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Abstract—In this paper we introduce a new dataset and
a pose invariant sampling method and describe the ensemble
methods used for recognizing faces in 3D scenes, captured using
commodity depth sensors. We use the 3D SIFT keypoint detector
to take advantage of the similarities between faces, which leads to
a set of points of interest based on the curvature of the face. For
all keypoints, features are extracted using a 3D feature descriptor.
Then, a variable-sized amount of features are generated per each
3D face image. The first ensemble method we constructed uses a
K-nearest neighbors classifier to classify each keypoint-sampled
feature vector as belonging to one of the subjects recorded in our
dataset. All votes over all keypoints are combined. In the second
ensemble technique, the keypoints are clustered with K-means,
using the feature vectors and approximated sampling positions
relative to the face. This leads to a set of experts that specialize
for a specific region. Then a K-nearest neighbors classifier is
trained on the examples falling in each expert’s specialized region.
Finally, for a new 3D face image, votes from all experts are
combined in a sum ensemble technique to categorize the 3D face.
We also introduce 6 new “real world” datasets with different
variances: 3 types of 3D rotations, distance to sensor, expressions,
and an all-in-one dataset. The results show very high cross
validation accuracies for the same type of variance. In addition,
36 variance specific pair-tests in which the system is trained on
one dataset and tested on a completely different dataset also show
encouraging results.

I. INTRODUCTION

Face perception is perhaps the most highly developed
visual skill in humans. The evolution of our perceptual systems
has taken a very long time to reach current capabilities.
Machines do not necessarily have to possess the same type of
sensors as we do, hence we make use of commodity infrared
depth sensors, which do not require intensive preprocessing for
extracting shape cues. Furthermore, depth sensors such as the
Kinect offer several advantages compared to normal cameras,
such as robustness to different lighting conditions and extreme
pose angles.

Algorithmically, there are two major schools of thought in
traditional face recognition: appearance based and geometric
methods. The classical examples from the former category,
Eigenfaces and Fisherfaces [1], [2] are focused mainly on
the illumination structure, which does not necessarily coincide
with actual shape cues. The surveys [3], [4] also conclude that
performance is limited by the variations in illumination [5] and
pose. Even adding texture information can not describe shape
alone in a 2D structure [6].

For 3D image recognition, 3D morphable models [7]
and normalization increase performance, while video se-
quences [8]–[11] only add a limited increase in performance
while adding to the complexity of the problem. Hence, in
our methodology, we consider the observations to be time-
independent.

Previous research [12], [13] shows that surface reconstruc-
tion using algorithms such as Poisson reconstruction [14] or
Marching cubes [15] is not a fruitful research path. Virtually
all previous work on 3D methods [16]–[21] struggle with
the key problem of pose normalization and subsequently use
algorithms which are computationally intensive. Unlike such
methods, we take advantage of the similarities between faces
and use a 3D version of the Scale Invariant Feature Transform
(SIFT) [22] for sampling, thus bypassing the normalization
step and also coping with occlusions through non-holistic
processing.

Contributions. This paper presents two ensemble methods
for 3D face recognition. First, 3D SIFT is used to detect
points of interest based on the curvatures of the face. For all
keypoints, features are extracted using a 3D feature descriptor.
This leads to a variable-sized amount of features generated per
3D face image. The first ensemble method uses a K-nearest
neighbors classifier to classify each keypoint as belonging to
one of the persons recorded in our dataset. Then all votes over
all keypoints are combined. In the second ensemble technique,
first keypoints are clustered using K-means clustering using the
extracted feature vectors and the approximated position in the
face. This leads to a number of experts that specialize for a
specific region. Then a K-nearest neighbors classifier is trained
on the examples falling in its specialized region. Finally, for
a new 3D face image, all votes from all experts are combined
in a sum ensemble technique to categorize the 3D face. We
furthermore constructed a new real world scenario dataset by
recording 3D scans, which generate occlusions at extreme pose
angles. In some datasets, the pose variance is typically obtained
by artificially rotating 3D scans, however this is not the case
here. Although our dataset has lower resolution than previous
datasets such as [23], the variance in pose, expression and
distance to sensor is much higher. We perform cross validation
tests and pair-tests for each type of variance, as recorded as
mini-sets for each subject. There is a variable number of
observations per each subject, averaging at 43 frames per
subject over all sets. The results show that both methods
perform very well for the cross validation experiments. The
average recognition accuracy is around 96% for the datasets978-1-4799-7560-0/15/$31 c©2015 IEEE



containing 18 different persons. Furthermore, also the pair-tests
where the systems are trained on a dataset containing one type
of variance and tested on a different dataset show promising
results.

