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Abstract—This study focuses on supplementing data sets with
data of absent classes by using other, similar data sets in which
these classes are represented. The data is generated using Gener-
ative Adversarial Nets (GANs) trained on the CelebA and MNIST
datasets. In particular we use and compare Coupled GANs
(CoGANs), Auxiliary Classifier GANs (AC-GANs) and a novel
combination of the two (CoAC-GANs) to generate image data of
domain-class combinations that were removed from the training
data. We also train classifiers on the generated data. The results
show that AC-GANs and CoAC-GANs can be used successfully
to generate labeled data from domain-class combinations that
are absent from the training data. Furthermore, they suggest
that the preference for one of the two types of generative models
depends on training set characteristics. Classifiers trained on
the generated data can accurately classify unseen data from the
missing domain-class combinations.

Index Terms—Generative adversarial net, deep neural net-
work, data generation

I. INTRODUCTION

ANY image data set only covers a fixed domain. This
severely limits the abilities of classifiers trained on them.

E.g. classifiers are unable to classify classes that do not exist
in their training sets. They also often lack in accuracy when
tested on data sets different from their training set with an
overlapping set of classes, since the data set specifics such as
image style are rarely identical to the specifics of the training
set.

Domain adaptation is the research area devoted to solve the
problem of classifying data from some domain C where no
class labels are available by using data from a different domain
D in which labeled data are available. Similar to domain
adaptation this work involves using data from some domain
to expand classifier capabilities in another. We consider the
setting with two domains of labeled data, where in one of the
domains, for one or more classes, no data are available.

More specifically, consider image domains A and B that
produce the samples in data sets A and B respectively.
Furthermore samples in A have classes from set CA and
samples in B have classes from set CB . Let there be a class
c such that c ∈ CB , but c 6∈ CA, and furthermore CA ⊂ CB .
From here on, the set of samples in domain A of class c are
denoted by Ac. For this work, we define Extra Domain Data

Generation (EDDG) as the problem of generating samples
from Ac. An example of this is generating fives in the style
of A if A and B contain images of digits, with B containing
images of fives and A not containing images of fives.

We aim to tackle EDDG with the use of generative models
(GM). GMs are able to generate new data from distributions
of interest. Different types of GMs exist, such as variational
auto-encoders [1] and Generative Adversarial Nets [2] (GANs)
that transform noise to meaningful data. Many extensions to
the GAN architecture have been made. E.g. Coupled GANs
[3] (CoGANs) have shown to be useful for domain adaptation
and Auxiliary Classifier GANs [4] (AC-GANs) are one of the
types of GANs that are able to generate labeled data.

GANs have also been used for image-to-image translation
in e.g. [5], [6]. Instead of generating new images from only
noise and optionally a class label, such models alter existing
images from one domain so that they seem to originate from
another domain or they alter existing images of some class
to appear as if they have another class label. In particular,
StarGAN [6] is able to translate images in some domain to
appear to have a class label for which no data in that domain
is available by using additional data from another domain in
which the particular class label is represented.

In this work, we do not perform image-to-image transla-
tion, but train GANs on the CelebA [7] dataset and on a
combination of the MNIST [8] and MNIST-edge [3] datasets
to generate original images. Primarily, we use AC-GANs and
propose a novel combination of AC-GANs and CoGANs to
generate data from domain-class combinations that are not
present in their training sets. We also show that using the
data generated by these models, classifiers can be trained that
are able to accurately classify this missing data.

We first explain the GAN architectures we use in section II
and then theoretically deliberate upon the usefulness of these
architectures for EDDG in section III. Afterwards we discuss
the experiments we have performed with them.

II. METHODS

A. Generative Adversarial Nets

Generative Adversarial Nets (GANs) [2] consist of two uni-
versal function approximators, a generator and a discriminator,



which are trained in a competitive setting.
The generator learns a mapping from some distribution pz

to the distribution of interest pdata. It gets as input a noise
sample z ∼ pz and outputs some fake data point G(z). We
denote the distribution of G(z) as pG.

