
Exploration Methods for Connectionist Q-Learning in Bomberman

Joseph Groot Kormelink1, Madalina M. Drugan2 and Marco A. Wiering1

1Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen, The Netherlands
2ITLearns.Online, The Netherlands

josephgk@hotmail.nl, madalina.drugan@gmail.com, m.a.wiering@rug.nl

Keywords: Reinforcement Learning, Computer Games, Exploration Methods, Neural Networks

Abstract: In this paper, we investigate which exploration method yields the best performance in the game Bomberman.
In Bomberman the controlled agent has to kill opponents by placing bombs. The agent is represented by
a multi-layer perceptron that learns to play the game with the use of Q-learning. We introduce two novel
exploration strategies: Error-Driven-ε and Interval-Q, which base their explorative behavior on the temporal-
difference error of Q-learning. The learning capabilities of these exploration strategies are compared to five
existing methods: Random-Walk, Greedy, ε-Greedy, Diminishing ε-Greedy, and Max-Boltzmann. The results
show that the methods that combine exploration with exploitation perform much better than the Random-Walk
and Greedy strategies, which only select exploration or exploitation actions. Furthermore, the results show that
Max-Boltzmann exploration performs the best in overall from the different techniques. The Error-Driven-ε
exploration strategy also performs very well, but suffers from an unstable learning behavior.

1 INTRODUCTION

Reinforcement learning (RL) methods are compu-
tational methods that allow an agent to learn from
its interaction with a specific environment. After
perceiving the current state, the agent reasons about
which action to select in order to obtain most rewards
in the future. Reinforcement learning has been widely
applied to games (Mnih et al., 2013; Shantia et al.,
2011; Bom et al., 2013; Szita, 2012). To deal with
the large state spaces involved in many games, often a
multi-layer perceptron is used to store the value func-
tion of the agent, where the value function forms the
basis of most RL research. An aspect which has re-
ceived little attention from the research community is
the question which exploration strategy is most useful
in combination with connectionist Q-learning to learn
to play games.

We use Q-learning (Watkins and Dayan, 1992)
with a multi-layer perceptron to let an agent learn to
play the game Bomberman. Bomberman is a strategic
maze game where the player must kill other players
to become the winner. The player controls one of the
Bombermen players and must, by means of placing
bombs, kill the other players. To get to the other play-
ers, one first removes a set of walls by placing bombs.
Afterwards, the agent needs to navigate to its oppo-
nents and trap them by strategically placing bombs.
The player wins the game if all opponents have died

due to exploding bombs in their vicinity.
We study how different exploration strategies per-

form when combined with connectionist Q-learning
for learning to play Bomberman. We introduce
two novel exploration strategies: Error-Driven-ε and
Interval-Q, which use the TD-error of Q-learning to
change their explorative behavior. These exploration
strategies will be compared to five existing tech-
niques: Random-Walk, Greedy, ε-Greedy, Diminish-
ing ε-Greedy and Max-Boltzmann. The agent plays
a huge number of games against three fixed oppo-
nents that use the same behavior to measure its perfor-
mance. For this, the average amount of points gath-
ered by the adaptive agent is measured together with
its win rate over time. The results show that the meth-
ods that only rely on exploration (Random-Walk) or
exploitation (Greedy) perform much worse than all
other methods. Furthermore, Max-Boltzmann ob-
tains the best results in overall, although the proposed
Error-Driven-ε strategy performs best during the first
800,000 training games out of a total of 1,000,000
games. The problem of Error-Driven-ε is that it can
become unstable, which negatively affects its perfor-
mance when trained for longer times.

In Section 2, we describe the implementation of
the game together with the used state representation
for the adaptive agent and the implemented fixed be-
havior of the opponent agents. In Section 3, we ex-
plain reinforcement learning algorithms and in Sec-

tion 4 we present the different exploration methods
that are compared. Section 5 describes the experimen-
tal setup and the results, and the paper is concluded in
Section 6.

