
Comparing Exploration Strategies for Q-learning in
Random Stochastic Mazes

Arryon D. Tijsma∗, Madalina M. Drugan† and Marco A. Wiering∗
∗Institute of Artificial Intelligence and Cognitive Engineering

University of Groningen
Email: a.d.tijsma@rug.nl, m.a.wiering@rug.nl

†Department of Mathematics and Computer Science
Technical University Eindhoven

Email: madalina.drugan@gmail.com

Abstract—Balancing the ratio between exploration and ex-
ploitation is an important problem in reinforcement learning.
This paper evaluates four different exploration strategies com-
bined with Q-learning using random stochastic mazes to inves-
tigate their performances. We will compare: UCB-1, softmax,
ε-greedy, and pursuit. For this purpose we adapted the UCB-1
and pursuit strategies to be used in the Q-learning algorithm. The
mazes consist of a single optimal goal state and two suboptimal
goal states that lie closer to the starting position of the agent,
which makes efficient exploration an important part of the
learning agent. Furthermore, we evaluate two different kinds
of reward functions, a normalized one with rewards between 0
and 1, and an unnormalized reward function that penalizes the
agent for each step with a negative reward. We have performed an
extensive grid-search to find the best parameters for each method
and used the best parameters on novel randomly generated
maze problems of different sizes. The results show that softmax
exploration outperforms the other strategies, although it is
harder to tune its temperature parameter. The worst performing
exploration strategy is ε-greedy.

I. INTRODUCTION

One of the most challenging tasks in reinforcement learning
(RL) [1], [2] is that of balancing the ratio between explo-
ration and exploitation. Too much exploration yields a lower
accumulated reward, while too much exploitation can lead to
the agent being stuck in a local optimum. This problem is
known as the exploration/exploitation dilemma [3]–[5]. Be-
cause exploration may waste time exploring an irrelevant part
of the environment, exploitation must happen simultaneously.
One of the most widely used exploration strategies is ε-greedy
[6]. The advantage of this strategy is that it is not dependent
on specific data such as counters [7] and as an allround
exploration strategy, ε-greedy is often hard to beat [8].

One can distinguish between two types of exploration:
directed and undirected exploration [7], [9]. Undirected explo-
ration is driven by randomness, the most trivial example being
the ’random walk’ [10] where the agent completely ignores the
reward function and always performs random actions. ε-greedy
is another example of undirected exploration, and is a case of
using semi-uniform distributions [11], as is action selection
based on the utility of an action [6], [12], of which Boltzmann
or softmax exploration is an example.

Directed exploration methods can be distinguished using
three categories. Counter-based exploration [9], [13] keeps
count of how many times a state-action pair has been vis-
ited, and evaluates actions based on a linear combination
of an exploitation term and an exploration term. Another
category relies on exploring parts of the environment where
the errors were large during the last updates, so called error-
based exploration methods [14], [15]. Finally, there exists a
category of directed exploration techniques called recency-
based exploration techniques that prefer to select the action in
a state that had not been selected for the longest time [9]. It has
been shown that directed exploration strategies perform better
than undirected strategies for solving particular difficult maze
problems when model-based RL is used [9]. It has also been
shown that for the multi-armed bandit problem [16], simple
heuristics like undirected exploration sometimes outperform
more advanced algorithms [17].

In multi-armed bandit problems, there exists an algorithm
called UCB-1 (for Upper Confidence Bound), which is a
smart directed counter-based exploration strategy that has been
shown to perform well for multi-armed bandits [16]. In this
paper, this strategy is transferred to a Markov decision process
in a similar way as in [18]. In [18], the authors adapted
discounted UCB-1-tuned to be combined with Q-learning.
However, they did not compare this method to the exploration
strategies we study in this paper.

