
HQ-LearningAdaptive Behavior 6:2, 1997)Marco Wiering J�urgen Schmidhubermarco@idsia.ch juergen@idsia.chIDSIACorso Elvezia 36CH-6900 LuganoSwitzerlandhttp://www.idsia.chAbstractHQ-learning is a hierarchical extension of Q(�)-learning designed to solve certain typesof partially observable Markov decision problems (POMDPs). HQ automatically decomposesPOMDPs into sequences of simpler subtasks that can be solved by memoryless policies learn-able by reactive subagents. HQ can solve partially observable mazes with more states thanthose used in most previous POMDP work.Keywords: reinforcement learning, hierarchical Q-learning, POMDPs, non-Markov, subgoal learn-ing.1 IntroductionThe problem. Sensory information is usually insu�cient to infer the environment's state (per-ceptual aliasing, Whitehead 1992). This complicates goal-directed behavior. For instance, supposeyour instructions for the way to the station are: \Follow this road to the tra�c light, turn left,follow that road to the next tra�c light, turn right, there you are.". Suppose you reach one of thetra�c lights. To do the right thing you need to know whether it is the �rst or the second. Thisrequires at least one bit of memory | your current environmental input by itself is not su�cient.The most widely used reinforcement learning (RL) algorithms, such as Q-learning (Watkins1989; Watkins and Dayan 1992) and TD(�) (Sutton 1988), fail if the task requires creating short-term memories of relevant events to disambiguate identical sensory inputs observed in di�erentstates. They are limited to Markov decision problems (MDPs): at any given time the probabilitiesof the possible next states depend only on the current state and action.Partially observable Markov decision problems (POMDPs, e.g., Littman 1996) | such as thetra�c light problem | are more di�cult than simple MDPs: the same observation may occur inmore than one state of the environment, and di�erent action responses may be required. POMDPsare generally considered di�cult because of their particularly nasty temporal credit assignmentproblem: it is usually hard to �gure out which prior observations are relevant, and how they shoulda�ect short-term memory contents. Even deterministic �nite horizon POMDPs are NP-complete(Littman 1996) | general and exact algorithms are feasible only for small problems. This explainsthe recent interest in heuristic methods for �nding good but not necessarily optimal solutions, e.g.,Schmidhuber (1991c), McCallum (1993), Ring (1994), Cli� and Ross (1994), Jaakkola, Singh andJordan (1995). 1



Unfortunately, however, previous methods do not scale up very well (Littman, Cassandra andKaelbling 1995). This paper presents HQ-learning, a novel approach based on �nite state memoryimplemented in a sequence of agents. HQ does not need a model of the POMDP and appearsto scale up more reasonably than other approaches. For alternative approaches to larger scalePOMDPs, see also Schmidhuber, Zhao and Wiering (1997b), Wiering and Schmidhuber (1996).Inspiration. To select the optimal next action it is often not necessary to memorize the entirepast (in general, this would be infeasible). A few memories corresponding to important previouslyachieved subgoals can be su�cient. To see this recall the tra�c light scenario. While you areon your way, only a few memories are relevant, such as \I already passed the �rst tra�c light".Between two such subgoals a memory-independent, reactive policy (RP) will carry you safely.Overview. HQ-learning attempts to exploit such situations. Its divide-and-conquer strategydiscovers a subgoal sequence decomposing a given POMDP into a sequence of reactive policyproblems (RPPs). RPPs can be solved by RPs: all states causing identical inputs require the sameoptimal action. The only \critical" points are those corresponding to transitions from one RP tothe next.To deal with such transitions HQ uses multiple RPP-solving subagents. Each agent's RP is anadaptive mapping from observations to actions. At a given time only one agent can be active, andthe system's only type of short-term memory is embodied by a pointer indicating which one. Howmany bits of information are conveyed by such a limited kind of short-term memory? The answeris: not more than the logarithm of the number of agents (the additional information conveyed bythe system's RPs and subgoal generators tends to require many more bits, of course).RPs of di�erent agents are combined in a way learned by the agents themselves. The �rstactive agent uses a subgoal table (its HQ-table) to generate a subgoal for itself (subgoals arerepresented by desired inputs). Then it follows the policy embodied by its Q-function until itachieves its subgoal. Then control is passed to the next agent, and the procedure repeats itself.After the overall goal is achieved or a time limit is exceeded, each agent adjusts both its RP andits subgoal. This is done by two learning rules that interact without explicit communication: (1)Q-table adaptation is based on slight modi�cations of Q(�)-learning. (2) HQ-table adaptationis based on tracing successful subgoal sequences by Q(�)-learning on the higher (subgoal) level.E�ectively, subgoal/RP combinations leading to higher rewards become more likely to be chosen.Although each agent's RP is represented by a memoryless lookup table, the whole system cansolve \non-Markovian" tasks impossible to learn with single lookup tables. Unlike, e.g., Singh'ssystem (1992) and Lin's hierarchical learning method (1993), ours does not depend on an externalteacher who provides a priori information about \good" subtasks. Unlike Jaakkola et al.'s method(1995), ours is not limited to �nding suboptimal, memoryless, stochastic policies for POMDPs withoptimal, memory-based, deterministic solutions.Outline. Section 2 describes HQ-learning details, including learning rules for both Q- andHQ-tables. Section 3 describes experiments with relatively complex partially observable mazes(up to 960 world states). They demonstrate HQ's ability to decompose POMDPs into severalappropriate RPPs. Section 4 reviews related work. Section 5 summarizes HQ's advantages andlimitations. Section 6 concludes and lists directions for future research.2 HQ-learningPOMDP speci�cation. System life is separable into \trials". A trial consists of at most Tmaxdiscrete time steps t = 1; 2; 3; : : : ; T , where T < Tmax if the agent solves the problem in fewer thanTmax time steps. A POMDP is speci�ed by Z =< S; S1; O;B;A;R; ;D >, where S is a �nite setof environmental states, S1 2 S is the initial state, O is a �nite set of observations, the functionB : S ! O is a many-to-one mapping of states to (ambiguous) observations, A is a �nite set ofactions, R : S � A ! IR maps state-action pairs to scalar reinforcement signals, 0 �  � 1 is adiscount factor which trades o� immediate rewards against future rewards, and D : S�A�S ! IRis a state transition function, where p(St+1jSt; At) := D(St; At ! St+1) = D(St; At; St+1) denotes2