2 BOMBERMAN

Bomberman is a strategic maze-based video game
developed by Hudson Soft in 1983. The goal is to
finish some assignment by means of placing bombs.
We focus on the multi-player variant of Bomberman
where the goal is to kill other players and be the last
man standing. At the beginning of the game all four
players start in opposing corners of the grid, see Fig-
ure 1. The Bombermen have 6 possible moves they
can take to transition through the game: up, down,
left, right, wait, place bomb. The grid is filled with
two types of obstacles: breakable and not breakable.
Before the player can kill its opponents, the player
needs to pave a path through the grid. Since the grid
is filled with obstacles at the start of the game, play-
ers need to break destructible objects in order to reach
other players.

Figure 1: Starting position of all Bombermen. Brown walls
are breakable, grey walls are unbreakable. The 7× 7 grid
is surrounded by another unbreakable wall, which is not
shown here.

We have developed a framework that implements
Bomberman in a discrete manner on a 7×7 grid. The
amount of states can be approximately computed in
the following way. There are 42 positions (including
death) for four agents, two different states for the 28
breakable walls (empty, standing), and two states for
40 positions that determine if there is a bomb at a po-
sition or not. This results in 424× 228× 240 ≈ 1026

different states.

Every Bomberman is controlled by an agent. The
game state is sent to the agents, which then deter-
mine their next moves. After the actions have been
executed, the consequences of the actions are com-
municated to the agents in the form of rewards. The
actions are executed simultaneously so that no agent
has an advantage. After a bomb has been placed it
will wait 5 time-steps before it explodes. If a bomb
explodes all hits with players and breakable walls are
calculated. An agent or wall is hit, if it either horizon-
tally or vertically no more than 2 cells away from the
position of the bomb. Players are allowed to occupy
the same position or to move through each other. A
turn (or time-step) therefore consists of: determining
the actions, executing the actions and then calculat-
ing hits. If there is a hit with a breakable wall, the
wall vanishes. If a bomb explosion hits a player, the
player dies. If all players die simultaneously, no one
wins. As the game progresses, agents gain more free-
dom due to the vanishing walls. Therefore, the agents
can walk around for a long time, which poses prob-
lems because the game can last for infinity. After 150
time-steps, additional bombs are placed at random lo-
cations and the amount of bombs placed afterwards
increases every time-step. This leads finally to very
harsh game dynamics, in which it is impossible for all
Bombermen to stay alive for a long time.

State Representation. The game state is trans-
formed into an input vector for the learning agent,
which will be used by the multi-layer perceptron
(MLP) to learn the utility (value) of performing each
possible action. The game environment is divided in
7× 7 grid cells, where every cell represents a posi-
tion. The agent can fully observe the environment.
Therefore for each cell 4 values are computed:
• Free, breakable, obstructed cell (1, 0, -1)

• Position contains the player (1, 0)

• Position contains an opponent (1, 0)

• Danger level of position (-1 ≤ danger ≤ 1)

Danger is measured as Time passed
Time needed to explode , where a

bomb takes 5 time-steps after it is placed until it ex-
plodes. The danger value is negative if the bomb
has been placed by the player and positive if it has
been placed by an opponent (or environment). In this
way, the agent can learn to distinct between danger
areas caused by a bomb it placed itself or caused by a
bomb placed by an opponent (or the environment af-
ter 150 time-steps). The state representation contain-
ing 49×4 = 196 inputs is sent to the MLP, which will
be trained using Q-learning as described in Section 3.

Opponents. To evaluate how well the different
methods can learn to play the game, we use a fixed

opponent strategy against which the adaptive agent
plays. For this we implemented a hard coded oppo-
nent algorithm, which generates the fixed behavior of
the three opponent agents. The opponent algorithm
consists of 3 elements, see Algorithm 1, which will
now be described.

