 games the agent stops performing exploration
moves.

From Table 1 and 2 we can conclude that with the
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Figure 4: Performance score for large vision grids as state
representation over 1.5 million training games.
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Figure 5: Performance score for the full grid as state repre-
sentation over 1.5 million training games.

sigmoid activation function, the use of vision grids
increases the performance of the agent when com-
pared to using the full grid. Against the random
opponent, the small vision grid with the Elu activa-
tion function performs best. Striking is the perfor-
mance of the agent using the full grid against the
semi-deterministic opponent using the Elu activation
function, which can be found in Table 2. The agent
reaches a performance score of 0.72 in this case,
which is the highest performance score obtained. This
finding might be caused by the fact that the agent can
actually profit from the semi-deterministic policy the
opponent is following, which it detects when the full
grid is used as state representation because it provides
more information about the past moves of the oppo-
nent. Against both opponents, the use of the Elu ac-
tivation function with the full-grid representation per-
forms significantly better than the sigmoid function.

Table 1: Performance score and standard errors against the
random opponent.

State representation Sigmoid Elu
Small vision grids 0.56 (0.037) 0.62 (0.019)
Large vision grids 0.54 (0.036) 0.53 (0.022)
Full grid 0.49 (0.017) 0.58 (0.025)

Table 2: Performance score and standard errors against the
deterministic opponent.

State representation Sigmoid Elu
Small vision grids 0.35 (0.044) 0.39 (0.016)
Large vision grids 0.37 (0.034) 0.39 (0.025)
Full grid 0.31 (0.023) 0.72 (0.007)

5.2 Opponent Modelling without
Monte-Carlo Roll-outs

Opponent modelling requires information not only
about the agent’s current position, but also about the
opponent’s position. As explained in section 4, this
increases the number of vision grids used and there-
fore affects the number of inputs and best found num-
ber of hidden nodes of the MLP. In the basic case
where the full grid is used, the number of input nodes
increases to 300 and the number of hidden nodes stays
300. For the large vision grids the number of in-
put nodes increases to 175 and the number of hidden
nodes increases to 300. Finally, when using the small
vision grids the number of input nodes becomes 63
and the number of hidden nodes increases to 200. In
all networks with opponent modelling the number of
output nodes is eight (the 4 Q-values for the differ-
ent actions and the 4 outputs to model the opponent’s
probability of selecting that action).

For these experiments preliminary experiments
showed that decreasing the exploration from 10% to
0% over the first 750,000 games led to the best results
in most cases. However, with large vision grids and
the sigmoid activation function against the random
opponent, exploration decreases from 10% to 0% over
1 million training games. The learning rate α and dis-
count factor γ are for the opponent modelling experi-
ments also 0.005 and 0.95 respectively. These values
have been found to lead to the best results, however
there are some exceptions. When the full grid is used
as state representation in combination with the sig-
moid activation function, the learning rate is lowered
to 0.001. This lower learning rate is also used with
small vision grids and the sigmoid activation function
against the random opponent. Finally, when large vi-
sion grids are used in combination with the sigmoid
activation function against the random opponent, a
learning rate of 0.0025 is used. Similar to the previ-
ous experiments, all weights and biases of the neural



networks are randomly initialised between −0.5 and
0.5.

For the opponent modelling experiments we
trained the agent against both opponents and with
both activation functions. We note that in this ex-
periment, no roll-outs are performed. Therefore any
possible performance improvement is caused by the
additional state information or the use of the addi-
tional outputs that learn to model the opponent. The
latter could be helpful to learn better features in the
hidden layer. Figures 6, 7, and 8 show the training
performance for the three different state representa-
tions. Table 3 and 4 show the performance during the
10,000 test games after training the agent with oppo-
nent modelling.

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

x100

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

x100

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

x100

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

x100

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

x100

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

x100

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

x100

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against semi−deterministic opponent

x10
4

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Small_VG
Large_VG
Full_Grid

Training performance large vision grids opponent modelling

x10
4

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids opponent modelling

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids opponent modelling

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids opponent modelling

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids opponent modelling

x10
4

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids opponent modelling

x10
4

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids opponent modelling

x10
4

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids opponent modelling

x10
4

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids opponent modelling

x10
4

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids

x10
4

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance large vision grids opponent modelling

x10
4

0.25

0.50

0.75

1.00

0 50 100 150
Games played

P
e
rf

o
rm

a
n
c
e
 s

c
o
re

Random_Sigmoid
Random_Elu
Deterministic_Sigmoid
Deterministic_Elu

Training performance small vision grids opponent modelling

Figure 6: Performance score for small vision grids as state
representation over 1.5 million training games with oppo-
nent modelling but without rollouts.
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Figure 7: Performance score for large vision grids as state
representation over 1.5 million training games with oppo-
nent modelling but without rollouts.