Contributions. This paper contributes a new comparison
of exploration strategies in a stochastic maze problem. We
use Q-learning [6] as reinforcement learning algorithm and
compare four different exploration strategies by examining
their cumulative reward intake. For this purpose, we built
a random stochastic maze generator in which there are one
optimal goal state and two suboptimal goal states. The task
of the agent is to learn to navigate to the optimal goal state
using the least amount of steps. We adapted the UCB-1 and
pursuit exploration strategies, often used for the multi-armed
bandit problem, to Q-learning with state-action pairs. We
compare UCB-1, ε-greedy, softmax and pursuit as exploration
strategies using two different reward functions, a normalized
one with rewards between 0 and 1, and an unnormalized
reward function that penalizes every step not ending at a



goal state with a negative value. We also explore the effect
of optimistic initialization of the Q-values by comparing
this initialization scheme to the use of initial Q-values of
zero. Furthermore, heatmaps for the exploration strategies are
computed to gain insight into the general behavior of the
reward intake as a function of the learning rate and each
strategy’s tunable parameter. This is important because certain
parameter optimization algorithms benefit from a structured
search space [19], and this gives insight into how easy it is
to tune a particular exploration method in combination with
Q-learning. The best found parameters are tested on novel
generated mazes of different sizes, to make it possible to
investigate the direct use of the best found parameters on a
smaller maze to a maze problem of a bigger size. Our research
question is: when learning to navigate in a stochastic maze
using different exploration strategies, which strategy yields the
largest accumulated reward, and which is the most consistent
over different parameter values?

Outline of this paper. Section II presents the principles of
reinforcement learning, Markov Decision Processes (MDPs),
Q-learning, and the details of the four exploration strategies.
Section III describes the methods used for training and eval-
uating the performance of the different exploration strategies.
Section IV shows the results obtained from examining the
influence of the two tunable parameters for each method and
we report the results of different tests with the optimal param-
eters for each exploration strategy. Finally, the conclusions are
presented in Section V.

II. REINFORCEMENT LEARNING

Reinforcement learning [1], [2], [20] is an area of machine
learning where an agent is connected to an environment via
perception and action. At each step, the agent receives an
input, chooses and executes an action, and this changes the
state of the environment. The reward of executing the action
in the previous state is then given to the agent by a reward
function. The agent should maximize the cumulative sum
of obtained rewards by choosing preferred actions, learned
by trial and error using a particular reinforcement learning
algorithm. The underlying model of this sequential decision
making problem is a Markov Decision Process (MDP) [21],
defined by the following principles:

• A discrete set of n states S = {s1, s2, ..., sn}, where
st ∈ S describes the state of the environment at time
step t.

• A discrete set of m actions A = {a1, a2, ..., am}, where
at denotes the action selected by the agent at time t.

• A transition function T (s, a, s′) that maps state-action
pair s, a to the next state s′ with a given transition
probability.

• A reward function R(s, a, s′) denotes the average reward
the agent obtains when transiting from state s to state s′

using action a. rt is the reward obtained at time t.

• A discount factor 0 ≤ γ ≤ 1 that assigns a higher
importance to immediate rewards compared to future
rewards.

In reinforcement learning, the agent uses its past experiences
to learn the optimal policy π∗ which maps states to optimal
actions that optimize the cumulative reward intake. Learning
this policy involves the estimation of a value-function using
past experiences, called the Q-function [1]. The Q-function
Qπ(s, a) denotes the expected accumulated discounted future
reward obtained by selecting action a in state s and following
policy π afterwards:

Qπ(s, a) = E(

∞∑
t=1

γt−1rt|s1 = s, a1 = a, π) (1)

Q-learning [6] is an off-policy temporal difference (TD) [22]
learning technique. With an off-policy learning method, the
agent follows a behavioral policy and at the same time learns
about the optimal Q-function. If the agent visits all state-action
pairs an infinite number of times, Q-learning converges to the
optimal Q-function [23]. Therefore, Q-learning can be used to
learn the optimal policy for a given MDP [24], [25]. When
the optimal Q-function is known, the optimal policy selects
the action with the highest Q-value in a state.

The Q-learning update rule of the Q-value of a state-action
pair at time step t + 1, Qt+1(st, at) after an experience
st, at, st+1, rt, is as follows:

Qt+1(st, at) = Qt(st, at)+α
[
rt+γmax

a
Qt(st+1, a)−Qt(st, at)

]
Where 0 ≤ α ≤ 1 is the learning rate of the update rule.

A. Exploration Strategies

An essential part of Q-learning in finding an optimal policy
is the selection of action at in state st. In Q-learning, there
exists a tradeoff between selecting the currently expected
optimal action, or selecting a different action in the hope
it will yield a higher cumulative reward in the future. To
investigate the goal-finding abilities of an agent in a maze
using Q-learning, we investigate four different exploration
strategies: ε-greedy, Boltzmann (also called softmax), pursuit,
and UCB-1. We will discuss them below.

