
Evolving Neural Networks for Forest Fire Control

Marco Wiering marco@cs.uu.nl

Intelligent Systems Group, Utrecht University, Padualaan 14, 3508TB, Utrecht

Filippo Mignogna fmignogn@cs.uu.nl

Presidio Siemens, I.C.P., via Daverio 6. 20100 Milano

Bernard Maassen bmaassen@cs.uu.nl

Computer Science Department, Utrecht University, Padualaan 14, 3508TB, Utrecht

Abstract

Forest fire control is a challenging research
problem involving a non-stationary environ-
ment and multiple cooperating agents. In
this paper we describe the application of en-
forced sub-populations (ESP) to evolve neu-
ral network controllers that solve different
instances of the forest fire control problem.
Our system works by initially generating sub-
goals and assigning subgoals to the different
agents. The subgoal generator and task as-
signment module are modelled as multi-layer
perceptrons which are evolved to minimize
the damage done by the spreading fire. The
experiments show that agents learn to stop
forest fires and that incremental learning can
be used to solve more complex problems.

1. Introduction

Forests play a crucial role for sustaining the human
environment and because forest fires are among the
largest dangers for forest preservation, it is not a sur-
prise to see increasing state expenditures for forest fire
control. Despite of this, annually millions of hectares
of forests are still destroyed by fires. If we look at
the way current forest fires are attacked, then usually
the fire boss makes an initial attack plan to stop the
spread of the fire. This plan consists of a number of
fire-lines that break the fire-propagation. Then he al-
locates resources from neighboring resource bases to
fulfil all subplans. After this the field-commander is
in control and reevaluates the plans constantly based
on a stream of online information (Wiering & Dorigo,
1998). In case of very large fires, a first attack plan
usually does not work. Therefore in this case, no-one
knows how to deal with the problem and the forest fire

control team usually waits until the weather changes
which can last as long as three weeks. This of course
results in large forest areas being destroyed. There-
fore we want to study the application of intelligent
algorithms for dealing with large forest fires.

Forest fires as expanding processes resemble disease
epidemics and volcanic eruptions, and for all these
catastrophes propagation lines should be removed.
E.g., to control disease epidemics roads leading away
from diseased areas should be severely controlled so
that the disease cannot spread itself further. In forest
fire control there are three ways to deal with the prob-
lem; removing fuel, removing oxygen, and decreasing
temperature. Removing fuel can be done by bulldoz-
ers or other ground agents that cut away trees or grass
and this is the most effective way for dealing with large
forest fires. For removing oxygen or decreasing tem-
perature, airborne agents can be used that throw wa-
terbombs containing chemicals, but without cutting
fire-lines this method is not sufficiently effective to
stop a large forest fire (although airborne agents are
helpful to decrease the propagation speed of the fire).
Therefore, there are basically three types of attacks:
airborne attack, a ground attack, and a mixed attack
employing both air- and ground-forces. In this paper
we concentrate on ground-attacks, although our simu-
lator also allows for mixed attacks.

In previous work, forest fire control is done using
planning algorithms. One of the first attempts was
Phoenix (Cohen et al., 1989), a simulated environment
modelling forest fires in Yellowstone National Park.
Agents, which included watchtowers, fuel trucks, heli-
copters, bulldozers, and a coordinating fire boss, were
used to fight the fire using planning techniques. The
CHARADE project (Ricci et al., 1994; Avesani et al.,
1997; Avesani et al., 2000) is a working environmen-
tal decision support system for managing first inter-



vention in forest fires. The planning system inte-
grates case-based reasoning and constraint satisfaction
(Avesani et al. 1997) and is integrated with a geo-
graphic information system (GIS). The case-based rea-
soning system uses a database of previous plans to deal
with forest fires in the south of France to select appro-
priate plans for the current fire. The problem of this
approach is that there are no plans available for very
large forest fires, which have never been controlled suc-
cessfully. Instead, our approach relies on simulation
and learning, where a large number of plans is sim-
ulated and after each simulation the plan-generating
policy is adapted based on results of previous plans.