The discriminator learns to predict the probability that its
input x is sampled from the real data instead of it being
produced by the generator. It learns this by maximizing its
output when x ∼ pdata and minimizing its output when x ∼ pG.
In contrast, the generator learns to produce samples x ∼ pG
that maximize the output of the discriminator.

For generator G and discriminator D, the GAN objectives
are captured in the value function:

V (D,G, pdata) = Ex∼pdata [logD(x)]
+ Ez∼pz [log(1−D(G(z)))].

(1)

The discriminator maximizes this function, while the generator
minimizes its right term. The complete training process is
described by playing the following minimax game:

min
G

max
D

V (D,G, pdata).

The generator and discriminator in GANs are often imple-
mented as Neural Networks (NNs) [9]. For image generation
tasks, Convolutional NNs (CNNs) [10] are a popular choice,
although with capsule networks [11] promising results have
also been obtained [12], [13].

B. Auxiliary Classifier Generative Adversarial Nets

With Auxillary Classifier GANs [4] (AC-GANs), next to
the noise vector z, the generator receives a class label c as
input. The discriminator does not receive c as input. Instead,
in addition to predicting whether its input comes from the real
data set, the discriminator is tasked with predicting c.

The discriminator thus has two outputs. The first one is the
vanilla GAN output D(x), which is the probability that the
source, S, from which the discriminator input, x, is sampled
is the real data set and not the distribution generated by the
generator. The second output of the discriminator contains
P (C | x) for all classes C, which is a vector that contains
the probability distribution over the class labels.

The log-likelihood for predicting the correct source, de-
scribed in (1), becomes:

VS = Ex,c∼pdata [logD(x)]
+ Ez∼pz,c∼pc [log(1−D(G(z, c)))].

(2)

The log-likelihood for predicting the correct class is formu-
lated as:

VC = Ex,c∼pdata [logP (C = c | x)]
+ Ez∼pz,c∼pc , [logP (C = c | G(z, c))].

(3)

Both the generator and the discriminator are trained to maxi-
mize VC . AC-GANs are thus trained by letting the discrimi-
nator maximize VC + VS and letting the generator maximize
VC−VS . AC-GANs are easily extended to work with multiple
class labels by adding additional VC terms to these value
functions.

C. Coupled Generative Adversarial Nets

Coupled GANs (CoGANs) [3] learn to sample from a
joint distribution, but are trained only using multiple marginal
distributions, where each marginal distribution describes a
different domain.

CoGANs are implemented as multiple GANs, each of which
learns to generate samples from a different marginal distribu-
tion. The GANs are interdependent by sharing the weights in
the first layer(s) of their generators and in the last layer(s) of
their discriminators. When CoGANs are implemented as deep
feed-forward NNs, high level image semantics are expected
to be encoded in these shared weights and low level details
are expected to be encoded in the weights that are not shared.
This is the case because of the hierarchical way features are
represented in the layers of this type of model. When a single
noise vector is presented to all the GANs that make up a
CoGAN, the high level semantics of the generated images
will be the same, while the low level details will be different.
Since each of these GANs produces images from a different
domain, the tuple of images generated by presenting a single
noise vector to CoGANs is the approximation of a sample of
a joint distribution of these different domains.