1) ε-greedy: ε-greedy exploration is one of the most used
exploration strategies. It uses 0 ≤ ε ≤ 1 as parameter of
exploration to decide which action to perform using Qt(st, a).
The agent chooses the action with the highest Q-value in
the current state with probability 1 − ε, and a random action
otherwise. A larger value for ε means more exploration
actions are selected by the agent. Randomness is necessary
for an agent navigating through a stochastic maze to learn the
optimal policy. With the experiments, we will find out which
value of ε is optimal for our maze setup and how ε-greedy
compares to other exploration strategies.



2) Boltzmann (or softmax) exploration: One drawback of
ε-greedy exploration is that the exploration action is selected
uniform randomly from the set of possible actions. Therefore,
it is as likely to choose the worst appearing action as it is
to choose the second-best appearing action if an exploration
action is selected. That is why Boltzmann or softmax explo-
ration [26] uses the Boltzmann distribution function to assign
a probability π(st, a) to the actions in order to create a graded
function of estimated value:

π(st, a) =
eQt(st,a)/T∑m
i=1 e

Qt(st,ai)/T
(2)

π(st, a) denotes the probability the agent selects action a
in state st and T ≥ 0 is the temperature parameter used in
the Boltzmann distribution. When T = 0 the agent does not
explore at all, and when T → ∞ the agent selects random
actions. Using softmax exploration with intermediate values
for T , the agent still most likely selects the best action, but
other actions are ranked instead of randomly chosen.

3) Pursuit: The pursuit method is adapted from the multi-
armed bandit problem [1]. A pursuit method maintains both
action-value estimates and action preferences for the current
state. Let πt(st, a) be the probability of selecting action a
when in state st. After each time step t and the update of the
Q-value, the greedy action a∗t+1 = argmaxaQt+1(st, a) has a
probability of successively being selected that is incremented
with a fraction β towards one:

πt+1(st, a
∗
t+1) = πt(st, a

∗
t+1) + β

[
1− πt(st, a∗t+1)

]
(3)

The probabilities for all the other actions in state st, on the
other hand, are decreased towards zero:

πt+1(st, a) = πt(st, a) + β
[
0− πt(st, a)

]
, for all a 6= a∗t+1

where β > 0 denotes the learning rate for the action
preferences.

4) UCB-1: The exploration strategy UCB-1 was also pro-
posed for the multi-armed bandit problem [16], and is being
adapted here for use with Q-learning. The UCB-1 strategy
keeps a count of the number of times an action a is executed
in state s, for all actions and all states. After selecting an
action, the strategy increases the count of the action taken
in a state by one. The UCB-1 strategy first selects all actions
exactly one time when a state is visited, so their counters have
been populated. Afterwards, UCB-1 calculates an exploration
bonus using:

bonus(st, a
i) = 100× C ×

√(
2× logN(st)

N(st, ai)

)
(4)

where N(st) =
∑
iN(st, a

i) denotes how often an action
has been selected in state st, and N(st, a

i) counts the number
of times action ai has been selected in state st. The bonus
becomes larger when the fraction of counts for all actions

versus the count for action ai increases. A larger value of C
increases exploration. When C = 0 there is no exploration
and usually C is set to a value of 1. In [16] and [18], the
term 100 does not appear in the equation to compute the
bonus. However, we found that when using the unnormalized
reward function (see section III-C) this aided the strategy’s
performance. For action selection, the bonus is added to the
Q-value, and the action with the highest value in state st is
selected:

at = argmax
a

(Qt(st, a) + bonus(st, a)) (5)

Now, we have described the different exploration strategies. In
the next section, we will describe the experimental setup and
then we present the experimental results.

III. EXPERIMENTAL SETUP

A. Stochastic Mazes

The agent walks around in a maze environment. Figure
1 shows a 10 × 10 maze, with obstacles (blocks) B and
three separate goals, two suboptimal goal states denoted g
and the optimal goal state G. Each goal defines an end state
to the maze, and the agent should learn to navigate to the
optimal goal state. The agent always starts in state A. The
rewards in the maze problem are shown in Table I and are
further explained in section III-C. Walking outside the maze
boundaries or against a block B keeps the agent in the state
it was previously in.