For learning to control forest fires, we use enforced
sub-populations (Gomez & Miikkulainen, 1998) which
is a promising evolutionary algorithm for evolving
neural network controllers. Basically, enforced sub-
populations (ESP) is an approach to solving reinforce-
ment learning (RL) problems using direct policy search
instead of learning a value function. The disadvan-
tages and advantages of direct policy search versus
value function based RL are still being debated, but
we think that direct policy search based on evolution-
ary algorithms makes it faster to find initially good
controllers, although the fine tuning of the controllers
is more difficult (due to the small amount of policies
that work better instead of worse compared to the
best previous policy). Nevertheless, they might also be
combined in some fruitful way, and we intended to re-
search first direct policy search since the environment
is composed of multiple agents and due to the highly
non-stationary forest fire dynamics, learning accurate
value functions is very difficult.

In the next section we will describe the forest fire sim-
ulator called “Bushfire”. In section 3, we explain how
we use the ESP algorithm for evolving neural network
controllers implementing forest fire control policies. In
sections 4 and 5 we present experimental results. Fi-
nally in section 6 we discuss the obtained results and
describe possibilities for future research.

2. Forest Fire Simulator: Bushfire

We study forest fire control by a learning multi-agent
system. For this we developed a forest fire simulator,
named Bushfire, based on a stochastic cellular automa-
ton where single cells may contain different kinds of
trees, grass, water, digged paths, and cells may be on
fire or not. The fire starts at some place and then prop-
agates itself according to wind strength and direction,
and humidity.

The basic variable entity of a cell is its fire activity. If a

cell is ignited the cell starts to release fire activity to its
neighboring cells according to its type, wind direction
and speed, and humidity. After a cell has received
more fire activity than a specific threshold for this cell-
type (e.g. the threshold for trees is larger than for
grass) the cell starts to burn as well and releases fire
activity to its neighbours. After some time the fuel of
a cell becomes depleted and the cell enters a burned
state that is not able to release fire activity any longer.
By setting the different parameters, we can construct
forest fires which are moving slowly or very fast. This
enables us to deal with a large number of different
difficulty levels for controlling them. One of the most
important parameters here is the trade-off between the
number of steps a bulldozer can make compared to
the number of steps the fire is able to propagate itself.
Setting this parameter to a high value means that it is
easy to perform many steps to control the fire, thereby
making the success ratio much larger and the size of
the burned area much smaller.

The goal of the multi-agent system is to control the
propagation of the forest fire. This they can do by
cutting fire-lines around the fire. Therefore the ques-
tion becomes: where should the agents cut fire-lines to
minimize the damage done by the forest fire?

The problem can in principle be described by a Markov
decision process consisting of states, actions for the
agents, transition rules to go from one state to the
next when the agents have executed their actions, and
a reward function. The number of states is huge; first
of all there are at least 10,000 discrete cells in our sim-
ulations which have their own properties such as con-
sisting of grass, trees, digged paths, etc. Furthermore
the properties of a cell also consist of the fire activity
and the remaining unburned fuel which are continu-
ous numbers. Thus, it is clear that even if we could
measure all these properties, we cannot take the whole
state information into account when selecting an ac-
tion. The actions are much simpler, basically there are
8 of them; drive north, south, east, west, and dig north,
south, east, and west. The transition rules are com-
plicated and depend on the cellular automaton and its
parameters. Finally, the reward function should han-
dle the case that an agent is burned in the fire, that
the fire is contained by the fire-lines, that special cells
are put on fire (e.g. houses), and the size of the area
being burned.

To solve the problem, we propose an algorithm that
generates subgoals after which the bulldozers cut fire-
lines between subgoals. The planning between sub-
goals is currently done using a simple linear path-
planner, but can also be done using the A* algo-



rithm that takes into account that cutting fire-lines
over grass can be done much faster than cutting away
trees. The main problem is to generate optimal sub-
goals. This is a difficult control problem, since each
forest fire looks different and the state space is huge.

The method we devised for controlling forest fires con-
sists of four steps:

• Generate initial subgoals around the fire

• Enhance subgoals using local information

• Assign each bulldozer to a specific path from one
subgoal to another subgoal

• Dig lines between subgoals using a path-planner

Some replanning of subgoals is done automatically if a
straight line from an agent to a subgoal goes through
the fire. We explain these steps in more detail below.

2.1. Generating Initial Subgoals

For controlling forest fires, we developed a representa-
tion using 8 subgoals in all wind-directions around the
fire. If the agents are able to cut fire-lines around the
fire by going through and connecting all subgoals, the
fire has been contained. For generating the subgoals
we use 8 lines in all 8 directions to place each subgoal.
First we use a fixed offset from the centre of the fire
(this can be seen as a non-learning approach) and then
we learn with a neural network how much the offsets
should be displaced in all 8 directions. This neural
network can receive as inputs the distance and angle
to the fire front, the wind and speed direction, and
some measures of the average humidity, fuel, and the
threshold of the fire front neighbouring cells. Figure 1
shows how initial subgoals are generated.