Consider N marginal distributions pdatai where i ∈ [1..N ]. A
CoGAN consisting of N GANs is trained to generate samples
from the joint distribution that contains N -tuples of samples
of pdatai. For each i ∈ [1..N ], GANi, with discriminator Di

and generator Gi, is trained to produce samples from pdatai.
The value function for CoGANs is:

VCoGAN =

N∑
i=1

V (Di, Gi, pdatai). (4)

D. Coupled Auxiliary Classifier Generative Adversarial Nets

By combining the value functions of CoGANs and AC-
GANs, we propose Coupled Auxiliary Classifier GANs
(CoAC-GANs). For the ith GAN in a CoAC-GAN with a
discriminator that outputs the tuple Di(x), Pi(C | x) the log-
likelihoods from (2) and (3) respectively become:

VSi = Ex,c∼pdatai [logDi(x)]
+ Ez∼pz,c∼pci [log(1−Di(Gi(z, c)))]

and

VCi = Ex,c∼pdatai [logPi(C = c | x)]
+ Ez∼pz,c∼pci [logPi(C = c | Gi(z, c))].

A CoAC-GAN consisting of N GANs is trained by letting the
discriminators maximize:

N∑
i=1

VCi + VSi (5)

and letting the generators maximize:

N∑
i=1

VCi − VSi. (6)



E. Wasserstein Generative Adversarial Nets

Wasserstein GANs [14] (WGANs) are GANs that are
trained to minimize the Earth Mover (EM) distance between
pG and pdata. In this optimization problem, the EM distance
is defined using the Kantorovich-Rubinstein duality. This
definition assumes the discriminator (named critic in the paper,
since the WGAN discriminator is not trained to classify) to be
K-Lipschitz [14]. Instead of forcing the discriminator to be K-
Lipschitz, a soft constraint in the form of a gradient penalty
can be added to the WGAN value function [15]. With this
gradient penalty, the WGAN critic value function becomes:

VW (D,G, pdata) = Ex∼pdata [D(x)]− Ez∼pz [D(G(z))]
− λEx̂∼px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
.

The generator is trained to maximize Ez∼pz [D(G(z))]. The
coefficient of the gradient penalty λ has a default value of 10.
px̂ is defined sampling uniformly from lines between points
from pdata and points from pG.

A CoGAN trained with the WGAN objective has the value
function described in (4), where V (Di, Gi, pdatai) is substi-
tuted with VW (Di, Gi, pdatai). A CoAC-GAN trained with the
WGAN objective has value functions for the discriminator and
generator described in (5) and (6) respectively, where VSi is
substituted with

VWSi = Ex,c∼pdatai [Di(x)]− Ez∼pz,c∼pci [Di(Gi(z, c))]
− λEx̂∼px̂i

[
(‖∇x̂Di(x̂)‖2 − 1)2

]
.

III. EXTRA DOMAIN DATA GENERATION

A. Coupled Generative Adversarial Nets

Consider some CoGAN that is trained to generate data from
a joint distribution that consists of the domains A and B.
We denote its GAN that is trained to generate data from A
as GANA and its other GAN as GANB. Especially when
classes are characterized by low level image details, their
representations are expected to be encoded in the earlier shared
layers. However, trying to generate images fromAc in this way
has the following downsides:

1) Discriminators in a CoGAN are trained to only classify
samples from their input distribution of real data as real
and to classify all input produced by the generator as
fake. Furthermore, the discriminator of GANA never
gets a real sample from Ac as input during training.
Therefore, for the discriminator of GANA, fake samples
generated by the generator that are similar to samples
from Ac should be easier to reject than fake samples
generated by the generator that are similar to other
samples form A. This makes it harder for the generator
to fool the discriminator by producing samples from Ac,
which in turn makes it more likely for the generator
to find some optimum where it is unable to generate
samples from Ac.

2) When training is done, even if GANA is able to generate
samples from Ac, there is no simple way to obtain them.
In order to generate the desired samples from Ac one

has to use this generator to generate samples randomly,
until a sample from Ac is found.

B. Auxiliary Classifier Generative Adversarial Nets

Both issues can be eliminated by using AC-GANs for the
data generation. This can be done by using both a domain label
and class label as conditional input for the generator and as
a variable that the discriminator has to predict. Evidently, this
resolves the second issue, since after training, the generator
can be primed to generate data from a specific class in a
specific domain.