1) The agent always searches for cover in the
neighbourhood of a bomb. In Algorithm 1, we can
see this in the first conditional statement. The agent
searches for cover by calculating the utility of every
action. It does this by iterating through all bombs that
are within hit-range of the Bomberman. If a Bomber-
man is within hit-range of a bomb, a utility value is
calculated for every action. We separate the x- and
y-axis in the distance and utility calculations. There-
fore, actions that make sure the Bomberman and the
bomb are no longer on the same x and y axis get
a higher utility. Finally, the action with the highest
utility gets selected, if there are bombs in the agent’s
vicinity.

2) Next to not getting hit by exploding bombs, it
is important that the agent destroys breakable walls
with its bombs. If an agent is surrounded by 3 walls
(including the boundaries not visible in Figure 1), it
will place a bomb. If the agent is surrounded by 3
walls, there has to be at least one breakable wall. The
combination of placing bombs when surrounded by
walls and searching for cover in the neighbourhood
of bombs works well, because it shows incentive of
opening up paths while staying clear of bombs.

3) If there are no bombs and not enough walls the
algorithm produces random behaviour. When it per-
forms a random action, it might very well be possible
that the action is placing a bomb, after which the agent
might search for cover again. This algorithm is called
semi-random because the behaviour is mostly guided,
but random at times. Note that the opponent’s behav-
ior is fairly simple, because it does not place bombs
near other players, but still challenging, because of
their bomb-cover behavior.

3 REINFORCEMENT LEARNING

Reinforcement learning (Sutton and Barto, 2015)
is a type of machine learning that allows agents to au-
tomatically learn the optimal behaviour from its inter-
action with an environment. Each time-step the agent
receives the state information from the environment
and selects an action from its action space depend-
ing on the learned value function and the exploration
strategy that is being followed. After executing an ac-
tion the agent receives a reward, which is a numerical
representation of the direct consequence of the action

Algorithm 1 Semi-Random Opponent

possibleA = ReturnPossibleActions(player)
bombList = SurroundingBombs(player)
if bombList.NotEmpty() then

utilityList[] = possibleA.Size()
for a : possibleA do

for bomb : BombList do
possiblePos = MakeAction(a, player)
curUtility = Dist(bomb, possiblePos)
utilityList[a] += curUtility

end for
end for
bestUtility = IndexMax(utilityList)
return(possibleA[bestUtility])

end if
SBT (ob j) = SurroundedByT hreeWalls(ob j)
if SBT (player) == T RUE then

return(placeBomb)
end if
return(RandomAction())

it executed. The difference between the received re-
ward plus the next value for the best action and the
actual value for the current state is the TD-error. The
goal of learning is to minimize the TD-error, so the
agent can predict the consequences of its actions and
select the actions that lead to the highest expected sum
of future rewards.

A Markov Decision Process (MDP) is a model
for fully-observable sequential decision making prob-
lems in stochastic environments. S is a finite set of
states, where st ∈ S is the state at time-step t. A is
a finite set of actions, where at ∈ A is the action ex-
ecuted at time-step t. The reward function R(s,a,s′)
denotes the expected reward when transitioning from
state s to state s′ after executing action a. The reward
at time-step t is denoted with rt . The transition func-
tion P(s,a,s′) gives the probability of ending up in
state s′ after selecting action a in state s. The discount
factor γ ∈ [0,1] assigns a lower importance to future
rewards for optimal decision making.

Tabular Q-learning. The policy of an agent is
a mapping between states and actions. Learning the
optimal policy of an agent is done using Q-learning
(Watkins and Dayan, 1992). For every state-action
pair a Q-value Q(s,a) denotes the expected sum of
rewards obtained after performing action a in state s.
Q-learning updates the Q-function using the informa-
tion obtained after selecting an action (st , at , rt , st+1)
using the following update rule:

Q(st ,at) = Q(st ,at)+αδt (1)

with:

δt = rt + γmax
a

Q(st+1,a)−Q(st ,at) (2)

In equation 1, δt is the temporal-difference error
(TD-error) of Q-learning computed with equation 2.
The learning rate 0 < α ≤ 1 is used to regulate how
fast the Q-value is pushed in a certain direction. When
the next-state st+1 is an absorbing final state, then the
Q-values for all actions in such a state are set to 0 in
equation 2. Furthermore, when a game ends, then a
new game is started. Q-learning is an off-policy al-
gorithm, which means that it learns independently of
the agent’s selected next action induced by its explo-
ration policy. If the agent would try out all actions
in all states an infinite amount of times, Q-learning
with lookup tables converges to the optimal policy for
finite MDPs.