2.2. Subgoal Enhancer

The previously described subgoal generator only used
global information such as wind speed and direction
and distance to the fire front as inputs in the neural
network. Sometimes it is necessary to look at local
characteristics as well for generating subgoals. E.g.
if there is a house or river nearby, this may change
the optimal plan. The task of the subgoal enhancer
module is to learn to map local information to a small
change of the position of the subgoal. The enhancer
neural network looks at all initially generated subgoals
and receives local information given the place of the
subgoal to compute an evaluation. Then the subgoal
may be changed some squares in the cellular automa-
ton and using the new input generated by the new

NN offset

Fixed offset

FIRE

Subgoals

WIND

Figure 1. Around the fire we first construct 8 subgoals us-
ing a fixed offset. After this, the neural networks receive
information from each subgoal and learn to displace it from
the fire. The 8 subgoals will then be used for the bulldoz-
ers, although replanning may change them afterwards.

relative local surroundings, the neural network com-
putes a new evaluation. If some neighboring square
has a higher evaluation than the current square, we
continue this local hillclimbing strategy with the new
square and otherwise we stop.

2.3. Task Assignment

Although we assume that the number of resources is
fixed before a simulation (the number of resources can
be chosen by the user), we still have to assign (allocate)
the subgoals to each individual agent. This is also done
using neural networks. The neural networks obtain
information such as the distance from a subgoal to
the agent, the wind speed and direction, the distance
from an agent to the fire front, and which subgoals
have already been chosen before, to choose for each
agent a single subgoal to go to. If there are multiple
agents, all agents examine all subgoals from which a
list of evaluations is obtained by propagating subgoal
and agent information through the neural networks,
after which first the highest evaluation is taken and
that agent is allocated to that subgoal. Then, the
fact that this agent is allocated to a subgoal is used as
input in the neural network for computing the subgoals
of the next agents, after which the second agent is
allocated to its highest subgoal etc. In this way the
task assignment module is responsible for learning to
coordinate the multi agent team. There is no need for
communication etc., since we alternatively assign each
agent to a subgoal and this information is used by the
task assignment module to assign the other agents one
by one.



2.4. Path Planning

Once subgoals are generated and allocated to each
agent, the agent uses a path-planner to dig a fire-line
from its current position to the subgoal. In case the
simulation just started, the agents first go to a subgoal
before digging a fire-line thereby driving with higher
speed to reach a subgoal. We implemented a simple
path-planner that constructs more or less a direct line
to the subgoal. If it is detected that this straight line
goes through the fire, the subgoal’s location is changed
by the subgoal generation module now taking into ac-
count different input information. The other path-
planner is A* and can take into account that going
close to the fire is dangerous, and that digging through
grass goes faster than digging through trees, but since
A* is much more time consuming, we only used the
simple path-planner in our current experiments.

[t]

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

	�	�	
	�	�	
	�	�	


�
�


�
�


�
�


���
���
���

���
���
���

�
�
�

���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
���
���
���
���
���

 � 
 � 
 � 
 � 
 � 

!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!
!�!�!�!�!

"�"�"�"�"
"�"�"�"�"
"�"�"�"�"
"�"�"�"�"
"�"�"�"�"

#�#�#�#�#�#
#�#�#�#�#�#
#�#�#�#�#�#
#�#�#�#�#�#
#�#�#�#�#�#

$�$�$�$�$�$
$�$�$�$�$�$
$�$�$�$�$�$
$�$�$�$�$�$
$�$�$�$�$�$

%�%
%�%
%�%
%�%
%�%

&�&
&�&
&�&
&�&
&�&

'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'

(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(

)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)
)�)�)�)�)�)

*�*�*�*�*�*
*�*�*�*�*�*
*�*�*�*�*�*
*�*�*�*�*�*
*�*�*�*�*�*

+�+�+
+�+�+
+�+�+
+�+�+
+�+�+

,�,�,
,�,�,
,�,�,
,�,�,
,�,�,

-�-�-
-�-�-
-�-�-
-�-�-
-�-�-

.�.�.
.�.�.
.�.�.
.�.�.
.�.�.