Fig. 1. A random 10×10 maze

TABLE I
REWARDS WITHIN THE STOCHASTIC MAZE

Unnormalized Normalized

step -1 0

block (B) -5 0

suboptimal goal (g) 50 0.5

optimal goal (G) 200 1.0



We define a randomly generated maze by placing the agent
and the goals always in the same places, but varying the
placement of the blocks in the maze. In each maze, regardless
of size, ten percent of the available spaces is occupied by
blocks. Their positions are randomly sampled from the avail-
able spaces. In this way, the agent is forced to take a different
route each time, but the absolute distances from the agent to
the goals remain the same. A random maze is deemed solvable
if the agent finds all goal states within 3000 steps when taking
a random walk in the maze. We only use such solvable maze
problems in the experiments.

B. Terminology

We will now explain the terminology used in the experi-
ments:
• Epoch: a strategic walk through the maze until the agent

reaches a goal state. Each epoch yields a cumulative
reward and the total number of steps needed.

• Run: A full run of k epochs for a given combination
of parameters. A run yields a list of results containing
the total cumulative reward and the total number of steps
taken for each epoch.

• Search: One run for each combination of parameters,
performed on a single maze. This yields the list of results
for each parameter combination.

• Simulation: A search performed on each of the randomly
generated mazes, yielding the results for each parameter
combination per maze.

• Test: Using the best performing parameter combination
from the simulation, we perform a run on each maze from
a newly generated set of random mazes. The set of mazes
can have different dimensions than the set on which we
computed the best parameters for each method. The result
is a list of results, which we average across runs to obtain
a final score of performance for the strategy.

• Experiment: a set of simulations plus tests, each using
different general parameters such as the initial Q-values
of the Q-function, the rewards, or the transition probabil-
ities.

C. Normalized and Unnormalized Reward Functions

In the original paper from Auer et al., the upper confidence
bound of UCB-1 is proven given that the support of the
rewards is [0, 1] [16]. This means that for correct comparison
of the UCB-1 algorithm, we must also define a maze in which
the reward is at most 1, and at least 0. We achieve this
by defining two types of experiments using normalized and
unnormalized reward functions. In the normalized version of
the experiment, the support is defined within [0,1] by assigning
a reward of 1 to the optimal goal, a reward of 0.5 to the
suboptimal goals, and removing the negative rewards from a
step and a block-encounter, see also Table I.

Since we also want to study the use of optimistic
initialization of the Q-values in each scenario, we ultimately
define four different types of experiments:

1) ¬O/¬N. Non-optimistic initialization, unnormalized re-
ward function, where rewards are set according to col-
umn 1 in Table I and initial Q-values are set to zero.

2) O/¬N. Optimistic initialization, unnormalized reward
function, where rewards are set according to column 1
in Table I and initial Q-values are set to the value of the
highest valued goal from column 1.

3) ¬O/N. Non-optimistic initialization, normalized reward
function, where rewards are set according to column 2
in Table I and initial Q-values are set to zero.

4) O/N. Optimistic initialization, normalized reward func-
tion, where rewards are set according to column 2 in
Table I and initial Q-values are set to the value of the
highest valued goal from column 2.

D. Experimental Setup

As explained in Sections I and III-B, we perform an
exhaustive search in the parameter space of each exploration
strategy. Table III shows the range of parameters over which
a search for each experiment is performed. The number
of linearly spaced intervals for both α and the dependent
parameter of each exploration strategy are set to 15, resulting
in 225 parameter combinations for each search. The low values
for C in UCB-1 in the normalized experiments is because
we multiply this value by 100 when using the strategy, see
Equation 4.

TABLE II
GRID SEARCH PARAMETERS USED IN NORMALIZED AND UNNORMALIZED

REWARD FUNCTION EXPERIMENTS. NORM. = NORMALIZED

UCB-1 ε-greedy softmax pursuit

norm. C α ε α T α β α

no
low .2 .1 0.0 .1 .5 .1 1e-5 .1

high 2.5 .95 1.0 .95 15 .95 .1 .95

yes
low .002 .1 0.0 .1 .01 .1 1e-5 .1

high .025 .95 1.0 .95 1.5 .95 .1 .95

In all simulations, the discount factor remains fixed at a
value of γ = 0.98, and the total number of epochs is set to
3000. Furthermore, the transition probabilities also remain the
same. There is a 70% probability the agent ends up in the state
resulting from the chosen action (North, West, South, East),
and there is a 10% probability the agent goes to each of the
other three adjacent states.