Multi-layer Perceptron. A problem is that large
state spaces require a lot of memory, since every state
uses its own Q-value for every action. When using
lookup tables, Q-learning needs to explore all actions
in all states before being able to infer which action is
best in a specific state.

To solve these issues regarding space and time
complexity, the agent uses an MLP. An MLP is a feed-
forward neural network that maps an input vector that
represents the state, to an output vector, that repre-
sents the Q-values for all actions. The MLP consists
of a single hidden-layer in which the sigmoid func-
tion is used as activation function. The MLP uses a
linear output function for the output units, so it can
also predict values outside of the [0,1] range. As in-
put the complete game state representation containing
196 features, as described in Section 2, is presented
to the MLP. The output of the MLP is a vector with
6 values, where every value represents a Q-value for
a corresponding action. The MLP is initialized ran-
domly, which means that it needs to learn what Q-
values correspond to the state-action pairs. We do
this by backpropagating the TD-error computed with
equation 2 through the MLP to update the weights in
order to decrease the TD-error for action at in state st .
After training, The MLP computes the appropriate Q-
values for a specific state without storing all different
Q-values for all states.

Reward Function. We transform action conse-
quences into something that Q-learning can use to
learn the Q-function by giving in-game events a nu-
merical reward. For learning the optimal behavior,
the rewards of different objectives should be set care-
fully so that maximizing the obtained rewards results
in the desired behavior. The used in-game events and
rewards for Bomberman are shown in Table 1.

Table 1: Reward Function

Event Reward
Kill a player 100
Break a wall 30
Perform action -1
Perform impossible action -2
Die -300

These rewards have been carefully chosen to
clearly distinct between good and bad actions. Dy-
ing is represented by a very negative reward. The re-
ward of killing a player is attributed to the player that
actually placed the involved bomb. The rest of the re-
wards promote active behaviour. No reward is given
to finally winning the game (when all other players
died). In order to maximize the total reward intake,
the agent should learn not to die, and kill as many op-
ponents and break most walls with its bombs. In the
experiments, a discount factor of 0.95 is used.

4 EXPLORATION METHODS

Q-learning with a multi-layer perceptron allows
the agent to approximate the sum of received rewards
after selecting an action in a particular state. If the
agent always selects the action with the highest Q-
value in a state, the agent never explores the conse-
quences of other possible actions in that state, and,
consequently, it does not learn the optimal Q-function
and policy. On the other hand, if the agent selects
many exploration actions, the agent performs ran-
domly. The problem of optimally balancing explo-
ration and exploitation is known as the exploration /
exploitation dilemma (Thrun, 1992). There are many
different exploration methods, and in this paper we in-
troduce two novel exploration strategies that we com-
pare with 5 existing exploration methods. The best
performing method is the method that gathers the
most points (rewards) and obtains the highest final
win rate.

4.1 Existing Exploration Strategies

We will now describe 5 different existing strate-
gies for determining which action to select given a
state and the current Q-function. The first method,
Random-Walk, does not use the Q-function at all. The
second method, Greedy, never selects exploration ac-
tions. The other three exploration strategies balance
exploration with exploitation by using the Q-function
and randomness in the action selection.

Random-Walk exploration executes a randomly
chosen action every time-step. This method produces
completely random behaviour, and is therefore good
as a simple baseline algorithm to compare other meth-
ods to. Because Q-learning is an off-policy algorithm,
for a finite MDP it can still learn the optimal policy
when only selecting random actions due to the use of
the max-operator in equation 2.