TASK ENVIRONMENT

Fitness

Figure 2. Enforced Sub-Populations (ESP) constructs a
neural network by taking one neuron from each sub-
population. The resulting neural network is tested and
the evaluation is used to evolve novel sub-populations of
neurons.

3. Enforced Sub-Populations for
Evolving Neural Networks

For learning to generate subgoals and assign agents
to them, we use Enforced Sub-Populations (ESP).
ESP (Gomez & Miikkulainen, 1998) is an evolution-
ary method for evolving neural networks. It works by
keeping different subpopulations containing neurons
that have weighted connections to inputs and outputs
(see Figure 2). To generate a neural network, one neu-
ron is selected from each subpopulation and these neu-
rons then form a feedforward neural network. In order
to train the system, each neuron from each subpopula-
tion is combined a number of times (we use 10 times on
average) with neurons from different subpopulations,
and the neuron is assigned the average (or maximal)
fitness of the networks in which it took part. Then
crossover and mutation are used within the subpopu-

lations to generate new neurons. In this way, neurons
that can collaborate well with other neurons will re-
ceive higher fitness values, and will be used to evolve
novel neurons. ESP has already been used for par-
ticular difficult reinforcement learning problems such
as double pole balancing with hidden state (Gomez &
Miikkulainen, 1998) and active guidance of a rocket
(Gomez & Miikkulainen, 2003) and obtained good re-
sults.

The reason we used ESP for evolving neural networks
is that they do not suffer from the permutation prob-
lem when using crossover on complete neural net-
works. This permutation problem is caused by dif-
ferent orderings of neurons in a network, so that off-
spring can easily have the same functional units multi-
ple times and loose an important different unit. Since
we want to use crossover for finding solutions, we use
a symbiotic algorithm with specialized neuron sub-
populations. A difference with SANE (Moriarty &
Miikkulainen, 1996) which keeps a single population
and no sub-populations is that SANE requires a meta-
stable population in which neurons with different func-
tions stay in the population at the same time, whereas
in ESP each sub-population may converge to a unique
neuron. Furthermore, recombination of neurons im-
plementing different functions is usually not very effec-
tive, and therefore ESP only recombines neurons in the
same sub-population. In some aspects, ESP resembles
the cooperative co-evolution method from Potter and
de Jong (2003) and SEAM from Watson and Pollack
(2000) which are also evolutionary algorithms based
on symbiotic combination instead of sexual reproduc-
tion, but ESP is specifically tailored for evolving neural
networks.

We use ESP for evolving the different modules; the
subgoal generator, the subgoal enhancer, and the task
assignment (although in our current experiments we
did not use the subgoal enhancer module). These dif-
ferent modules can be evolved at the same time. An
advantage of ESP is that it is easy to use for multi-
agent learning. In multi-agent learning, issues arise
about credit assignment to individual agents given a
team reward. In ESP these issues are solved using the
same mechanism as with single agent learning; each
agent uses its own neurons and each neuron is again
evaluated by how well the resulting combinations of
neurons (and multiple neural networks) work. The fit-
ness of such a combination of neural networks is com-
puted by testing the system in a forest fire simulation.
The fitness function takes into account the burned
area, whether the fire-propagation was stopped, how
much subgoals were successfully digged, and how often
it was necessary to recompute subgoals. By evolving



neurons which have higher and higher fitness values,
the resulting neural networks also become better and
after a while we can save the best found complete neu-
ral network modules.

4. Experiments with Learning the
Subgoal Generation Module

In this section we perform two different experiments to
study the ability of the system to learn to control forest
fires using only the subgoal generation module. The
enhancer was not necessary, since the local regions look
alike (there are no houses, rivers etc.). Furthermore,
we use the fixed nearby assign module for allocating
agents to subgoals. Therefore in the experiments we
describe in this section we only used a learning subgoal
generation neural network.

In the first experiment, we study a virtual pine for-
est environment in which three agents are located in
different parts of the world that have to cooperate
to stop the fire propagation. In this environment we
gradually lower the cells’ thresholds to increase the
fire propagation speed. In our second experiment,
we show the Incremental Learning skill of ESP. If we
train a population to solve a determined task, we can
use the same population to solve a similar, but more
difficult task. In previous work (Gomez & Miikku-
lainen, 1998), it was shown that starting the evolution
from a trained population in an easier task resulted
much faster in good performing individuals for a more
complex task than starting evolution from a randomly
initialised population.