For each experiment and each simulation, we use the same
set of ten random mazes of size 10 × 10 that we generated
beforehand. For each test, we generated two new sets of ten
mazes with sizes 10× 10 and 20× 20.

IV. RESULTS

For each simulation, we calculate: 1) the average number
of steps needed to reach a goal, and 2) the average cumulative
reward. In each simulation, these measurements are taken per
parameter combination, for 3000 epochs in a run, averaged
over three repetitions for the 10 mazes (30 runs in total).



Fig. 2. Heatmaps for the experiment with the unnormalized reward function. The average reward sum intake is shown as a function of parameter combinations
(x and y axes) for the four different exploration strategies combined with Q-learning.

Fig. 3. The learning curves for the four different exploration strategies for the unnormalized reward function. The black line shows the average reward
sum obtained for all parameter combinations. The first contour area represents the standard deviation, the second contour area represents the minimum and
maximum score for all parameters for the given epoch.

We created a plot per parameter combination and exploration
strategy, for which the average obtained reward sums for the
last 100 epochs are computed. The resulting heatmaps for the
unnormalized reward function are shown in Figure 2.

Figure 2 shows similar results of optimistic and non-
optimistic initialized Q-functions. The heatmaps of pursuit
shows that this method requires small values for the learning
rate β. The heatmap for UCB-1 shows that good parameter
combinations for C and the learning rate α are negatively
correlated. For ε-greedy, the best parameter combinations

between α and ε are also negatively correlated.

Figure 3 shows the learning curves for all tested parameter
combinations of the four exploration strategies. The upper line
shows the average reward sum intake of the best parameter
combination, whereas the black line shows the average over
all tested parameter combinations. If we compare the graphs
of the different exploration strategies, it can be seen that ε-
greedy has the slowest performance increase and thus it needs
more time to converge to its optimal performance. Pursuit
performs worst when we look at the average results of all



Fig. 4. Heatmaps for the experiment with the normalized reward function. The average reward sum intake is shown as a function of parameter combinations
(x and y axes) for the four different exploration strategies combined with Q-learning.

Fig. 5. The learning curves for the four different exploration strategies for the normalized reward function. The black line shows the average reward sum
obtained for all parameter combinations. The first contour area represents the standard deviation, the second contour area represents the minimum and maximum
score for all parameters for the given epoch.

tested parameter combinations, although it converges fastest.

Figure 4 also shows few differences between optimistic and
non-optimistic initialized Q-functions when the normalized
reward function is used. The parameter search spaces of
UCB-1 and ε-greedy are again well-structured, but softmax
and pursuit are much more dependent on specific parameter
combination settings. The heatmap of pursuit shows again that
this method requires very small values for the parameter β.
Softmax only performs very well for a very specific value of

the temperature parameter.

Figure 5 shows the learning curves for the four exploration
strategies when the normalized reward function is used. With
this reward function, there is a less clear difference in the
learning processes of the different exploration strategies. Soft-
max and pursuit perform worse than UCB-1 and ε-greedy
when we look at the average results of all tested parameter
combinations. In the first epochs, the runs are much longer for
the normalized reward function compared to the unnormalized



reward function, because the agent does not learn from (small)
negative rewards to unlearn repeating the same actions in the
beginning.

The best found parameters for all exploration strategies with
the four different experimental setups are shown in Table III.

TABLE III
OPTIMAL PARAMETERS FOR EACH TYPE OF EXPERIMENT

O/N ¬O/N O/¬N ¬O/¬N
UCB-1 α C α C α C α C

.16 .007 .1 .007 .16 .69 .1 1.19
ε-greedy α ε α ε α ε α ε

.95 .29 .83 .36 .59 .20 .65 .15
Softmax α T α T α T α T

.16 .12 .1 .12 .1 8.79 .1 8.79
Pursuit α β α β α β α β

.95 .007 .95 .007 .65 .007 .59 .007

After finding the best parameters for each exploration strat-
egy, we performed test runs on new random mazes of sizes
10×10 and 20×20. We calculate the average reward sums
obtained in 30 runs for each strategy, and rank them. The
average reward sums obtained in the 10×10 mazes can be
seen in Table IV. The table shows that softmax consistently
performs best, and in most cases significantly outperforms all
other exploration strategies. In general, all methods very often
find the optimal goal state, but ε-greedy performs worst. The
table also shows that optimistic initialization often helps the
different exploration strategies in the case of the normalized
reward function. In this case, softmax always converges to
finding the optimal goal state.