Greedy method is the complete opposite of the
Random-Walk exploration strategy. This method as-
sumes the current Q-function is highly accurate and
therefore every action is based on exploitation. The
agent always takes the action with the highest Q-
value, because it assumes that this is the best action.
Greedy tries to solve some problems of Random-
Walk in the game Bomberman: if the agent dies con-
stantly in the early game, the agent will not get to ex-
plore the later part of the game. This could be solved
by taking no bad actions and this could be achieved by
only taking actions with the highest Q-value, although
this requires the Q-function to be very accurate, which
in general it will not be. Because this method never
selects exploration actions, it can often not be used for
learning the optimal policy.

ε-Greedy exploration is one of the most used and
simplest methods that trades off exploration with ex-
ploitation. It uses the parameter ε to determine what
percentage of the actions is randomly selected. The
parameter falls in the range 0≤ ε≤ 1, where 0 trans-
lates to no exploration and 1 to only exploration. The
action with the highest Q-value is chosen with proba-
bility 1−ε and a random action is selected otherwise.
The MLP is initialized randomly; at the start of learn-
ing, the Q-function is not a good approximation of the
obtained sum of rewards. Greedy could repetitively
take a specific sub-optimal action in a state; ε-Greedy
solves this problem by exploring the effects of differ-
ent actions.

Diminishing ε-Greedy. ε-Greedy explores with
the same amount in the beginning as in the end of
a simulation. We however assume the agent is im-
proving its behaviour and thus over time needs less
exploration. Diminishing ε-Greedy uses a decreas-
ing value for ε, so the agent uses less exploration if
the agent played more games. The exploration value
is then curExplore = ε ∗ (1− currentGen

totalGens). The algo-
rithm also incorporates a minimal exploration value,
i.e. curExplore = 0.05, to make sure the agent keeps
exploring in the long run. totalGens stands for the
amount of generations, where one generation means
training for 10,000 games in our experiments.

Max-Boltzmann. One drawback of the differ-
ent ε-Greedy methods is that all exploration actions

are chosen randomly, which means that the second
best action is chosen as likely as the worst action.
The Boltzmann exploration method solves this prob-
lem by assigning a probability to all actions, ranking
best to worst. This method was shown to perform
best in a comparison between four different explo-
ration strategies for maze-navigation problems (Ti-
jsma et al., 2016).

The probabilities are assigned using a Boltzmann
distribution function. The probability π(s,a) for se-
lecting action a in state s is:

π(s,a) =
eQ(s,a)/T

∑
|A|
i eQ(s,ai)/T

(3)

Where |A| is the amount of possible actions and T
is the temperature parameter. A high T translates to a
lot of exploration.

Max-Boltzmann (Wiering, 1999) exploration
combines ε-Greedy exploration with Boltzmann ex-
ploration. It selects the greedy action with probability
1− ε and otherwise the action will be chosen accord-
ing to the Boltzmann distribution. By introducing an-
other hyperparameter, the exploration behavior can be
better controlled than with ε-greedy exploration. This
is at the cost of more experimentation time, however.

4.2 Novel Exploration Strategies

We will now introduce two novel exploration meth-
ods, which use the obtained TD-errors from equation
2 to control their behavior.

The error-Driven-ε exploration tries to resolve
the problem of Diminishing ε-Greedy for which it is
necessary to specify beforehand how much the agent
explores over time. To solve this problem, Error-
Driven-ε bases the exploration rate ε on the difference
in average obtained TD-errors between the previous
two generations during which 10,000 training games
were played. During the first 2 generations, ε-greedy
is used, because there is no error information avail-
able in the beginning of learning. Afterwards, ε is
computed with:

ε = max((1−
min(errg−1,errg−2)

max(errg−1,errg−2)
),minExp) (4)

Where g is the current generation number and the
error is calculated as the average of all TD-Errors
of 10,000 played games during a generation. The
method also uses a minimal amount of exploration
to ensure that some exploration is always performed.
The idea of this algorithm, is that when the TD-
errors stay approximately the same over time, the Q-
function has more or less converged so that the min-
imum and maximum of the average TD-errors of the

two previous generations are about the same. In this
case, the algorithm will use the minimum value for ε.
On the other hand, if the TD-errors are decreasing (or
fluctuating), more exploration will be used.