When we compare these results with the results
obtained without opponent modelling, we observe
several differences. First of all, when the full grid
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Figure 8: Performance score for the full grid as state rep-
resentation over 1.5 million training games with opponent
modelling but without rollouts.

Table 3: Performance score and standard errors with oppo-
nent modelling without rollouts against the random oppo-
nent.

State representation Sigmoid Elu
Small vision grids 0.67 (0.004) 0.67 (0.009)
Large vision grids 0.72 (0.005) 0.79 (0.003)
Full grid 0.42 (0.016) 0.40 (0.025)

Table 4: Performance score and standard errors with op-
ponent modelling without rollouts against the deterministic
opponent.

State representation Sigmoid Elu
Small vision grids 0.57 (0.015) 0.69 (0.005)
Large vision grids 0.63 (0.019) 0.90 (0.003)
Full grid 0.32 (0.023) 0.62 (0.015)

is used as state representation the performance drops
with opponent modelling. The opposite holds for both
small and large vision grids, where performance in-
creases with opponent modelling. The most signif-
icant increase in performance appears with large vi-
sion grids against the semi-deterministic opponent,
where a performance score of 0.90 is obtained.

In order to test whether this increase in perfor-
mance with vision grids arises due to the opponent
modelling technique, we conducted another experi-
ment. In this experiment the set-up is exactly the same
as in the opponent modelling experiment, but now the
agent does not learn to model the opponent. The av-
erage results of ten test games with the Elu activation
function can be found in Table 5.

From Table 5 we can conclude that the agent’s
increase in performance with opponent modelling is
due to the extra vision grids generated. This is the
case since there is not much difference in performance
with and without opponent modelling when the extra
vision grids for opponent modelling are also fed into



Table 5: Performance score and standard errors with the Elu
activation function and opponent vision grids, but without
opponent modelling.

State representation Random Deterministic
Small vision grids 0.69 (0.008) 0.69 (0.003)
Large vision grids 0.82 (0.009) 0.89 (0.003)

x100

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Games played

%
 c

o
rr

e
c
t 
p
re

d
ic

te
d

Small_VG
Large_VG
Full_Grid

Prediction against random opponent

Figure 9: Percentage of moves correctly predicted against
the random opponent.

the MLP.

5.3 Opponent Modelling with
Monte-Carlo Roll-outs

After the agent is trained using opponent modelling,
we applied roll-outs in order to try to increase the per-
formance of the agent even further. The number of
actions in a roll-out is set to ten, as this gives the
agent the opportunity to look far enough in the fu-
ture to choose the optimal action. Further increas-
ing the number of actions of a roll-out will often not
benefit the agent, as the average amount of actions in
a game is twenty. We compare the performance of
the agent with one and ten roll-outs. Since the oppo-
nent’s actions within the roll-outs are determined by
the learned probability distribution, we plot the pre-
diction accuracy of the agent against both agents in
Figure 9 and 10. These results are for the Elu acti-
vation function, which learns slightly faster than the
sigmoid activation function. We observe that within
25,000 games the agent correctly predicts 50% of
the random opponent’s moves and 90% of the semi-
deterministic opponent’s moves when we use vision
grids. When the full grid is used, this accuracy is
equal to 40% and 80% respectively.

The performance score and standard error using
one roll-out with a horizon of ten steps during 10,000
test games can be found in Table 6 and 7. The
Monte-Carlo roll-outs further increase the agent’s per-
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Figure 10: Percentage of moves correctly predicted against
the semi-deterministic opponent.

Table 6: Performance score and standard errors with one
roll-out and a depth of ten actions against the random oppo-
nent.

State representation Sigmoid Elu
Small vision grids 0.83 (0.002) 0.84 (0.003)
Large vision grids 0.66 (0.008) 0.66 (0.004)
Full grid 0.65 (0.004) 0.72 (0.007)

formance in most cases. However, performance de-
creases when large vision grids are used against the
random opponent. In all other cases, performance
considerably increases with the use of roll-outs. The
highest performance score obtained is 0.98, which
is obtained with large vision grids and the Elu acti-
vation function against the semi-deterministic oppo-
nent. This shows that by applying opponent mod-
elling and Monte-Carlo roll-outs, performance can be
increased to very high levels. From Table 7 we ob-
serve that also with small vision grids, performance
scores of over 0.90 are obtained against the semi-
deterministic opponent. If we compare the results
with vision grids and the full grid as state repre-
sentation, we observe that vision grids significantly
increase performance with opponent modelling and
Monte-Carlo roll-outs. This increase is most evi-
dent against the semi-deterministic opponent. When
the opponent employs the collision-avoiding random
policy, small vision grids lead to the highest perfor-
mance. When comparing Table 3 and 6, we see that

Table 7: Performance score and standard errors with one
roll-out and a depth of ten actions against the deterministic
opponent.