TABLE IV
AVERAGE REWARD SUM DURING LAST 100 EPOCHS FOR 10X10 MAZES,

HIGHER IS BETTER. ’NORM.’ = NORMALIZED, ’OPT.’ = OPTIMISTIC.

norm. opt. UCB-1 ε-greedy pursuit softmax

yes

yes
0.989 0.974 0.998 1.000 µ
0.03 0.06 0.01 0.00 σ

3 4 2 1 rank

no
0.961 0.980 0.997 0.998 µ
0.08 0.05 0.01 0.01 σ

4 3 2 1 rank

no

yes
171 157 174 177 µ
10.7 32.4 8.0 4.7 σ

3 4 2 1 rank

no
173 158 174 177 µ
7.0 22.1 9.8 5.7 σ
3 4 2 1 rank

Table V shows the average number of steps needed for the
different methods in the 10×10 maze. It clearly shows that
most methods need less steps when the unnormalized reward
function is used. The ε-greedy strategy needs a lot of steps
to reach the goal in case of the normalized reward function,
although it still finds the optimal goal state in most cases as
Table IV shows. The reason is probably that the agent learned
a repetitive behavior in one or more states, such as colliding

against a blocked state from which it can only escape due to
the stochasticity in the transition function.

TABLE V
AVERAGE NUMBER OF STEPS NEEDED IN 10×10 MAZES TO REACH A

GOAL. ’NORM.’ = NORMALIZED, ’OPT.’ = OPTIMISTIC

norm. opt. UCB-1 ε-greedy pursuit softmax

yes
yes 29 83 33 22 µ

5.0 66.9 11.2 3.2 σ

no 27 59 36 47 µ
5.6 37.7 14.4 19.3 σ

no
yes 29 31 26 23 µ

6.3 12.2 9.5 3.5 σ

no 27 30 26 23 µ
5.8 10.4 7.1 3.7 σ

Table VI shows the results of the exploration methods with
the same found optimal parameters as before on 20×20 mazes.
Most methods now fail to find the optimal goal state. For
the unnormalized reward function UCB-1 performs best. For
the normalized reward function, only softmax with optimistic
initialization is able to find the optimal goal state in more than
40% of the cases. Again ε-greedy performs worst and is never
able to find the optimal goal state. The results show that the
larger maze problem is much more difficult for the different
exploration strategies. The optimal goal state is further away
from the initial position of the agent, and it becomes more
likely to converge to a policy that navigates to one of the
suboptimal goal states.

TABLE VI
AVERAGE REWARD SUM DURING LAST 100 EPOCHS FOR 20X20 MAZES,

HIGHER IS BETTER. ’NORM.’ = NORMALIZED, ’OPT.’ = OPTIMISTIC.

norm. opt. UCB-1 ε-greedy pursuit softmax

yes

yes
0.500 0.500 0.516 0.716 µ
0.00 0.00 0.05 0.18 σ

3 3 2 1 rank

no
0.500 0.500 0.517 0.500 µ
0.00 0.00 0.05 0.00 σ

2 2 1 2 rank

no

yes
62 -2 21 18 µ

11.4 16.7 36.0 3.8 σ
1 4 2 3 rank

no
42 -2 14 18 µ

40.9 16.7 23.4 3.5 σ
1 4 3 2 rank

V. CONCLUSION

This paper described a study on exploration strategies for
Q-learning in stochastic random mazes that have one optimal
goal state and two suboptimal goal states. From the range
of possible exploration/exploitation techniques for Q-learning,
we focused on the undirected strategies: softmax, ε-greedy,
pursuit, and compared them to the directed exploration strat-
egy UCB-1. The results show that softmax or Boltzmann
exploration outperforms the other strategies, although it is
harder to tune its parameters. The easiest techniques to tune



are ε-greedy and UCB-1, but ε-greedy performs worst of all
exploration strategies. The results also show that Q-learning
with the different exploration strategies has severe problems
in finding optimal policies for a larger maze problem of
size 20×20. This means that the considered problem is quite
difficult for model-free reinforcement learning algorithms such
as Q-learning. UCB-1 performs well for experiments with
unnormalized reward functions, where there is a penalty for
every step not directly going to a goal state. UCB-1 performs
worse when the reward function is normalized, even though
according to literature, this is the range in which the upper
bound of this exploration strategy is proven.