When training such an AC-GAN, the first issue is also taken
care of when during training, the generator is presented with
class labels from CA as input when it is primed to generate
data from A and with labels from CB when generating data
from B. This way, the generator is never tasked to generate
samples from Ac during training. It thus never gets to see that
fooling the discriminator with data from Ac is difficult.

Although in this way the AC-GAN is never trained to
specifically generate data from Ac, it is trained to generate
domain specific data depending on its input domain label
and class specific data depending on its input class label. As
long as the complexity of the function that it learns to do
so is sufficiently restricted, there should be a large overlap
in the features that the AC-GAN uses to generate data from
different classes from the same domain. Similarly, there should
be a large overlap in the features that the AC-GAN uses to
generate data from the same class, but from different domains.
Therefore, even though the generator never generates samples
from Ac during training, it would still likely have the ability
to generate samples of Ac after training.

C. Coupled Auxiliary Classifier Generative Adversarial Nets

As with a regular AC-GANs, because the generators of a
CoAC-GAN have a conditional input variable that determines
the class of the generated samples, it is possible to constrain
the generator from generating samples from Ac during training
in the same way as described in section III-B, which avoids
the first downside stated in section III-A. Similarly, the second
downside is also avoided, because when training is done, the
class variable can be used to specify that a sample from Ac

has to be generated using the generator of GANA.

IV. EXPERIMENTS

A. Data sets

Experiments were done using the 28 × 28 pixels MNIST
digit data set [8], a variant of the MNIST data set where all
images have been modified so that they depict the edges of
the digits [3] (MNIST-edge), and the CelebA face data set [7],
which consists of faces that are labeled with binary attribute
labels such as ‘smiling’ and ‘male’. The CelebA images were
centered and cropped to a size of 160 × 160 pixels and
consecutively resized to 64 × 64 pixels. For each data set,
the pixel values were normalized to lay in the domain [-1,1].



B. Extra Domain Data Generation

For data without class labels, image generation is done
with CoGANs and for labeled data generation it is done with
CoAC-GANs and AC-GANs. The GANs are trained on a
combination of the MNIST and MNIST-edge data sets and
on the CelebA data set. For the digit data set, the MNIST
and MNIST-edge data set represent different domains. For the
CelebA data set, the image domain is determined by gender
and the classes are ‘smiling’ and ‘not smiling’.

Three data sets with missing classes are emulated. For the
face image generation task, no smiling males are presented
to the discriminator during training. This data set will be
denoted with Celeba1. Similarly, for the digit generation task,
some digits from the MNIST-edge are not presented during
training. Experiments are performed where the digit ‘5’ is
missing and where the digits ‘5’-‘9’ are missing. These data
sets are denoted MNIST1 and MNIST2 respectively.

GANs are trained with the three data sets described above
to either minimize the regular GAN objective described in
section II-A or to minimize the EM distance with gradient
penalty described in section II-E.

C. Extra Domain Classification

The experiments described here are performed to study
whether data of Ac can be classified accurately when encoun-
tered during testing. To do so, firstly, CoAC-GANs and AC-
GANs trained as described in section IV-B are used to generate
data from all possible domain-class combinations, including
the ones missing from the training set. This fake data is used
to construct two types of training sets. One consists of only
fake data and one consists of both fake and real data. For
both of these types of data sets, for both the regular GAN
and WGAN objectives, five CoAC-GANs and five AC-GANs
were trained with and tested on their ability to generate the
missing data from MNIST1 and MNIST2. This results in a
total of 2 × 2 × 2 × 2 × 5 = 80 generative models. For each
of these generative models, an individual classifier is trained.

a) Class label distributions: The class label distribution
of a data set consisting of only fake data used for classifier
training is taken from the matching real dataset. It is assumed
that the frequency in which the missing domain-class instances
occur is either known or can be estimated well. Missing
domain-label frequencies thus follow the corresponding real
data sets as well.