State representation Sigmoid Elu
Small vision grids 0.93 (0.002) 0.96 (0.001)
Large vision grids 0.95 (0.002) 0.98 (0.001)
Full grid 0.54 (0.010) 0.75 (0.010)



Table 8: Performance score and standard errors with ten
roll-outs and a depth of ten actions against the random op-
ponent.

State representation Sigmoid Elu
Small vision grids 0.84 (0.016) 0.88 (0.001)
Large vision grids 0.90 (0.001) 0.91 (0.001)
Full grid 0.72 (0.008) 0.74 (0.009)

Table 9: Performance score and standard errors with ten
roll-outs and a depth of ten actions against the deterministic
opponent.

State representation Sigmoid Elu
Small vision grids 0.93 (0.002) 0.96 (0.001)
Large vision grids 0.96 (0.002) 0.98 (0.001)
Full grid 0.55 (0.008) 0.78 (0.010)

roll-outs also increase performance against this ran-
dom opponent. This shows that although the policy of
the opponent is far from deterministic, opponent mod-
elling still significantly increases performance from
0.67 to 0.83 with the sigmoid activation function and
from 0.67 to 0.84 with the Elu activation function
when small vision grids are used as state represen-
tation.

After applying one roll-out for each action at any
state, we also tested whether increasing the number
of roll-outs to ten would affect the agent’s perfor-
mance. The results are displayed in Table 8 and 9.
When comparing the agent’s performance with one
and ten roll-outs, we detect one noteworthy differ-
ence. The agent’s performance against the random
opponent considerably increases when we use ten in-
stead of one roll-out. This increase is especially large
when we use large vision grids. Against the semi-
deterministic opponent, increasing the number of roll-
outs has no noticeable effect. This is because the
agent predicts the semi-deterministic opponent cor-
rectly in over 90% of the cases, causing the advantage
of action sampling and multiple roll-outs to be absent.

In order to determine whether it is the model of
the opponent that allows the agent to attain very high
performance levels using roll-outs, we also investi-
gated the performance of the agent when the moves
of the opponent in the roll-outs are determined ran-
domly rather than from the learned model of the op-
ponent. The results can be found in Table 10 and 11.
From the results, we can conclude that it is indeed
the model of the opponent that increases the agent’s
performance when roll-outs are used, because a bad
opponent model results in much worse performances
in combination with roll-outs.

Table 10: Performance score and standard errors with one
roll-outs and a depth of ten actions against the random op-
ponent and without using the learned model of the oppo-
nent.

State representation Sigmoid Elu
Small vision grids 0.46 (0.007) 0.50 (0.001)
Large vision grids 0.50 (0.001) 0.51 (0.002)
Full grid 0.37 (0.010) 0.35 (0.006)

Table 11: Performance score and standard errors with one
roll-outs and a depth of ten actions against the deterministic
opponent and without using the learned model of the oppo-
nent.

State representation Sigmoid Elu
Small vision grids 0.34 (0.003) 0.35 (0.001)
Large vision grids 0.35 (0.001) 0.36 (0.001)
Full grid 0.21 (0.007) 0.21 (0.005)

6 CONCLUSION

This paper has shown that vision grids can be used
to overcome the problems associated with applying
reinforcement learning in problems with large state
spaces. Using vision grids as state representation not
only increased the learning speed, it also increased the
agent’s performance in most cases. From all state rep-
resentations, the large vision grids obtain the best per-
formances. They reduce the number of different pos-
sible inputs compared to full grids, but contain more
information that the small vision grids.

This paper also confirms the benefits of the Elu ac-
tivation function over the sigmoid activation function.
Against the semi-deterministic opponent, the Elu ac-
tivation function increased the agent’s performance
in eleven of the twelve conducted experiments and
against the random opponent performance increased
in eight of the twelve experiments. From this it seems
that the Elu activation function performs especially
much better than the sigmoid function in case of less
noisy updates due to the more deterministic opponent.

Finally, the introduced opponent modelling tech-
nique allows the agent to concurrently learn and
model the opponent and in combination with plan-
ning algorithms, such as Monte-Carlo roll-outs, it can
be used to significantly increase performance against
two widely different opponents.

An interesting possibility for future research is to
test whether the use of vision grids causes the agent
to form a better generalised policy. We believe that
this is the case, since vision grids are less depen-
dent on the dimensions of the environment and pos-
sible obstacles the agent might encounter. Therefore,
the learned policy will better generalise to other envi-
ronments. Finally, the proposed opponent modelling



technique is widely applicable and we are interested
to see whether it also proves useful in other problems.
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