the probability of transition to state St+1 given St, where St 2 S is the environmental state attime t, and At 2 A is the action executed at time t. The system's goal is to obtain maximal(discounted) cumulative reinforcement during the trial.POMDPs as RPP sequences. The optimal policy of any deterministic POMDP with�nal goal state is decomposable into a �nite sequence of optimal policies for appropriate RPPs,along with subgoals determining transitions from one RPP to the next. The trivial decompositionconsists of single-state RPPs and the corresponding subgoals. In general, POMDPs whose onlydecomposition is trivial are hard | there is no e�cient algorithm for solving them. HQ, however,is aimed at situations that require few transitions between RPPs. HQ's architecture implementssuch transitions by passing control from one RPP-solving subagent to the next.Architecture. There is an ordered sequence of M agents C1 , C2 , ... CM , each equipped witha Q-table, an HQ-table, and a control transfer unit, except for CM , which only has a Q-table (see�gure 1). Each agent is responsible for learning part of the system's policy. Its Q-table representsits local policy for executing an action given an input. It is given by a matrix of size jOj � jAj,where jOj is the number of di�erent possible observations and jAj the number of possible actions.Qi(Ot; Aj) denotes Ci 's Q-value (utility) of action Aj given observation Ot. The agent's currentsubgoal is generated with the help of its HQ-table, a vector with jOj elements. For each possibleobservation there is an HQ-table entry representing its estimated value as a subgoal. HQi(Oj)denotes Ci 's HQ-value (utility) of selecting Oj as its subgoal.The system's current policy is the policy of the currently active agent. If Ci is active at timestep t, then we will denote this by Active(t) := i. The variable Active(t) represents the only kindof short-term memory in the system.Architecture limitations. The sequential architecture restricts the POMDP types HQ cansolve. To see this consider the di�erence between RL goals of (1) achievement and (2) maintenance.The former refer to single state goals (e.g., �nd the exit of a maze), the latter to maintaining adesirable state over time (such as keeping a pole balanced). Our current HQ-variant handlesachievement goals only. In case of maintenance goals it will eventually run out of agents | theremust be an explicit �nal desired state (this restriction may be overcome with di�erent agenttopologies beyond the scope of this paper).Selecting a subgoal. In the beginning C1 is made active. Once Ci is active, its HQ-table isused to select a subgoal for Ci . To explore di�erent subgoal sequences we use the Max-Randomrule: the subgoal with maximal HQi value is selected with probability pmax, a random subgoal isselected with probability 1�pmax. Conicts between multiple subgoals with maximal HQi-valuesare solved by randomly selecting one. Ôi denotes the subgoal selected by agent Ci . This subgoal isonly used in transfer of control as de�ned below and should not be confused with an observation.Selecting an action. Ci 's action choice depends only on the current observation Ot. Duringlearning, at time t, the active agent Ci will select actions according to the Max-Boltzmann distri-bution: with probability pmax take the action Aj with maximal Qi(Ot; Aj) value; with probability1� pmax select an action according to the traditional Boltzmann or Gibbs distribution, where theprobability of selecting action Aj given observation Ot is:p(Aj jOt) = eQi(Ot;Aj)=TiPAk2A eQi(Ot;Ak)=Ti :The \temperature" Ti adjusts the degree of randomness involved in agent Ci 's action selection incase the Boltzmann rule is used. Conicts between multiple actions with maximal Q-values aresolved by randomly selecting one.Transfer of control. Control is transferred from one active agent to the next as follows. Eachtime Ci has executed an action, its control transfer unit checks whether Ci has reached the goal.If not, it checks whether Ci has solved its subgoal to decide whether control should be passed onto Ci+1 . We let ti denote the time at which agent Ci is made active (at system start-up, we sett1  1). 3
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Figure 1: Basic architecture. Three agents are connected in a sequential way. Each agent hasa Q-table, an HQ-table, and a control transfer unit, except for the last agent which only has aQ-table. The Q-table stores estimates of actual observation/action values and is used to select thenext action. The HQ-table stores estimated subgoal values and is used to generate a subgoal oncethe agent is made active. The solid box indicates that the second agent is the currently active agent.Once the agent has achieved its subgoal, the control transfer unit passes control to its successor.IF no goal state reached AND current subgoal = ÔiAND Active(t) < M AND B(St) = ÔiTHEN Active(t+ 1) Active(t) + 1 AND ti+1  t+ 12.1 Learning RulesWe will use o�-line learning for updating the tables | this means storing experiences and post-poning learning until after trial end (no intra-trial parameter adaptation). In principle, however,online learning is applicable as well (see below). We will describe two HQ variants, one based onQ-learning, the other on Q(�)-learning | Q(�) overcomes Q's inability to solve certain RPPs.The learning rules appear very similar to those of conventional Q and Q(�). One major di�erencethough is that each agent's prospects of achieving its subgoal tend to vary as various agents tryvarious subgoals.Learning the Q-values. We want Qi(Ot; At) to approximate the system's expected dis-counted future reward for executing action At, given Ot. In the one-step lookahead case we haveQi(Ot; At) = XSj2S P (Sj jOt;�; i)(R(Sj ; At) +  XSk2SD(Sj ; At; Sk)VActive(t+1)(B(Sk)));where P (Sj jOt;�; i) denotes the probability that the system is in state Sj at time t given ob-servation Ot, all architecture parameters denoted �, and the information that i = Active(t).HQ-learning does not depend on estimating this probability, although belief vectors (Littman,1996) or a world model (e.g., Moore 1993) might help to speed up learning. Vi(Ot) is the utilityof observation Ot according to agent Ci , which is equal to the Q-value for taking the best action:Vi(Ot) := maxAj2AfQi(Ot; Aj)g:Q-value updates are generated in two di�erent situations (T � Tmax denotes the total numberof executed actions during the current trial, and �Q is the learning rate):4