For a data set that contains both real and fake data the
distribution of class labels for the real data is simply that of
domain A. The distribution of class labels for the fake data
only differs from that of the data set containing only fake data
in that the amount of data with labels that only occur in B
is doubled. This is done to mimic the expected class label
distribution during testing, assuming that the missing classes
in domain A will occur proportionally to those of domain B.

b) Baselines: The accuracy of naively trained classifiers
on class-domain combinations that were not presented during
training is also examined. These classifiers are trained on only
data from domain B and on the junction of A and B, where

TABLE I
GENERATOR FOR GANS TRAINED WITH CELEBA IMAGES

Layer Input Type Output Description
0 - Input 100 + d -
1 0 FC 512× 4× 4 BN, ReLU
2 1 tconv 256× 8× 8 k5, s2, p2, BN, ReLU
3 2 tconv 128× 16× 16 k5, s2, p2, BN, ReLU
4 3 tconv 64× 32× 32 k5, s2, p2, BN, ReLU
5 4 tconv 3× 64× 64 k5, s2, p2, tanh

again labels of classes that are represented in both A and B are
sampled with equal probability during training. Five classifiers
were trained for each of these types of training sets for both
MNIST1 and MNIST2. The performance of the CoAC-GANs
and AC-GANs are compared with these baselines.

D. Model details

1) GANs:
a) Architectures: The architectures of the GANs trained

with CelebA images in this work follow the architectural
constraints of DCGAN [16]. Tables I and II show their details.
Tables III and IV show the architectures details of GANs
trained with digit images. These architectures were also used
in [3]. In Tables I, II, III, and IV the ‘Input’ column denotes the
preceding layer and the ‘Output’ column denotes the output
dimensions of a layer. Furthermore, abbreviations have been
used for fully connected layer (FC), convolution layer [10],
[17] (conv), transposed convolution layer [18], [19] (tconv),
max pooling layer [10] (pool), batch normalization [20] (BN),
rectified linear unit [21] (ReLU), leaky ReLU [22] with a slope
of 0.2 (LReLU), and parametrized ReLU [23] (PReLU). The
kernel size x, stride y and amount of padding z are denoted
by kx, sy, and pz respectively.

Class labels are represented as one-hot vectors. For Tables
II and IV layer 6 and 7 respectively is only added for
AC-GANs or CoAC-GANs. When predicting multiple class
labels, multiple instances of these layers are present in the
architectures. For each of these labels, c denotes the length of
the corresponding one-hot vector. d in Tables I and III denotes
the length of the concatenation of all one-hot vectors that are
presented to a generator.

For a CoGAN or CoAC-GAN, layers 1-4, 2-6, 1-4 and 2-7
are shared between all models for the architectures in Tables
I, II, III and IV respectively.

In all experiments, instance normalization [24] replaces
batch normalization in the WGAN critics. Following [14], the
sigmoid activation in the last layer of all WGAN discrimina-
tors is omitted.

b) Training: The GANs are trained with the Adam
optimization algorithm [25] with a learning rate of 0.0002 and
decay rates for the first- and second-order moment estimates
β1 = 0.5, and β2 = 0.999. The batch size is set to 64 samples.
For a CoGAN or CoAC-GAN, a single update consists of
a forward pass and backward pass through each individual
GAN that the model is composed of, which results in an
effective batch size of 128 samples for their shared layers. All



TABLE II
DISCRIMINATOR FOR GANS TRAINED WITH CELEBA IMAGES

Layer Input Type Output Description
0 - Input 3× 64× 64 -
1 0 conv 64× 32× 32 k5, s2, p2, LReLU
2 1 conv 128× 16× 16 k5, s2, p2, BN, LReLU
3 2 conv 256× 8× 8 k5, s2, p2, BN, LReLU
4 3 conv 512× 4× 4 k5, s2, p2, BN, LReLU
5 4 conv 1× 1× 1 k4, s1, p0 sigmoid
6 4 conv c× 1× 1 kc, s1, p0, softmax