Interval-Q is a novel exploration strategy that
uses the error range of the Q-value estimates next to
the prediction of the Q-values. This method is based
on Kaelbling’s Interval Estimation (Kaelbling, 1993),
where confidence intervals were computed for solving
a multi-armed bandit problems with a finite number
of actions. Kaelbling’s Interval Estimation is used to
assess how reliable a Q-value is by learning the con-
fidence interval (or value range) for an action. Hence,
we create an MLP with 12 output units instead of 6
as in the other methods. The first 6 outputs represent
the Q-values and the other 6 outputs represent the ex-
pected absolute TD-error, where the TD-error is com-
puted with equation 2.

In this method, the action is selected that has the
highest upper confidence value in the Q-value esti-
mate. We calculate the upper confidence by adding√
|T D− error| to the Q-value for an action a in state

s. Finally, because the MLP is randomly initialized
and has to learn the Q-values and expected absolute
TD-errors, the method selects a random action with
probability ε. The pseudo-code of this method is
shown in Algorithm 2.

Algorithm 2 Interval-Q(ε)

rand = RandomValue(0,1)
if rand < ε then

return(RandomMove())
end if
state = GetState()
qValues = GetQValues(state)
range = GetErrorRange(state)
maxReach =−∞

bestAction = NULL
for (action : Actions) do

reach = qValues[action]+
√

range[action]
if reach > maxReach then

maxReach = reach
bestAction = action

end if
end for
return(bestAction)

5 EXPERIMENTS AND RESULTS

We evaluated the seven discussed exploration
methods in combination with an MLP and Q-learning.

Every method is trained for 100 generations, where
a generation consists of 10,000 training games and
100 testing games. During the test games learning
is disabled and the agent does not use any explo-
ration actions. An entire simulation consists of 100
generations of training (1,000,000 training games and
10,000 test games), which requires around one day of
computation time on a common CPU. The results are
obtained by running 20 simulations per method and
taking the average scores. For every algorithm we ex-
amine what percentage of the games the method wins,
and how many points it gathers. The amount of gath-
ered points is the average sum of rewards obtained
while playing 100 test games.

We use a single hidden-layer MLP with 100 hid-
den nodes and 6 output nodes (except for the MLP
for Interval-Q that uses 12 output nodes). The MLP is
initialized randomly with weight values between -0.5
and 0.5. After running multiple preliminary experi-
ments, 100 hidden units were found to be sufficient to
produce intelligent behaviour for a grid size of 7×7.
We also experimented with different amounts of hid-
den units, but removing units decreased the perfor-
mance and increasing the number of hidden units only
added computational time without a performance in-
crease. Adding more hidden layers has also been in-
vestigated, but this also did not improve the perfor-
mance at the cost of more computational power.

Hyperparameters. To find the best hyperparam-
eters preliminary experiments have been performed.
Because the large amount of time to perform a sim-
ulation of 1,000,000 training games, we could not
specifically fine-tune all the parameters of the dif-
ferent methods. In the experiments, all MLPs were
trained with a learning rate of 0.0001. Table 2 shows
the exploration parameters for all methods, where ε

equals the exploration chance, min-ε is the minimal
exploration chance and T denotes the Temperature.
The different algorithms use different amounts of tun-
able parameters (from 0 to 3).