Q.1 Let Ci and Cj denote the agents active at times t and t + 1 | possibly i = j. If t < T thenQi(Ot; At) (1� �Q)Qi(Ot; At) + �Q(R(St; At) + Vj(Ot+1)).Q.2 If agent Ci is active at time T , and the �nal action AT has been executed, thenQi(OT ; AT ) (1� �Q)Qi(OT ; AT ) + �QR(ST ; AT ).Note that R(ST ; AT ) is the �nal reward for reaching a goal state if T < Tmax. A main di�erencewith standard one-step Q-learning is that agents can be trained on Q-values which are not theirown (see [Q.1]).Learning the HQ-values: intuition. Recall the introduction's tra�c light task. The �rsttra�c light is a good subgoal. We want our system to discover this by exploring (initially random)subgoals and learning their HQ-values. The tra�c light's HQ-value, for instance, should convergeto the expected (discounted) future cumulative reinforcement to be obtained after it has beenchosen as a subgoal. How? Once the tra�c light has been reached and the �rst agent passescontrol to the next, the latter's own expectation of future reward is used to update the �rst'sHQ-values. Where do the latter's expectations originate? They reect its own experience with�nal reward (to be obtained at the station).More formally. In the optimal case we haveHQi(Oj) = E(Ri) + ti+1�tiHVi+1;where E denotes the average over all possible trajectories. Ri = Pti+1�1t=ti t�tiR(St; At), Ci 'sdiscounted cumulative reinforcement during the time it will be active (note that this time intervaland the states encountered by Ci depend on Ci 's subtask), and HVi := maxOl2OfHQi(Ol)g) isthe estimated discounted cumulative reinforcement to be received by Ci .We adjust only HQ-values of agents active before trial end (N denotes the number of agentsactive during the last trial, �HQ denotes the learning rate, and Ôi the chosen subgoal for agentCi):HQ.1 If Ci is invoked before agent CN�1 , then we update according toHQi(Ôi) (1� �HQ)HQi(Ôi) + �HQ(Ri + ti+1�tiHVi+1).HQ.2 If Ci = CN�1 , then HQi(Ôi) (1� �HQ)HQi(Ôi) + �HQ(Ri + tN�tiRN ).HQ.3 If Ci = CN , and i < M , then HQi(Ôi) (1� �HQ)HQi(Ôi) + �HQRi.The �rst and third rules resemble traditional Q-learning rules. The second rule is necessary ifagent CN has learned a (possibly high) value for a subgoal that is unachievable due to subgoalsselected by previous agents.HQ(�)-learning: motivation. Q-learning's lookahead capability is restricted to one step.It cannot solve all RPPs because it cannot properly assign credit to di�erent actions leading toidentical next states (Whitehead 1992). For instance, suppose you walk along a wall that looksthe same everywhere except in the middle where there is a picture. The goal is to reach the leftcorner where there is reward. This RPP is solvable by an RP. Given the \picture" input, however,Q-learning with one step look-ahead would assign equal values to actions \go left" and \go right"because they both yield identical \wall" observations.Consequently HQ-learning may su�er from Q-learning's inability to solve certain RPPs. Toovercome this problem, we augment HQ by TD(�)-methods for evaluating and improving policiesin a manner analogous to Lin's o�ine Q(�)-method (1993). TD(�)-methods integrate experiencesfrom several successive steps to disambiguate identical short-term e�ects of di�erent actions. Ourexperiments indicate that RPPs are solvable by Q(�)-learning with su�ciently high �.Q(�).1 For the Q-tables we �rst compute desired Q-values Q0(Ot; Aj) for t = T; : : : ; 1:Q0(OT ; AT ) R(ST ; AT )Q0(Ot; At) R(St; At) + ((1� �)VActive(t+1)(Ot+1) + �Q0(Ot+1; At+1))5



Q(�).2 Then we update the Q-values, beginning with QN (OT ; AT ) and ending with Q1(O1; A1),according toQi(Ot; At) (1� �Q)Qi(Ot; At) + �QQ0(Ot; At)HQ(�).1 For the HQ-tables we also compute desired HQ-values HQ0i(Ôi) for i = N; : : : ; 1:HQ0N(ÔN ) RNHQ0N�1(ÔN�1) RN�1 + tN�tiRNHQ0i(Ôi) Ri + ti+1�ti((1� �)HVi+1 + �HQ0i+1(Ôi+1))HQ(�).2 Then we update the HQ-values for agents C1 ; : : : ; CMin(N ;M�1 ) according toHQi(Ôi) (1� �HQ)HQi(Ôi) + �HQHQ0i(Ôi)In principle, online Q(�) may be used as well. See, e.g., Peng and Williams (1996), or Wieringand Schmidhuber's fast Q(�) implementation (1997). Online Q(�) should not use \action-penalty"(Koenig and Simmons 1996), however, because punishing varying actions in response to ambiguousinputs will trap the agent in cyclic behavior.Combined dynamics. Q-table policies are reactive and learn to solve RPPs. HQ-table poli-cies are metastrategies for composing RPP sequences. Although Q-tables and HQ-tables do notexplicitly communicate they inuence each other through simultaneous learning. Their coopera-tion results in complex dynamics quite di�erent from those of conventional Q-learning.Utilities of subgoals and RPs are estimated by tracking how often they are part of successfulsubgoal/RP combinations. Subgoals that never or rarely occur in solutions become less likely tobe chosen, others become more likely. In a certain sense subtasks compete for being assignedto subagents, and the subgoal choices \co-evolve" with the RPs. Maximizing its own expectedutility, each agent implicitly takes into account frequent decisions made by other agents. Eachagent eventually settles down on a particular RPP solvable by its RP and ceases to adapt. Thiswill be illustrated by Experiment 1 in Section 3.Estimation of average reward for choosing a particular subgoal ignores dependencies on previoussubgoals. This makes local minima possible. If several rewarding suboptimal subgoal sequencesare \close" in subgoal space, then the optimal one may be