Paper Outline. In Section II we describe how we acquired
our dataset and which preprocessing steps we have used.
In Section III we describe our ensemble techniques and the
workings of our complete approach. Experimental results are
presented in Section IV, and Section V concludes this paper.

II. DATA ACQUISITION AND PREPROCESSING

In this section we start with presenting the main challenges
involved in unconstrained 3D face recognition using Kinect
sensors. We present the technical limitations of such sensors
and continue to describe the procedure used to record the new
dataset. The preprocessing steps — explained in Section II-C
— are used to partially filter out artifacts (e.g. neck, hair) and
slightly normalize all the 3D images to a frontal view.

A. Goals

The main challenges in unconstrained 3D face recognition
are robustness towards pose variance, facial expressions and
occlusions. We formulate the problem of recognizing a person
which is able to move freely in front of the sensor. As such,
we also consider the distance to the sensor (which decreases
resolution) as a factor; this has not been attempted before. For
this purpose we record a new dataset which contains all types
of possible variance, with separate variance categories for each
set and finally an all-in-one set. This last set is not an union of
the other sets. The pipeline in the current classification process
is fully automatic and does not require user intervention.

B. The sensor

According to the manufacturer’s specifications of the Mi-
crosoft Kinect 360 Manual 1 the field of view is 57◦ on
the horizontal plane and 43◦ on the vertical plane. Experi-
mental measurements reveal that the random error of depth
measurements increases quadratically with the distance from
the sensor. More precisely, it is only a few millimeters at 0.5
meters from the sensor ∼ 0.25 cm at 1 meter from the sensor
and almost reaches ∼ 0.5 cm at 1.5 meter from the sensor [24].
The highest recorded error is 4 cm at the maximum range of 5
meters. Therefore, due to the decreasing density of point clouds
and the noise in the measurements, for the current objective,
the recorded datasets were constrained to a maximum distance
of 1.5 meters from the sensor.

C. Preprocessing

While the current research does not focus on pose normal-
ization, some preprocessing steps were necessary in order to
capture only the face shape from the entire point cloud. In
the process we also aimed to eliminate noise and unwanted
artifacts. A real time algorithm for head detection and pose
estimation using regression forests [25] implemented in the
Point Cloud Library (PCL) [26] is used to provide the position
of the head in the form of a centroid and a vector estimating
the head pose. A fixed size cube with the edge of 10 cm is

1http://support.xbox.com/en-US/xbox-360/manuals-specs/

used to crop the face. The cube can only perform translation
movements.

Fig. 1. Left: zoomed in original point cloud. The cube delimits a fixed size
volume around the head. The blue arrow is an estimation of the pose. Right:
the data within the cube are cropped, then rotated towards a frontal position
and finally translated towards the origin.

After the segmentation of the head, the cropped data are
rotated in space according to the pose estimation vector such
as to achieve a frontal face view towards the camera. Figure 1
shows an illustration of how the head is segmented and then
pose normalized. The blue arrow is an estimation of the pose,
however it should be noted that this vector oscillates, even
when the pose is not changed.

The segmented face sometimes contains disconnected clus-
ters of points such as hair, parts of the neck, jewelry, etc. In
order to remove these artifacts, Euclidean clustering was used
to remove small clusters of points disconnected from the main
block. After the segmentation process is finished the clusters
which do not contain at least 1000 points are removed. While
this does not eliminate all artifacts it results in frames with
less irrelevant data.

The head detector stochastically returns false positives
(non-faces). Furthermore, the pose estimate is not always ac-
curate, hence the detection process is followed by a maximum
of 50 steps of Iterative Closest Points (ICP) [16] which slightly
reduces the rotation variance and lowers the number of false
positives.

A downsampled generic 3D face model was used as a
target norm for the ICP alignment. Initially, the distance is
computed using a spatial nearest neighbor search for finding
correspondences, after which the transformation parameters are
estimated using the Mean Squared Error (MSE) cost function.
If the initial alignment error returned by the cost function
is above a qualitatively determined threshold, then further
processing of the current frame is immediately stopped and
the frame is discarded. This reduces the number of non-faces
and speeds up processing.

D. Dataset

The established benchmarks such as the FRGC v2.0 [27]
are based on datasets which contain complete frontal mod-
els with no occlusions, slight pose variance and only fixed
distance to the sensor. Thus, the most challenging problems
are eliminated or not considered. Furthermore, the data are
recorded in high resolution and are by far not as noisy as those
generated by a commodity depth sensor such as the Kinect.
Unlike the method of capturing some high quality frontal 3D
frames we aim to classify using training data that also contain
partial views (which can also be considered occlusions) and
varying expressions. As such, we have recorded a new real



world scenario, low resolution dataset which captures one type
of significant variance per each subset: rotation (roll, pitch,
yaw), distance to the sensor (or z-translation), expression and
finally an unconstrained, all-in-one set. A visualization from
the roll set for eight classes can be seen in Figure 2. For the
recording of all 6 datasets, the 18 subjects were seated in front
of the sensor and the height of the chair was adjusted in order
to have the nose initially pointing at the sensor. The distance
to the sensor was kept at approximately 0.6 meters, except for
the z-translation and the unconstrained all-in-one set.