Figure 3. Pine forest environment: in the centre the fire
has spread as far as the fire-line has been digged. In the
angles north-east, south-west, and south-east of the map
we can see the bulldozers’ depots.

4.1. Three Bulldozers in a Pine Forest

The first set of experiments are done on a virtual
pine forest by an agency composed of three bulldoz-
ers. Trees are more difficult to ignite than grass, how-
ever once ignited they release much more heat thus
propagation is still fast. For this reason pine-tree cells
present bigger fuel and threshold than grass. Con-
trollers operate in much more difficult circumstances in
a pine trees forest than in a grassy terrain. We model
this by decreasing the digging and moving speed in a
pine forest environment. We experimented in a world
of 120 × 120 cells. Experiments with a single agent
were not satisfactory. One single bulldozer was not
able to dig a complete line around the fire in a good
time. Therefore we used a system composed of three
bulldozers initially located in three different depots.
In Figure 3 we show a virtual pine forest in which fire
has been contained in the line digged by the agents.

Setup. We tried different kinds of neural networks
with different architectures and activation functions.
We decided to use a single hidden layer network with 8
hidden units and 1 linear output unit, because we did
not find meaningful improvements using more layers
and neurons. The sigmoid function has been proved
to work well in the hidden layer but not in the out-
put unit. The setting of the ESP parameters applied
to our architecture are as follows: Population size is
30. We assign the maximal (and not the average) fit-
ness obtained in one of the (on average ten) tests of
a neuron (individual). The crossover rate is 50%. We
used linear mutation with 25% probability and Gaus-
sian mutation with 33% probability. We designed a
quite complex fitness function including information
such as the time of spreading, the overall cost of the
cells burnt, the number of generated subgoals and the
number of goals reached.

Threshold Burnspeed Gen. Fitness Efficiency
330 1.11 1 11.438 52.4%
305 2.35 2 11.375 53.5 %
280 2,66 2-3 11.279 55.9 %
255 2,75 3-4 11.044 58.8 %
230 3,16 5-6 10.201 64.8 %
205 3,33 - 3.787 0

Table 1. ESP performances using a team of three agents in
a virtual pine forest environment.

Results. In Table 1 we can see the results. The task
is solved if the system finds a solution with fitness big-
ger than 10 (in this case the fire propagation has been
stopped effectively). We always stopped the simula-
tion after the twentieth generation. The simulations
were repeated 10 times for each problem and we store
the average of the maximum fitness received in each



simulation in the table. We also store the generation
in which the system finds the solution in the major-
ity of the simulations. Efficiency is the ratio between
the time of the controllers to dig a complete line sur-
rounding the fire and the time of the fire to burn the
cell inside that line. When the system finds a solution
with a low efficiency (≤ 35%) it means that the task
was too easy or that the solution found was not so
useful, because the agents could have digged a smaller
line to reduce the area destroyed by the fire. However,
if this value is too big (≥ 90%) the solution computed
is not robust, because if there is a slight change of the
environmental conditions the system cannot anymore
deal with the problem.

For all the tasks except for the last one we found a
solution in each simulation; in the last task we tried
with a threshold of 205 we never found a solution. The
fastest fire propagation the system could successfully
deal with is characterised by a threshold of 230 and an
average propagation speed of about 3.16 cells/step.

We can also see from Table 1 that the fitness obtained
decreases when lowering the threshold. However, the
efficiency of the system increases. The explanation
lies in the fact that for faster propagation the system
has to generate a larger digged line to surround the
fire. Thus, more cells burn and the fitness is lower.
However, in the same situation the system has proved
to be more efficient in terms of time to dig the line
versus the time for the cells to burn. Figure 4 shows a
typical learning evolution of ESP with a threshold of
230.

Figure 4. ESP applied to contain flames in a pine forest
environment with a threshold of 230.

ESP works well even if at the first generations the max-
imum and the average fitness are very low. In these
cases the fire propagation was not stopped. After the
fifth generation we can see that the maximum fitness
increases a lot. In that case a solution has been found

Figure 5. Incremental ESP applied to contain flames in a
pine forest environment with a threshold of 230.

with an efficiency of 65%. After that individuals start
to converge to the best performing ones. We can see
ESP’s principal strength: the fast search for a satis-
factory solution. ESP is not so good in improving the
solution found: when a satisfactory result is obtained
ESP rarely improves it. In this experiment we found
that ranking the neurons according to the maximal
fitness received in the tests worked better than taking
the average fitness.