less probable than suboptimal ones.We will show in the experiments that this actually can happen.Exploration issues. Initial choices of subgoals and RPs may inuence the �nal result -there may be local minimum traps. Exploration is a partial remedy: it encourages alternativecompetitive strategies similar to the current one. Too little exploration may prevent the systemfrom discovering the goal at all. Too much exploration, however, prevents reliable estimates ofthe current policy's quality and reuse of previous successful RPs. To avoid over-exploration weuse the Max-Boltzmann (Max-Uniform) distribution for Q-values (HQ-values) (for discussions ofexploration issues see, e.g., Fedorov 1972; Schmidhuber 1991a; Thrun 1992; Cohn 1994; Caironiand Dorigo 1994; Storck, Hochreiter and Schmidhuber 1995; Wilson 1996, Schmidhuber 1997).These distributions also make it easy to reduce the relative weight of exploration (as opposed toexploitation): to obtain a deterministic policy at the end of the learning process, we increase pmaxduring learning until it �nally achieves a maximum value.Selecting actions according to the traditional Boltzmann distribution causes the following prob-lems: (1) It is hard to �nd good values for the temperature parameter. (2) The degree of explo-ration depends on the Q-values: actions with almost identical Q-values (given a certain input)will be executed equally often. For instance, suppose a sequence of 5 di�erent states in a mazeleads to observation sequence O1 �O1 �O1 �O1 �O1, where O1 represents a single observation.Now suppose there are almost equal Q-values for going west or east in response to O1. Then theQ-updates will hardly change the di�erences between these Q-values. The resulting random walkbehavior will cost a lot of simulation time.For RP training we prefer the Max-Boltzmann rule instead. It focuses on the greedy policyand only explores actions competitive with the optimal actions. Subgoal exploration is less critical6
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Figure 2: A partially observable maze (POM). The task is to �nd a path leading from start S togoal G. The optimal solution requires 28 steps and at least three reactive agents. The �gure showsa possible sub-optimal solution that costs 30 steps. Asterisks mark appropriate subgoals.though. The Max-Random subgoal exploration rule may be replaced by the Max-Boltzmann ruleor others.3 ExperimentsWe tested our system on two tasks in partially observable environments. The �rst task is compar-atively simple | it will serve to exemplify how HQ discovers and stabilizes appropriate subgoalcombinations. It requires �nding a path from start to goal in a partially observable 10 � 10-maze,and can be collectively solved by three or more agents. We study system performance as moreagents are added. The second, quite complex task involves �nding a key which opens a doorblocking the path to the goal. The optimal solution (which requires at least 3 agents) costs 83steps.3.1 Learning to Solve a Partially Observable MazeTask. The �rst experiment involves the partially observable maze shown in �gure 2. Thesystem has to discover a path leading from start position S to goal G. There are four actions withobvious semantics: go west, go north, go east, go south. 16 possible observations are computed byadding the \�eld values" of blocked �elds next to the agent's position, where the �eld value of thewest, north, east, and south �eld is 1, 2, 4, and 8, respectively | the agent can only \see" whichof the 4 adjacent �elds are blocked. Although there are 62 possible agent positions, there are only9 highly ambiguous inputs. (Not all of the 16 possible observations can occur in this maze. Thismeans that the system may occasionally generate unsolvable subgoals, such that control will neverbe transferred to another agent.) There is no deterministic, memory-free policy for solving thistask. Stochastic memory-free policies will also perform poorly. For instance, input 5 stands for\�elds to the left and to the right of the agent are blocked". The optimal action in response toinput 5 depends on the subtask: at the beginning of a trial, it is \go north", later \go south",near the end, \go north" again. Hence at least three reactive agents are necessary to solve this
7
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Figure 3: left: HQ-learning results for the partially observable maze, for 3, 4, 6, 8, and 12 agents.We plot average test run length against trial numbers (means of 100 simulations). The systemalmost always converges to near-optimal solutions. Using more than the required 3 agents tends toimprove performance. Right: results for 4, 8, and 12 agents whose actions are corrupted by 10%noise. In most cases they �nd the goal, although noisy actions decrease performance.POMDP.Reward function. Once the system hits the goal it receives a reward of 100. Otherwise thereward is zero. The discount factor  = 0:9.Parameters and experimental set-up. We compare systems with 3, 4, 6, 8, and 12 agentsand noise-free actions. We also compare systems with 4, 8, and 12 agents whose actions selectedduring learning/testing are replaced by random actions with probability 10%. One experimentconsists of 100 simulations of a given system. Each simulation consists of 20,000 trials. Tmax is1000. After every 500th trial there is a test run during which actions and subgoals with maximaltable entries are selected (pmax is set to 1.0). If the system does not �nd the goal during a testrun, then the trial's outcome is counted as 1000 steps.After a coarse search through parameter space, we use the following parameters for all exper-iments: �Q = .05, �HQ = .2, 8i : Ti = :1, � = .9 for both HQ-tables and Q-tables. pmax is setto :9 and linearly increased to 1.0. All table entries are initialized with 0.For purposes of comparison, we also ran 20,000 trials during which at most 1000 actions werepicked randomly. We also tried Q(�)-learning augmented as follows: the current input is theCartesian product of the current observation and the last observation that is di�erent from thecurrent observation. At least in theory this Q(�) variant might be able to solve the problem.Results. Augmented Q(�) failed to �nd stable solutions. HQ worked well, though. Figure3A plots average test run length against trial numbers. Within 20,000 trials all systems almostalways �nd near-optimal deterministic policies.Consider Table 1. The largest systems are always able to decompose the POMDP into asequence of RPPs. The average number of steps is close to optimal. In approximately 1 out of8 cases, the optimal 28-step path is found. In most cases one of the 30-step solutions is found.Since the number of 30-step solutions is much larger than the number of 28-step solutions (thereare many more appropriate subgoal combinations), this result is not surprising.Systems with more than 3 agents are performing better | here the system pro�ts from havingmore free parameters. More than 6 agents do not help though. All systems perform signi�cantly8