In future work, we want to examine if it is possible to create
exploration strategies for Q-learning that can consistently find
the optimal goal state for larger maze problem without being
distracted by the absorbing suboptimal goal states. Further-
more, we want to study the effects of having different types
of mazes with more or with less goals, and with dynamic
placement of both goals and the agent.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 1998.

[2] M. A. Wiering and M. van Otterlo, Reinforcement learning: State-of-
the-art. Springer, 2012.

[3] S. B. Thrun, “The role of exploration in learning control,” Handbook of
intelligent control: Neural, fuzzy and adaptive approaches, 1992.

[4] S. Yahyaa, “Explorations in reinforcement learning: Online action selec-
tion and online value function approximation,” Ph.D. dissertation, Free
University of Brussels, 2015.

[5] M. A. Wiering, “Explorations in efficient reinforcement learning,” Ph.D.
dissertation, University of Amsterdam, 1999.

[6] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, 1989.

[7] S. B. Thrun, “Efficient exploration in reinforcement learning,” Tech.
Rep., 1992.

[8] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empiri-
cal evaluation,” in European conference on machine learning. Springer,
2005, pp. 437–448.

[9] M. Wiering and J. Schmidhuber, “Efficient model-based exploration,”
in Proceedings of the Fifth International Conference on Simulation of
Adaptive Behavior (SAB98), 1998, pp. 223–228.

[10] M. C. Mozer and J. Bachrach, “Discovering the structure of a reactive
environment by exploration,” Neural computation, vol. 2, no. 4, pp. 447–
457, 1990.

[11] S. D. Whitehead and D. H. Ballard, “Learning to perceive and act by
trial and error,” Machine Learning, vol. 7, no. 1, pp. 45–83, 1991.

[12] R. S. Sutton, “Integrated architectures for learning, planning, and re-
acting based on approximating dynamic programming,” in Proceedings
of the seventh international conference on machine learning, 1990, pp.
216–224.

[13] M. Sato, K. Abe, and H. Takeda, “Learning control of finite Markov
chains with an explicit trade-off between estimation and control,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 18, no. 5, pp. 677–
684, 1988.

[14] J. Schmidhuber, “Adaptive confidence and adaptive curiosity,” in Institut
fur Informatik, Technische Universitat Munchen, 1991.

[15] S. B. Thrun and K. Möller, “Active exploration in dynamic environ-
ments,” in Advances in neural information processing systems, 1992,
pp. 531–538.

[16] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[17] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” arXiv preprint arXiv:1402.6028, 2014.

[18] K. Saito, A. Notsu, and K. Honda, “Discounted UCB1-tuned for Q-
Learning,” in Soft Computing and Intelligent Systems (SCIS), 2014
Joint 7th International Conference on and Advanced Intelligent Systems
(ISIS), 15th International Symposium on. IEEE, 2014, pp. 966–970.

[19] J. Kennedy, Particle swarm optimization, ser. Encyclopedia of machine
learning. Springer, 2011, pp. 760–766.

[20] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[21] R. E. Bellman, Dynamic Programming. Courier Dover Publications,
1957.

[22] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[23] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of
stochastic iterative dynamic programming algorithms,” Neural compu-
tation, vol. 6, no. 6, pp. 1185–1201, 1994.

[24] R. Bellman, “A Markovian decision process,” Journal of Mathematics
and Mechanics 6, 1957.

[25] R. A. Howard, Dynamic Programming and Markov Processes. Tech-
nology Press of Massachusetts Institute of Technology, 1960.

[26] A. G. Barto, S. J. Bradtke, and S. P. Singh, Real-time learning and
control using asynchronous dynamic programming. University of
Massachusetts at Amherst, Department of Computer and Information
Science, 1991.