Fig. 2. Best case scenario. Eight classes depicted. The normalization is
approximately solved. Frames (individual observations) are overlapped for
each class and are slightly rotated towards the right. In the center, all data
are overlapped.

For the first four datasets — I yaw, II pitch, III roll, IV z-
translation — the subjects were asked to keep a neutral facial
expression and not talk during the recording procedure. For set
I the subjects were asked to move their heads from left to right
and vice-versa. For set II the subjects were asked to move their
heads up and down, while for set III the subjects were asked to
tilt their heads either left-right as much as possible. In all three
cases the maximum angle was ±45◦ in either direction. For
set IV the subjects were asked to keep the X and Y position
of the head fixed while the chair was moved towards and
away from the sensor. The range in movement along the Z
axis was between 0.4 meters and 1.3 meters. For recording set
V the subjects were asked to talk and display various facial
expressions while keeping the position of the head relative
to the sensor constant. The same procedure was repeated for
the unconstrained all-in-one set VI, only that the sensor was
moved following a spiral pattern around the head, starting far
from the subject and gradually getting closer. Also, in set VI
the normalization and preprocessing step was bypassed. In all
cases the movements were slow and incremental in order to
capture the gradual changes in pose, translation and expression.
This resulted in a varying number of observations per person
per set.

The dataset was recorded in real-time and contains a total
number of 18 subjects and is available for download 2. For

2http://www.ai.rug.nl/∼mwiering/Kinect face dataset.html

each observation (frame) the data are stored in form of an
ASCII text file containing a matrix with columns X, Y, Z, RGB
— each line thus having the coordinates and color values for
one point (3D pixel). The color information was kept although
it is not used here. Each observation / text file has a variable
number of points. In total there are 4675 observations captured
over all sets, with an average number of 260 frames per person
for all sets (relevant for Table I) and an average of 43 frames
per person per each set, which is relevant for Tables II and III.
Even though the dataset was recorded with color, there were
no efforts during the recording in order to vary the lighting
conditions. The code for the experiments and framework used
to record the dataset in real time is available for download 3.

III. ENSEMBLE OF FACE REGION EXPERTS

According to traditional face recognition methodologies
[4], non-holistic approaches generally have more flexibility
and allow further classification possibilities based on different
criteria. This modus operandi suggests that the non-holistic
processing of face parts (eyes, nose, mouth, eyebrows, etc.)
— as observed in [28] along with configural information —
should result in superior robustness and inherent redundancy
and scalability.

In virtually all of the 2D and 3D methodologies, these
regions are segmented as disjoint sets. This requires the precise
alignment of faces — pose normalization, which is unfeasible
for most images. In the current research, we aim to bypass
the fine-tuned normalization step, and propose a non-holistic
ensemble method based on sampling non-uniformly using the
Scale Invariant Feature Transform (SIFT) [22].

Although a similar sampling method has been proposed
in [29], we stress that we present face recognition, not face
verification, our dataset is high-noise and low resolution, it
contains five types of extreme variances and the matching and
feature extraction is performed differently. In their method,
the feature vectors are ranked and the number of similarities
becomes the score.

By making use of the 3D SIFT keypoint detector, different
numbers of feature vectors are sampled from each face image.
We developed two ensemble methods for using this variable
number of feature vectors. In the first ensemble technique,
one single expert is used that uses the K-nearest neighbors
algorithm as classifier. For each feature vector a vote is
generated for one of the classes. Finally, all votes are combined
using the sum rule. In the second technique, the feature vectors
are first clustered according to the sampling position of a
keypoint and the similarity between shape, resulting in an
automatic separation of the parts of the face. Then in each
specialized face region a K-nearest neighbors classifier is
trained, and all votes are combined using the sum rule. The
intuitive advantage of this second method is the unsupervised
method of identifying face regions which also removes the
need for highly specialized computer vision algorithms for the
detection of specific face regions — which might not perform
well in the case of occlusions, extreme pose and expressions.
The total working of the system is illustrated in Figure 3. We
will now explain all steps involved in more detail.

3https://github.com/florinsch/Ens3DFRKinect



A. Keypoint Sampling

We use the 3D version of SIFT to detect keypoints where
the curvature is higher than some predetermined threshold.
These keypoints give most information about the face shape
since they are very likely to be located at different key posi-
tions. When using 3D SIFT, the distribution of the keypoints
depends on the parameters used for SIFT. According to the
minimum scale, the number of octaves and the number of
scales per octave, the result can have high precision and low
variance or vice-versa, which affects the consistency of the
data sampling location.