Table 1: HQ-learning results for random actions replacing the selected actions with probability 0%and 10%. All table entries refer to the �nal test trial. The 2nd column lists average trial lengths.The 3rd column lists goal hit percentages. The 4th column lists average path lengths of solutions.The 5th column lists percentages of simulations during which the optimal path is found.System Av. steps (%) Goal Av. sol. (%) Optimal3 agents 263 76 30 34 agents 60 97 31 66 agents 31 100 31 148 agents 31 100 31 1212 agents 32 100 32 64 agents 10% noise 177 86 43 28 agents 10% noise 166 87 41 212 agents 10% noise 196 84 43 0Random 912 19 537 0better than the random system, which �nds the goal in only 19% of all 1000 step trials.In case of noisy actions (the probability of replacing a selected action by a random action is10%), the systems still reach the goal in most of the simulations (see �gure 3B). In the �nal trialof each simulation, systems with 4, 8, and 12 agents �nd the goal with probabilities of 86, 87, and84 percent, respectively. There is no signi�cant di�erence between smaller and larger systems.We also studied how the system adds agents during the learning process. The 8-agent systemfound solutions using 3 (4, 5, 6, 7, 8) agents in 8 (19, 16, 17, 21, 19) simulations. Using moreagents tends to make things easier. During the �rst few trials 3 agents were used on average,during the �nal trials 6. Less agents tend to give better results, however. Why? Systems that failto solve the task with few subgoals start using more subgoals until they become successful. Butthe more subgoals there are, the more possibilities to compose paths, and the lower the probabilityof �nding a shortest path in this maze.Experimental analysis. How does the system discover and stabilize subgoal combinations(SCs)? The only optimal 28-step solution uses observation 2 as the �rst subgoal (5th top �eld)and observation 9 as the second (southwest inner corner). There are several 30-step solutions,however | e.g., SCs (3, 12), (2, 12), (10, 12).Figure 4 shows how SCs evolve by plotting them every 10 trials (observation 16 stands foran unsolved subgoal). The �rst 10,000 SCs are quite random, and the second agent often is notable to achieve its subgoal at all. Later, however, the system gradually focuses on successful SCs.Although useful SCs are occasionally lost due to exploration of alternative SCs, near simulationend the system converges to SC (3, 12).The goal is hardly ever found prior to trial 5200 (the �gure does not show this). Then thereis a sudden jump in performance | most later trials cost just 30 steps. From this moment onobservation 12 is used as second subgoal in more than 95% of all cases, and the goal is foundin about 85%. The �rst subgoal tends to vary among observations 2, 3 and 10. Finally, around16,000 trials, the �rst subgoal settles down on observation 3, although observation 2 would workas well.The reasons for faster stabilization of the second subgoal may be its proximity to the �nalgoal and the larger number of successful subgoal combinations in which it participates. Once thesecond and third agents have learned RPs leading from the second subgoal to the goal, the secondsubgoal's HQ-value will have increased dramatically and dominate the alternatives. Only once thesecond subgoal is �rmly established can a similar e�ect help to stabilize the �rst. Subgoals tendto get �xed in reverse order of their online generation.9
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Figure 4: Subgoal combinations (SCs) generated by a 3-agent system, sampled at intervals of 10trials. Initially many di�erent SCs are tried out. After 10,000 trials HQ explores less and lessSCs until it �nally converges to SC (3, 12).3.2 The Key and the DoorTask. The second experiment involves the 26� 23 maze shown in �gure 5. Starting at S, thesystem has to (1) fetch a key at position K, (2) move towards the \door" (the shaded area) whichnormally behaves like a wall and will open (disappear) only if the agent is in possession of the key,and (3) proceed to goal G. There are only 11 di�erent, highly ambiguous inputs; the key (door)is observed as a free �eld (wall). The optimal path takes 83 steps.Reward function. Once the system hits the goal, it receives a reward of 500. For all otheractions there is a reward of -0.1. There is no additional, intermediate reward for taking the keyor going through the door. The discount factor  = 1:0.Parameters. The experimental set-up is analogous to the one in section 3.1. We use systemswith 3, 4, 6 and 8 agents, and systems with 8 agents whose actions are corrupted by di�erentamounts of noise (5%, 10%, and 25%). �Q = .05, �HQ = .01 8i : Ti = :2. pmax is linearlyincreased from :4 to :8. Again, � = .9 for both HQ-tables and Q-tables, and all table entries arezero-initialized. One simulation consists of 20,000 trials.Results. We �rst ran 20,000 thousand-step trials of a system executing random actions. Itnever found the goal. Then we ran the random system for 3000 10,000 step trials. The shortestpath ever found took 1,174 steps. We observe: goal discovery within 1000 steps (and without\action penalty" through negative reinforcement signals for each executed action) is very unlikely10
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SFigure 5: A partially observable maze containing a key K and a door (grey area). Starting at S,the system �rst has to �nd the key to open the door, then proceed to the goal G. The shortestpath costs 83 steps. This optimal solution requires at least three reactive agents. The number ofpossible world states is 960.