Table 2: The parameter settings in training
Settings ε min-ε T
Random-Walk / / /
Greedy / / /
ε-Greedy 0.3 / /
Error-Driven-ε / 0.05 /
Interval-Q 0.2 / /
Diminishing ε-Greedy 0.3→0.05 0.05 /
Max-Boltzmann 0.3 / 200→1

Results. Figure 2 shows the win rate of the dif-
ferent exploration methods over time. We note that
there is a big difference between the methods that use
an exploration/exploitation trade-off and the methods

that do not (Greedy, Random-walk). The different ex-
ploration strategies obtain quite good performances,
although they do not improve much after 20 gener-
ations. Error-Driven-ε outperforms all other methods
for the first 80 generations (800,000 games), but even-
tually gets surpassed by Diminishing ε-Greedy and
Max-Boltzmann. The reason is that Error-Driven-ε
can become unstable which results in a decreasing
performance.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80 90 100

W
in

ra
te

Generations Of Training

Exploration Method Performance Win Rate

RandomWalk Greedy ε-Greedy

Diminishing ε-Greedy Error-Driven-ε Interval-Q

Max-Boltzmann

Figure 2: Win rate of the exploration methods, where a
generation consist of 10,000 training games and 100 test-
ing games. The results are averaged over 20 simulations.

Table 3 shows the mean percentage of the games
that were won and the standard error over the last
100 test games during the last generation. The re-
sults are averaged over 20 simulations. It can be seen
that Max-Boltzmann performs the best, while Error-
Driven-ε and Diminishing ε-Greedy perform second
best. It is quite surprising that ε-Greedy performs
much worse and comes on the 5-th place, only before
the Random-Walk and Greedy methods.

Table 3: Mean and standard error of the win rate over the
last 100 games. The results are averaged over 20 simula-
tions.

Method Mean win rate SE
Max-Boltzmann 0.88 0.015
Error-Driven-ε 0.86 0.026
Diminishing ε-Greedy 0.86 0.022
Interval-Q 0.82 0.027
ε-Greedy 0.79 0.014
Greedy 0.58 0.033
Random-Walk 0.08 0.006

Figure 3 shows for every method the average
amount of points it gathered. The two methods with-
out exploration/exploitation trade-off converge to a
low value, while the other methods perform much
better. All methods with the exploration/exploitation
trade-off initially follow a similar learning curve, af-
ter which Error-Driven-ε performs the best for around
50 generations. In the end Max-Boltzmann performs
best after increasing its performance a lot during the
last 10 generations. This is caused by the decreasing
temperature, which goes finally to a value of 1. More
generations may help this method to increase its per-
formance even further, which does not seem to be the
case for the other algorithms.

-600

-500

-400

-300

-200

-100

0

100

200

0 10 20 30 40 50 60 70 80 90 100

P
o

in
ts

Generations Of Training

Exploration Method Performance Points

RandomWalk Greedy Diminishing ε-Greedy

ε-Greedy Error-Driven-ε Interval-Q

Max-Boltzmann

Figure 3: Points gathered by the methods, where a genera-
tion consist of 10,000 training games and 100 testing games.
The results are averaged over 20 simulations.

Table 4 shows the average amount of points gath-
ered and the standard error for every exploration
method. These data were also gathered over the last
100 games. The table shows that Max-Boltzmann
performs significantly (p < 0.001) better than the
other methods, scoring on average 30 points more
than the second best method, Diminishing ε-Greedy.
Again ε-Greedy comes on the 5-th place.

5.1 DISCUSSION

After training all methods for a long time, Max-
Boltzmann performs best. In the end, Max-
Boltzmann gathers on average 30 points more than the
second best method, Diminishing ε-Greedy, and has a
2% higher win rate. Especially the high amount of
points is important, because the learning algorithms

Table 4: Mean and standard error of the gathered amount
of points over the last 100 games. The results are averaged
over 20 simulations.

Method Mean points SE
Max-Boltzmann 96 1.3
Diminishing ε-Greedy 66 1.1
Interval-Q 55 1
Error-Driven-ε 32 1.5
ε-Greedy 3 1.2
Random-Walk -336 0.2
Greedy -346 1.1

try to maximize the discounted sum of rewards that
relates to the amount of obtained points. A high win
rate does not always correspond to a high amount of
points, which becomes clear when comparing Greedy
to Random-Walk. Greedy has a much higher win rate
than Random-Walk whereas it gathers less points.