TABLE III
GENERATOR FOR GANS TRAINED WITH DIGIT IMAGES

Layer Input Type Output Description
0 - Input (100 + d)× 1× 1 -
1 0 tconv 512× 4× 4 k4, s1, p0, BN, PReLU
2 1 tconv 256× 7× 7 k3, s2, p1, BN, PReLU
3 2 tconv 128× 13× 13 k3, s2, p1, BN, ReLU
4 3 tconv 64× 25× 25 k3, s2, p1, BN, ReLU
5 4 tconv 1× 28× 28 k4, s1, p1, tanh

AC-GANs are trained for 100 epochs. CoGANs and CoAC-
GANs are trained for 125,000 batches on digit data sets and
for 150,000 batches on CelebA. For each five batches with a
discriminator update, one generator update is done.

2) Classifiers: The architecture of the models trained for
classification is a variant of the LeNet [26] architecture. It is
shown in Table V. The classifiers are trained with SGD with
a learning rate of 0.01 with 64 samples per batch. To keep the
classifiers from overfitting, 10,000 samples are removed from
the training set and used as a validation set. During training,
the error on the validation set is monitored at each epoch.
When the validation error is not improved upon for 10 epochs,
training is terminated and the model at the epoch with the
lowest validation error is used for testing.

TABLE IV
DISCRIMINATOR FOR GANS TRAINED WITH DIGIT IMAGES

Layer Input Type Output Description
0 - Input 1× 28× 28 -
1 0 conv 20× 24× 24 k5, s1, p0
2 1 pool 20× 12× 12 k2, s1, p0
3 2 conv 50× 8× 8 k5, s1, p0
4 3 pool 50× 4× 4 k2, s1, p0
5 4 conv 100× 1× 1 k4, PreLU
6 5 FC 1 sigmoid
7 5 FC c softmax

TABLE V
CLASSIFIER

Layer Input Type Output Description
0 - input 1× 28× 28 -
1 0 conv 20× 24× 24 k5, s1, p0
2 1 pool 20× 12× 12 k2, s1, p0, ReLU
3 2 conv 50× 8× 8 k5, s1, p0
4 3 pool 50× 4× 4 k2, s1, p0, ReLU
5 4 FC 500 ReLU
6 5 FC c softmax

(a) CoGAN, 125,000
batches.

(b) CoGAN, 25,000
batches.

(c) WCoGAN,
125,000 batches.

Fig. 1. Images generated by CoGANs trained on MNIST1. The top images
show digits produced by the GAN trained on MNIST data. The images below
them show the corresponding digits produced by the GAN trained on MNIST-
edge data. These digits were produced from the same input noise vectors. The
noise vectors used to produce the digits in figures 1a and 1b are also identical.
Strong cases of the types of images discussed in section V-A1 are indicated
with a red border.

V. RESULTS

In this section, we denote a GAN that is trained with the
WGAN objective with the prefix ‘W’. When this prefix is
absent, the regarding model is trained with the regular GAN
objective.

A. Extra Domain Data Generation

1) Digits: Figure 1 shows images produced by a CoGAN
and WCoGAN trained on MNIST1. At the end of training,
the CoGAN has collapsed to produce a disproportionally large
share of data from a single mode, which is observed from the
large number of digits ‘1’ in figure 1a. At the optimal point
during the training, the CoGAN produces images that cover
a larger variety of digits. Interestingly, for some input noise
vectors the CoGAN is also able to produce the digit ‘5’ in
both domains, even though this was missing in the training
data of the MNIST-edge domain.

Training a WCoGAN does not result in a mode collapse.
Also, after training is completed, the model is able to produce
the digit ‘5’ in the MNIST domain. However, the corre-
sponding images in the MINST-edge domain do not resemble
‘5’s. Instead, the model produces loosely coupled images that
resemble other digits.