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Figure 6: left: HQ-learning results for the \key and door" problem. We plot average test runlength against trial number (means of 100 simulations). Within 20,000 trials systems with 3 (4,6 and 8) agents �nd good deterministic policies in 85% (96%, 96% and 99%) of the simulations.Right: HQ-learning results with an 8 agent system whose actions are replaced by random actionswith probability 5%, 10%, and 25%.to happen.Figure 6A and Table 2 show HQ-learning results for noise-free actions. Within 20,000 trialsgood, deterministic policies are found in almost all simulations. Optimal 83 step paths are foundwith 3 (4, 6, 8) agents in 8% (9%, 8%, 6%) of all simulations. During the few runs that did notlead to good solutions the goal was rarely found at all. This reects a general problem: in thePOMDP case exploration issues are trickier than in the MDP case | much remains to be doneto better understand them. 11



Table 2: Results of 100 HQ-learning simulations for the \key and door" task. All table entriesrefer to the �nal test trial. The second column lists average trial lengths. The third lists goalhit percentages. The fourth lists average path lengths of solutions. The �fth lists percentages ofsimulations during which the optimal 83 step path was found. HQ-learning could solve the taskwith a limit of 1000 steps per trial. Random search needed a 10,000 step limit.System Av. steps (%) Goal Av. sol. (%) Optimal3 agents 224 85 87 84 agents 126 96 90 96 agents 127 96 91 88 agents 101 99 92 68 agents (5% noise) 360 92 304 08 agents (10% noise) 399 90 332 08 agents (25% noise) 442 84 336 0Random *9310 19 6370 0If random actions are taken in 5% (10%, 25%) of all cases, the 8 agent system still �nds thegoal in 92% (90%, 84%) of the �nal trials (see table 2). In many cases long paths (300 | 700steps) are found. The best solutions use only 84 (91, 118) steps, though. Interestingly, a littlenoise (e.g. 5%) does decrease performance, but much more noise does not lead to much worseresults.4 Previous WorkOther authors proposed hierarchical reinforcement learning techniques, e.g., Schmidhuber (1991b),Dayan and Hinton (1993), Moore and Atkeson (1993), Tham (1995), Sutton (1995). Their meth-ods, however, have been designed for MDPs. Since the focus of our paper is on POMDPs, thissection is limited to a brief summary of previous POMDP approaches with speci�c advantagesand disadvantages.Recurrent neural networks. Schmidhuber (1991c) uses two interacting, gradient-basedrecurrent networks. The \model network" serves to model (predict) the environment, the otherone uses the model net to compute gradients maximizing reinforcement predicted by the model(this extends ideas by Nguyen and B. Widrow 1989; and Jordan and Rumelhart 1990). To ourknowledge this work presents the �rst successful reinforcement learning application to simple non-Markovian tasks (e.g., learning to be a ipop). Lin (1993) also uses combinations of controllersand recurrent nets. He compares time-delay neural networks (TDNNs) and recurrent neuralnetworks.Despite their theoretical power, standard recurrent nets run into practical problems in case oflong time lags between relevant input events. Although there are recent attempts at overcomingthis problem (e.g., Schmidhuber 1992; Hihi and Bengio 1996; Hochreiter and Schmidhuber 1997,and references therein), there are no reinforcement learning applications yet.Belief vectors. Kaelbling, Littman and Cassandra (1995) hierarchically build policy treesto calculate optimal policies in stochastic, partially observable environments. For each possibleenvironmental state the \belief vector" provides the agent's estimate of the probability of currentlybeing in this state. After each observation the belief vector is updated using action/observationmodels and Bayes' formula. This compresses the history of previous events into a probabilitydistribution. Based on this \belief state" an optimal action can be chosen (Sondik 1971). Dynamicprogramming algorithms are used to compute optimal policies based on the belief states. Problemswith this approach are that the nature of the underlying MDP needs to be known, and thatit is computationally very expensive. Methods for speeding it up focus on constructing more12



compact policy trees. For instance, Littman (1996) uses the \witness algorithm" to acceleratepolicy tree construction. Zhang and Liu (1996) propose a scheme which (a) speeds up the dynamicprogramming updates and (b) uses an oracle providing additional state information to decreaseuncertainty.Boutilier and Poole (1996) use Bayesian networks to represent POMDPs, and use these morecompact models to accelerate policy computation. Parr and Russell (1995) use gradient descentmethods on a continuous representation of the value function. Their experiments show signi�cantspeed-ups on certain small problems.Littman et al. (1995) compare di�erent POMDP algorithms using belief vectors. They reportthat \small POMDPs" (with less than 10 states and few actions) do not pose a very big problemfor most methods. Larger POMDPs (50 to 100 states), however, cause major problems. Thisindicates that the problems in the current paper (which involve 62 and 960 states) can hardlybe solved by such methods. HQ-learning, by contrast, is neither computationally complex norrequires knowledge of the underlying MDP. In absence of prior knowledge this can be a signi�cantadvantage. An advantage of the other methods, however, is that they can deal with very noisyperceptions and actions.A possible HQ extension could use belief vectors to assign selection probabilities to each agentand to weigh their Q-values. In very noise environments this may work better than simple HQ.Hidden Markov Models. McCallum's utile distinction memory (1993) is an extensionof Chrisman's perceptual distinctions approach (1992), which combines Hidden Markov Mod-els (HMMs) and Q-learning. The system is able to solve simple POMDPs (maze tasks with only afew �elds) by splitting \inconsistent" HMM states whenever the agent fails to predict their utilities(but instead experiences quite di�erent returns from these states). One problem of the approachis that it cannot solve problems in which conjunctions of successive perceptions are useful forpredicting reward while independent perceptions are irrelevant. HQ-learning does not have thisproblem | it deals with perceptive conjunctions by using multiple agents if necessary.Memory bits. Littman (1994) uses branch-and-bound heuristics to �nd suboptimal mem-oryless policies extremely quickly. To handle