In the first 60 generations the temperature of Max-
Boltzmann is relatively high, which produces approx-
imately equal behaviour to ε-Greedy. During the last
10 generations the exploration gets more guided re-
sulting in an significantly increasing average amount
of points. Error-Driven-ε exploration outperforms
all other methods in the 10-70 generations interval.
However this method produces unstable behaviour,
which is most likely caused by the way the explo-
ration rate is computed from the average TD-errors
over generations.

We can conclude that Max-Boltzmann performs
better than the other methods. The only problem with
Max-Boltzmann is that it takes a lot of time before
it outperforms the other methods. In Figures 2 and
3, we can see that only in the last 10 generations
Max-Boltzmann starts to outperform the other meth-
ods. More careful tuning of the hyperparameters of
this method may result in even better performances.

Looking at the results, it is clear that the trade-
off between exploration and exploitation is im-
portant. All methods that actualize this explo-
ration/exploitation trade-off perform significantly bet-
ter than the methods that use only exploration or ex-
ploitation. The Greedy algorithm learns a locally op-
timal policy in which it does not get destroyed easily.
The Random-Walk policy performs many stupid ex-
ploration actions, and is killed very quickly. There-
fore, the Random-Walk method never learns to play
the whole game.

6 CONCLUSIONS
This paper examined exploration methods in con-

nectionist reinforcement learning in Bomberman. We

have explored multiple exploration methods and can
conclude that Max-Boltzmann outperforms the other
methods on both win rate and points gathered. The
only aspect where Max-Boltzmann is being out-
performed, is the learning curve. Error-Driven-ε
learns faster, but produces unstable behaviour. Max-
Boltzmann takes longer to reach a high performance
than some other methods, but it is possible that there
exist better temperature-annealing schemes for this
method. The results also demonstrated that the com-
monly used ε-Greedy exploration strategy is easily
outperformed by other methods.

In future work, we want to examine how well the
different exploration methods perform for learning to
play other games. Furthermore, we want to carefully
analyze the reasons why Error-Driven-ε becomes un-
stable and change the method to solve this.

REFERENCES

Bom, L., Henken, R., and Wiering, M. (2013). Reinforce-
ment learning to train Ms. Pac-Man using higher-order
action-relative inputs. In 2013 IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pages 156–163.

Kaelbling, L. (1993). Learning in Embedded Systems. A
Bradford book. MIT Press.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learn-
ing. CoRR, abs/1312.5602.

Shantia, A., Begue, E., and Wiering, M. (2011). Con-
nectionist reinforcement learning for intelligent unit
micro management in starcraft. In Neural Networks
(IJCNN), The 2011 International Joint Conference on,
pages 1794–1801. IEEE.

Sutton, R. S. and Barto, A. G. (2015). Reinforcement Learn-
ing : An Introduction. Bradford Books, Cambridge.

Szita, I. (2012). Reinforcement learning in games. In Wier-
ing, M. and van Otterlo, M., editors, Reinforcement
Learning: State-of-the-Art, pages 539–577. Springer
Berlin Heidelberg.

Thrun, S. (1992). Efficient exploration in reinforce-
ment learning. Technical Report CMU-CS-92-102,
Carnegie-Mellon University.

Tijsma, A. D., Drugan, M. M., and Wiering, M. A. (2016).
Comparing exploration strategies for Q-learning in
random stochastic mazes. In 2016 IEEE Symposium
on Adaptive Dynamic Programming and Reinforce-
ment Learning (ADPRL), pages 1–8.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical note:
Q-learning. Machine Learning, 8(3):279.

Wiering, M. A. (1999). Explorations in efficient reinforce-
ment learning. PhD thesis, University of Amsterdam.