4.2. Incremental Learning

We repeat the previous experiments on the virtual pine
forest with the same neural network and ESP settings.
However, we do not start from a randomly generated
population, but we use a population already trained
in an easier task. In our experiments we start to solve
the task with a threshold of 280. Once we have found
a solution we use the population trained to search a
solution for the task with a threshold of 255. Then
we repeat the same operation until we reach the task
with a threshold of 205. In Figure 5 we can see the
fitness evolution in solving the task with a threshold
of 230, starting with a population already trained to
solve the easier tasks with a threshold of 280 and 255.
With respect to the fitness evolution of the same task
starting with a random population we can observe that
the system finds a solution in the 3rd generation in-
stead of after 5 or 6 generations. Then, we used this
trained population to solve the task with a threshold
of 205. We repeated this last part of the experiment
10 times and we found a solution in 80% of the tri-
als. The generations in which we found the solutions
range from the eighth generation to the twelfth gener-
ation. We note that without incremental learning, we
never found a solution for this difficult problem. Thus,
starting from a population already evolved to solve an



Figure 6. Heterogeneous environment consisting of hay,
small brushes, and oak trees. In the north-west we can
see the bulldozer’s depot.

easier task has been proved effective in this case.

5. Experiments with Learning Subgoals
and Task Assignment

In the previous experiments, we only trained the sub-
goal generator module (SGG), since the nearby as-
sign module works well for homogeneous terrain types.
However, for heterogeneous terrain types, learning
subgoals and the assignment may prove worthwhile.

The map used for these experiments consists of 3 ter-
rain types, one is fast burning but does not generate
much heat (hay), one is slow burning but generates lots
of heat (oak trees) and we use a terrain type that is be-
tween the two (small brushes). The terrains are setup
in such a way that the hay will ignite the small brushes
in time, but has big problems igniting the oak trees.
The small brushes can ignite the hay with ease and
will ignite the oak trees in time. The oak trees can ig-
nite both with ease, and they all can ignite themselves.
With these terrain types we have built a map that has
corridors of fast burning hay and slow burning plains.
In this way the fire does not spread in a circle form
but has a far more grim form, making it much more
difficult to extinguish. In Figure 6 we show the map.

All experiments are done on the same map under the
same conditions. We used only 1 agent to extinguish
the fire. The map had a dimension of 100 by 100 cells.
Each simulation went on until the fire was extinguished
or the program had done 2000 steps. These 2000 steps
are more than enough to burn almost the whole map
giving a very low evaluation value. The agent started
in the upper left corner and the fire started in the
middle of the map.

We used the map and let the fire spread with different

speeds. Instead of adjusting the threshold values, we
used the Fire Propagation (FP) step divider that reg-
ulates how many steps FP has to wait before it can do
one step. By making this each time 1 less we can find
a value for which the system cannot find a solution.

5.1. Experiment 1: Without Learning

As a baseline for the results, we first examined the
performance when learning was not used at all in this
map. In this experiment the subgoals are placed at
a specified distance from the fire front, and the agent
will drive/dig towards the closest free subgoal. The
results of this experiment are shown in Table 2.

FP step divider Number of Successes
10 10/10
9 9/10
8 3/10
7 0/10

Table 2. Results without learning. A lower FP step divider
increases the propagation of the fire relative to the number
of steps a bulldozer can make, thereby making the problem
more difficult.

5.2. Experiment 2: Learning only SGG

In this experiment we only learn to generate subgoals
and use the fixed nearby assignment module. The neu-
ral network for generating subgoals only used two in-
puts; the wind vector, and the distance from the fire
centre to the fire-front, where wind vector means the
difference between the wind direction and the line an-
gle used to find the direction. Since we used static
weather for the experiments, it was not necessary to
include the wind speed. The results of this experiment
are shown in Table 3.

FP step divider Nr. Generations
10 5
9 6
8 8
7 20
6 -

Table 3. Results with learning only subgoals.

5.3. Experiment 3: Learning Assign

In this experiment we used a non learning SGG module
that placed the subgoals at a fixed distance from the
fire front. But now we used a learning assign module.
The neural network for learning the assignment task
has the following inputs: the distance from the fire to
the subgoal, the distance from the fire to the agent,
the distance from agent to the subgoal, the distance
from the subgoal to the middle of the fire, the distance



from the agent to the north, east, south and west of
the map, the wind direction and force, and for each
subgoal if it is free or already assigned.