mazes for which there is no safe, deterministic,memoryless policy, he replaces each conventional action by two actions, each having the addi-tional e�ect of switching on or o� a \memory bit". Good results are obtained with a toy problem.The method does not scale though, due to search space explosion caused by adding memory bits.Cli� and Ross (1994) use Wilson's (1994) classi�er system (ZCS) for POMDPs. There arememory bits which can be set and reset by actions. ZCS is trained by bucket-brigade and geneticalgorithms. The system is reported to work well on small problems but to become unstable in caseof more than one memory bit. Also, it is usually not able to �nd optimal deterministic policies.Wilson (1995) recently described a more sophisticated classi�er system which uses predictionaccuracy for calculating �tness, and a genetic algorithm working in environmental niches. Hisstudy shows that this makes the classi�ers more general and more accurate. It would be interestingto see how well this system can use memory for solving POMDPs.One problem with memory bits is that tasks such as those in section 3 require (1) switchingon/o� memory bits at precisely the right moment, and (2) keeping them switched on/o� for longtimes. During learning and exploration, however, each memory bit will be very unstable andchange all the time | algorithms based on incremental solution re�nement will usually have greatdi�culties in �nding out when to set or reset it. Even if the probability of changing a memorybit in response to a particular observation is low it will eventually change if the observation ismade frequently. HQ-learning does not have such problems. Its memory is embodied solely bythe active agent's number, which is rarely incremented during a trial. This makes it much morestable.Program evolution with memory cells (MCs). Certain techniques for automatic programsynthesis based on evolutionary principles can be used to evolve short-term memorizing programsthat read and write MCs during runtime (e.g., Teller, 1994). A recent such method is ProbabilisticIncremental Program Evolution (PIPE | Salustowicz and Schmidhuber, 1997). PIPE iteratively13



generates successive populations of functional programs according to an adaptive probability dis-tribution over all possible programs. On each iteration it uses the best program to re�ne thedistribution. Thus it stochastically generates better and better programs. An MC-based PIPEvariant has been successfully used to solve tasks in partially observable mazes. Unlike the memorybit approach mentioned in the previous paragraph, population-based approaches will not easilyunlearn programs that make good use of memory. On serial machines, however, their evaluationtends to be computationally much more expensive than HQ.Learning control hierarchies. Ring's system (1994) constructs a bottom-up control hierar-chy. The lowest level nodes are primitive perceptual and control actions. Nodes at higher levelsrepresent sequences of lower level nodes. To disambiguate inconsistent states, new higher-levelnodes are added to incorporate information hidden \deeper" in the past, if necessary. The systemis able to quickly learn certain non-Markovian maze problems but often is not able to generalizefrom previous experience without additional learning, even if the optimal policies for old and newtask are identical. HQ-learning, however, can reuse the same policy and generalize well fromprevious to \similar" problems.McCallum's U-tree (1996) is quite similar to Ring's system. It uses prediction su�x trees(see Ron, Singer and Tishby 1994) in which the branches reect decisions based on current orprevious inputs/actions. Q-values are stored in the leaves, which correspond to clusters of instancescollected and stored during the entire learning phase. Statistical tests are used to decide whetherinstances in a cluster correspond to signi�cantly di�erent utility estimates. If so, the cluster is split.McCallum's recent experiments demonstrate the algorithm's ability to learn reasonable policies inlarge state spaces.One problem with Ring's and McCallum's approaches is that they depend on the creation of ann-th order Markov model, where n is the size of the \time window" used for sampling observations.Hence for large n the approach will su�er from the curse of dimensionality.Consistent Representations. Whitehead (1992) uses the \Consistent Representation (CR)Method" to deal with inconsistent internal states which result from \perceptual aliasing" due toambiguous input information. CR uses an \identi�cation stage" to execute perceptual actionswhich collect the information needed to de�ne a consistent internal state. Once a consistentinternal state has been identi�ed, a single action is generated to maximize future discountedreward. Both identi�er and controller are adaptive. One limitation of his method is that thesystem has no means of remembering and using any information other than that immediatelyperceivable. HQ-learning, however, can pro�t from remembering previous events for very longtime periods.Levin Search. Wiering and Schmidhuber (1996) use Levin search (LS) through programspace (Levin 1973) to discover programs computing solutions for large POMDPs. LS is of interestbecause of its amazing theoretical properties: for a broad class of search problems, it has theoptimal order of computational complexity. For instance, suppose there is an algorithm that solvesa certain type of maze task in O(n3) steps, where n is a positive integer representing the problemsize. Then LS will solve the same task in at most O(n3) steps. Wiering and Schmidhuber showthat LS may have substantial advantages over other reinforcement learning techniques, providedthe algorithmic complexity of the solutions is low.Success-Story Algorithm. Wiering and Schmidhuber (1996) also extend LS to obtain anincremental method for generalizing from previous experience (\adaptive LS"). To guarantee thatthe lifelong history of policy changes corresponds to a lifelong history of reinforcement accelera-tions, they use the success-story algorithm (SSA, e.g., Schmidhuber, Zhao and Schraudolph 1997a;Zhao and Schmidhuber 1996, Schmidhuber, Zhao and Wiering 1997b). This can lead to furthersigni�cant speed-ups. SSA is actually not LS-speci�c, but a general approach that allows forplugging in a great variety of learning algorithms. For instance, in additional experiments with a\self-referential" system that embeds its policy-modifying method within the policy itself, SSA isable to solve huge POMDPs with more than 1013 states (Schmidhuber et al. 1997a). It may be14