Fig. 2 shows images produced by some of the other ar-
chitectures trained on MNIST1 and MNIST2. We found that
for MNIST1 all models were able to generate recognizable
instance of the digit ‘5’ of MNIST-edge that was missing
in this training set. For MNIST2, only CoAC-GANs and
WCoAC-GANs were able to consistently produce recogniz-
able instances of the digits ‘5’-‘9’ from MNIST-edge.

2) Faces: We found that the CoGAN and WCoGAN trained
with CelebA1 were able to generate images of smiling and
non-smiling females and non-smiling males, but were unable
to generate images of smiling males, which were missing in
the training data. Fig. 3 shows images produced by AC-GANs



(a) MNIST1, CoAC-GAN, 125,000 batches.

(b) MNIST1, WAC-GAN, 100 epochs.

(c) MNIST2, WCoAC-GAN, 125,000 batches.

(d) MNIST2, AC-GAN, 100 epochs.

Fig. 2. Images generated by different GAN architectures trained on MNIST1

and MNIST2. The digits on the left and right half of the image were produced
from the same input noise vectors. Attempts at generating images of missing
domain-class combinations are indicated with a red border.

and CoAC-GANs. CoAC-GANs were also unable to generate
images of the missing domain-class combination. The quality
of the generated images is inferior to those generated by a
CoGAN in the same setting. CoAC-GAN is also prone to mode
collapse, which clearly shows in all smiling mouths of the
images it produced. The images of smiling males generated
early in the training process in Fig. 3b show color artifacts
in the mouth area that are not represented in the training
data. Furthermore, the difference between non-smiling males
and females that is present in early stages of training almost
completely disappears at the end of the training process.

The trained WCoAC-GANs are able to produce images of
smiling males, especially in the early stages of training as can
be seen in Fig. 3f. In Fig. 3h color artifacts can again be seen
around the mouths of the images of smiling males produced at
the end of training. As with CoAC-GANs, these images also
show more female characteristics than those obtained earlier
in the training process.

The results produced by AC-GANs and WAC-GANs show
none of the issues of CoAC-GANs described above. These
models are able to produce images of smiling males even

though they have not been presented with this domain-class
combination during training.

B. Extra Domain Classification

Tables VI and VII show the accuracy of the classifiers
trained on only real data, on only fake data and on hybrid
data sets. Table VI shows the accuracy on ‘5’s from MNIST-
edge. These results were obtained from classifiers trained on
real data that originates from MNIST1 and/or fake training
data produced by GANs trained on MNIST1. Table VII shows
the accuracy on the digits ‘5’-‘9’ from MNIST-edge. These
results were obtained from classifiers trained on real data that
originates from MNIST2 and/or fake training data produced by
GANs trained on MNIST2. The best performing classifiers are
printed in bold. Both tables show that the baseline classifiers
trained on only real data clearly classify data from the missing
class-domain combinations more accurately than a random
assignment of labels based on prior class probabilities.

Training on data produced by CoAC-GANs rather than
on that produced by AC-GANs results in a better classifier
performance in all experiments. In general, training only on
fake data results in a better accuracy than training on hybrid
data with both real and fake samples.

For classifying missing images from MNIST1, the perfor-
mance of the baseline is surpassed by all classifiers trained
on fake or hybrid datasets. For classifiers tasked to classify
missing digits from MNIST2, this only holds when the fake
training data originates from CoAC-GANs. Classifiers tasked
to classify missing digits from MNIST2 trained on fake data
originating from AC-GANs have poor accuracy. The fact that
a better accuracy is obtained by classifiers trained on data
generated by CoAC-GAN with respect to those trained on
data generated by AC-GANs coincides with the quality of the
images shown in Fig. 2.