The results of learning assign are given in Table 4.

FP step divider Nr. of Generations
10 8
9 15
8 19
7 -

Table 4. Results with learning only the assign module.

5.4. Experiment 4: Learning SGG and Assign

In this experiment we used the learning SGG mod-
ule and the learning assign module. We compare two
approaches: learning both modules at the same time,
and learning the modules alternatively. We started
with training both modules at the same time, but this
did not work at all. Even when the FP step divider
was set upon 10, the program was not able to learn a
solution within 50 generations, hence we aborted this.

The second experiment went a lot better. Here we first
trained the SGG module while using the nearby assign
module. Then when this reached an acceptable level
we stopped training the SGG module and evolved the
Assign module. Then when Assign showed intelligent
behavior we stopped training the Assign module and
started training the SGG module again. This process
was repeated until no significant improvements were
shown. In this way, we obtained successful controllers
even when the FP step divider was set to 5. A very
good solution to this difficult problem was obtained af-
ter 40 generations, but after 25 generations we already
had some good results.

6. Discussion

In the experiments we have seen that cooperative
agent policies are evolved to solve quite large forest
fires. By using incremental learning the system was
able to find solutions to even harder tasks with a larger
fire propagation speed. This means that incremental
learning can be effective to solve even more compli-
cated problems. We have also studied the evolution of
different modules (the subgoal generator and the task
assignment). It turned out that evolving them syn-
chronously did not work well. The reason of this is
that if both modules are constantly changing and ini-
tially random it takes a lot of time to progress to a so-
lution. In other experiments, when we evolve only one
module at a time, evolution is much more steady and
although in the initial generations no solutions were

found, the system finally learned good solutions. One
way to cope with multiple adaptive modules is to train
them alternatively as was done in the experiments in
the last section. By optimizing both modules, but not
at the same time, solutions could be found even for
environments in which the fire propagation was very
fast. In the future, we want to research even larger and
more complex forest fires. The Bushfire simulator al-
lows us to generate a learning environment in an easy
way, and therefore it is possible to perform much more
experiments. For this we want to focus on incremental
learning and training all modules in an asynchronous
way and test the enhancer module by generating envi-
ronments containing houses or rivers.

References

Avesani, P., Perini, A., & Ricci, F. (1997). CBET: A case
base exploration tool. Proceedings of the 5th congress on
the Italian Asscociation for Artificial Intelligence on Ad-
vances in Artificial Intelligence (pp. 405–416). Spinger-
Verlag, London.

Avesani, P., Perini, A., & Ricci, F. (2000). Interactive
case-based planning for forest fire management. Applied
Intelligence, 13(1), 41–57.

Cohen, P., Greenberg, M., Hart, D., & Howe, A. (1989).
Trial by Fire: Understanding the design requirements for
agents in complex environments. AI Magazine, 10(3),
32–48.

Gomez, F., & Miikkulainen, R. (1998). 2-d pole balanc-
ing with recurrent evolutionary networks. International
Conference on Artificial Neural Networks (pp. 425–430).
Berlin, New York: Springer.

Gomez, F., & Miikkulainen, R. (2003). Active guidance
for a finless rocket through neuroevolution. Genetic and
Evolutionary Computation Conference (Gecco-03) (pp.
2085–2095).

Moriarty, D. E., & Miikkulainen, R. (1996). Efficient re-
inforcement learning through symbiotic evolution. Ma-
chine Learning, 22, 11–32.

Potter, M., & Jong, K. D. (2003). Cooperative coevolution:
An architecture for evolving coadapted subcomponents.
Evolutionary Computation, 8(1), 1–29.

Ricci, F., Mam, S., Marti, P., Normand, P., & Olmo, P.
(1994). CHARADE: a platform for emergencies man-
agement systems (Technical Report 94094-07). IRST,
Trento, Italy.

Watson, R., & Pollack, J. (2000). Symbiotic combination
as an alternative to sexual recombination in genetic al-
gorithms. Proceedings of Parallel Problem Solving from
Nature (PPSNVI) (pp. 425–434).

Wiering, M. A., & Dorigo, M. (1998). Learning to control
forest fires. Proceedings of the 12th international Sym-
posium on “Computer Science for Environmental Pro-
tection” (pp. 378–388). Marburg: Metropolis Verlag.