possible to combine SSA with HQ-learning in an advantageous way.Multiple Q-learners. Like HQ-learning, Humphrys' W-learning (1996) uses multiple Q-learning agents. A major di�erence is that his agents' skills are prewired | di�erent agents focuson di�erent input features and receive di�erent rewards. \Good" reward functions are found bygenetic algorithms. An important goal is to learn which agent to select for which part of the inputspace. Eight di�erent learning methods implementing cooperative and competitive strategies aretested in a rather complex dynamic environment, and seem to lead to reasonable results.Digney (1996) describes a nested Q-learning technique based on multiple agents learning inde-pendent, reusable skills. To generate quite arbitrary control hierarchies, simple actions and skillscan be composed to form more complex skills. Learning rules for selecting skills and for selectingactions are the same, however. This may make it hard to deal with long reinforcement delays.In experiments the system reliably learns to solve a simple maze task. It remains to be seen,however, whether the system can reliably learn to decompose solutions of complex problems intostable skills.5 HQ's Advantages and LimitationsHQ's advantages.1. Most POMDP algorithms need a priori information about the POMDP, such as the totalnumber of environmental states, the observation function, or the action model. HQ doesnot.2. Unlike \history windows", HQ-learning can in principle handle arbitrary time lags betweenevents worth memorizing. To focus this power on where it is really needed, short historywindows may be included in the agent inputs to take care of the shorter time lags. This,however, is orthogonal to HQ's basic ideas.3. To reduce memory requirements, HQ does not explicitly store all experiences with di�erentsubgoal combinations. Instead it estimates the average reward for choosing particular sub-goal/RP combinations, and stores its experiences in a single sequence of Q- and HQ-tables.These are used to make successful subgoal/RP combinations more likely. HQ's approach isadvantageous in case the POMDP exhibits certain regular structure: if one and the sameagent tends to receive RPPs achievable by similar RPs then it can \reuse" previous RPPsolutions.4. HQ-learning can immediately generalize from solved POMDPs to \similar" POMDPs con-taining more states but requiring identical actions in response to inputs observed duringsubtasks (the RPPs remain invariant).5. Like Q-learning, HQ-learning allows for representing RPs and subgoal evaluations by functionapproximators other than look-up tables.HQ's current limitations.1. An agent's current subgoal does not uniquely represent previous subgoal histories. Thismeans that HQ-learning does not really get rid of the \hidden state problem" (HSP). HQ'sHSP is not as bad as Q's, though. Q's is that it is impossible to build a Q-policy that reactsdi�erently to identical observations, which may occur frequently. Appropriate HQ-policies,however, do exist.Still, HQ's remaining HSP may prevent HQ from learning an optimal policy. To deal withthis HSP one might think of using subgoal trees instead of sequences. All possible subgoalsequences are representable by a tree whose branches are labeled with subgoals and whosenodes contain RPs for solving RPPs. Each node stands for a particular history of subgoals15



and previously solved subtasks | there is no HSP any more. Since the tree grows exponen-tially with the number of possible subgoals, however, it is practically infeasible in case oflarge scale POMDPs. Perhaps it will be possible to �nd a reasonable compromise betweensimple linear sequences and full-edged trees.2. In case of noisy observations transfer of control may happen at inappropriate times. Aremedy may be to use more reliable inputs combining successive observations.3. In case of noisy actions, an inappropriate action may be executed right before passing control.The resulting new subtask may not be solvable by the next agent's RP. A remedy similar tothe one mentioned above may be to represent subgoals as pairs of successive observations.4. If there are many possible observations then subgoals will be tested infrequently. This maydelay convergence. To overcome this problem one might either try function approximatorsinstead of look-up tables or let each agent generate a set of multiple, alternative subgoals.In the latter instance, once a subgoal in the set is reached, control is transferred to the nextagent.5. Some parameters, such as the maximal number of agents and the maximal runtime, need tobe set in advance. The former is not critical | it may be large since storage requirementsare low. The latter, however, should be as low as possible to avoid wasting time on \cycling"between states.6 ConclusionSummary. HQ-learning is a novel method for reinforcement learning in partially observableenvironments. \Non-Markovian" tasks are automatically decomposed into subtasks solvable bymemoryless policies, without intermediate external reinforcement for \good" subgoals. This is doneby an ordered sequence of agents, each discovering both a local control policy and an appropriatesubgoal. At each time step, the only type of memory is carried by the \name" of the agent thatis active. Our experiments involve (model-free, deterministic) POMDPs with many more statesthan most POMDPs found in the literature. The results demonstrate HQ-learning's ability toquickly learn optimal or near-optimal policies.Future work. The current HQ version is restricted to learning single linearly ordered subgoalsequences. For very complex POMDPs, generalized HQ-architectures based on directed acyclic(or even recurrent) graphs may turn out to be useful. In our point of view, however, the mostchallenging problem is exploration: \destructive" exploration rules will unlearn good subgoalsequences. How to improve POMDP exploration is still an open question.7 AcknowledgmentsThanks for valuable comments and discussions to Marco Dorigo, Nic Schraudolph, Luca Gam-bardella, Rafa l Sa lustowicz, Jieyu Zhao, Cristina Versino, Stewart Wilson, and several anonymousreferees.ReferencesBoutilier, C. and Poole, D. (1996). Computing optimal policies for partially observable deci-sion processes using compact representations. In AAAI-1996: Proceedings of the ThirteenthNational Conference on Arti�cial Intelligence, pages 1168{1175, Portland, OR.Caironi, P. V. C. and Dorigo, M. (1994). Training Q-agents. Technical Report IRIDIA-94-14,Universit�e Libre de Bruxelles. 16
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