TABLE VI
CLASSIFIER ACCURACY ON THE MISSING DIGITS ‘5’ OF MNIST-EDGE

FROM MNIST1

Train data Objective Type Accuracy (%)
real MNIST - - 40.45± 7.42
real MNIST +
real MNIST-edge - - 53.34± 6.82

WGAN AC 94.69± 4.22
fake MNIST-edge CoAC 97.00± 1.05

GAN AC 97.71± 0.40
CoAC 98.03± 0.70

WGAN AC 89.75± 6.44
real MNIST-edge + CoAC 96.82± 0.82
fake MNIST-edge GAN AC 94.13± 1.58

CoAC 97.13± 0.92

VI. DISCUSSION

Images generated by CoAC-GANs of the domain-class
combination that are missing in CelebA1 show undesirable
artifacts in the area that characterize the regarding class. This
might be attributed to the CoGAN architecture. The domain
specific information in the generators is forced to reside in the
non-shared weights of the CoGAN, but this is not the case for



(a) CoAC-GAN, female, 25,000 batches. (b) CoAC-GAN, male, 25,000 batches.

(c) CoAC-GAN, female, 150,000 batches. (d) CoAC-GAN, male, 150,000 batches.

(e) WCoAC-GAN, female, 25,000 batches. (f) WCoAC-GAN, male, 25,000 batches.

(g) WCoAC-GAN, female, 150,000 batches. (h) WCoAC-GAN, male, 150,000 batches.

(i) AC-GAN, female, 100 epochs. (j) AC-GAN, male, 100 epochs.

(k) WAC-GAN, female, 100 epochs. (l) WAC-GAN, male, 100 epochs.

Fig. 3. Images generated by GANs trained on CelebA1. The bottom rows contain images generated by GANs when they were primed to generate smiling
faces and top rows contain images generated by GANs when they were primed to generate non-smiling faces. Attempts at generating images of the missing
domain-class combination are indicated with a red border.



TABLE VII
CLASSIFIER ACCURACY ON THE MISSING DIGITS ‘5’-‘9’ OF MNIST-EDGE

FROM MNIST2

Train data Objective Type Accuracy (%)
real MNIST - - 67.74± 24.69
real MNIST +
real MNIST-edge - - 45.14± 14.11

WGAN AC 68.04± 14.50
fake MNIST-edge CoAC 95.82± 1.60

GAN AC 56.26± 29.80
CoAC 93.27± 3.80

WGAN AC 57.14± 18.47
real MNIST-edge + CoAC 94.33± 1.77
fake MNIST-edge GAN AC 39.16± 27.16

CoAC 92.45± 4.12

class specific information. One explanation could therefore be
that the decoding of information specific to the class label that
is missing in domain A happens partly in the shared and partly
in the non-shared generator weights. This is especially likely
when the class label is not solely characterized by low level
image details. However, the non-shared part of the generator
that is tasked to generate images from domain A is never
trained to further encode output of the shared layers when
these are presented with the class label that is missing in
domain A. It would in this case be unable to transform this
shared layer output into meaningful images.

VII. CONCLUSION

This paper shows that it is possible to use AC-GANs
and CoAC-GANs trained with the regular GAN or WGAN
objective to generate new data that seems to originate from
some domain, but characterizes classes of which no data is
available in that domain. In order to do so, data characterizing
these classes must be available in some other similar domain.

Despite the theoretical downsides of using CoGANs for
this task (see section III-A), in some cases, CoGANs are
able to generate data from the missing classes. However,
CoGANs cannot be presented with conditional class variables
and therefore it cannot generate labeled output.

The preference for AC-GANs or CoAC-GANs depends
on the training data. CoAC-GANs seem to have a superior
performance when the domains only differ in low level detail
and for such domains seem to be able to cope better with
multiple missing classes than AC-GANs. This is in line with
theoretical expectations due to the difference in shared weights
of the GANs that make up the architectures of CoAC-GANs
or AC-GANs.

We have also seen that in some cases, the generated data can
be used to train classifiers that accurately classify the missing
classes when they are encountered after training.
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