When the precision is high, the keypoints are detected more
accurately around the same regions between frames — for
example a keypoint is either detected or not in the middle of
the eyebrow. This was the case when the minimum scale was
set to 0.3 cm with 5 octaves and 10 scales per octave, which
resulted in sampling an average of 15 keypoints per frame,
mostly around the eyebrows and the nose, with some regions
completely lacking keypoints. When the precision decreases,
there is less consistency of the location of keypoints between
frames, however this results in an average of 50 keypoints per
frame — for example, three keypoints will be detected around
the eyebrow. For the images in Fig. 4 the minimum scale was
set 0.4 cm with 4 octaves and 5 scales per octave. In both cases
the minimum curvature was set to 0.1 cm since this provides
a large initial keypoint sample for SIFT, however it is also a
source of error since it allows keypoints to be selected from
noisy fractal-like regions.

B. Feature Descriptor

The PCL library contains several implementations of fea-
ture descriptors for 3D object recognition. Although these are
not optimal for 3D face recognition, they can also be used
for 3D face recognition. In future work we intend to study
other descriptors and focus more on the representation. An
object recognition experiment [30] on the accuracy and time
performance of several 3D feature descriptors implemented in

Fig. 3. Training (starts top left) Step I: Clustering is initially performed on
the whole dataset, based on the SHOT feature vectors sampled using SIFT
keypoints, face regions are learned. Step II: Supervised learning, an expert
is trained per each face region (color rhomboids, each expert sees data only
for a particular face region). A single classifier is also trained in parallel,
regardless of face region. (white rhomboid, classifier sees all sampled data).
Evaluation (starts bottom left) Step I: A probe arrives, keypoints are sampled
using SIFT, the SHOT features are extracted, the clustering algorithm assigns
each extracted feature vector to its specific face region expert. Some experts
might not activate in case there is no data from that region due to occlusions,
etc. Step II: Each expert outputs a probability vector with length equal to the
number of classes. The results are combined using the sum rule (Eq. 4) to
obtain the final class label.

Fig. 4. Camera observations from several subjects. The SIFT keypoints
(green) are detected in similar face regions. The camera observations come
with missing data and are also pose variant. We use SIFT to take advantage of
the similarities between faces. Features are extracted only in areas with high
curvature, thus eliminating the need to compute features for the whole frame.

PCL gave some indications of possible descriptors. From these
we tested three and selected the Signature of Histograms of
Orientations (SHOT) [31], with feature vectors of n = 352 in
length, which showed the best preliminary performance.

SHOT is based on computing a robust local reference frame
using eigenvalue decomposition around a keypoint. A spherical
grid is then centered on the same point and for each bin in the
grid a weighted histogram of normals is computed according
to a function of the angle between the normal at each point
within the corresponding part of the grid bin and the normal
at the keypoint.

The results are concatenated, the first 9 values represent the
reference frame followed by 11 shape bins times the 32 bins —
resulting from 8 azimuth divisions, 2 elevation divisions and
2 radial divisions of the spherical grid, with a total number
of 352 values. To achieve robustness to variations of the point
density, the whole descriptor is normalized to unit length.

C. Face Region Segmentation

For our second ensemble technique, we make use of the
sampled keypoints returned by SIFT, and extract a feature
vector from each keypoint using the SHOT descriptor. Once
the keypoints are detected they are aligned using ICP to a
downsampled version of the same 3D face template used
during the preprocessing step. While pose normalization is
computationally expensive for the whole frame, it can be
efficiently done for the keypoints. Each feature vector is thus
concatenated with the 3D coordinate of its extraction point.
While this approach does not guarantee that the alignment is
perfect, it allows us to take advantage of the approximate topo-
logical sampling location. It is evident that the normalization
of the keypoints can not be entirely accurate since camera
observations with extreme viewpoints or a large amount of
missing data do not have enough correspondences between the
keypoints and the template. However, while visualizing the
pose-normalized keypoints, they showed higher consistency
than the original topological positions. Finally, all keypoints
with their approximated positions and their feature vectors are
clustered using K-means clustering to create clusters represent-
ing different face regions in an unsupervised way.

The most challenging of the recorded datasets was VI
which contains all types of variances. As such, the performance



of clustering using XYZ keypoint data or feature vectors for
36 clusters was compared. Furthermore, both the XYZ data
and the feature vectors were length normalized and used as
input for the K-means clustering algorithm. The performance
was evaluated with leave one out cross validation using the
sum rule of E = 36 KNN experts. The results showed that the
concatenation of both keypoint location and the feature vector
outperforms either method and was thus used in all further
experiments.

D. Ensemble Learning

We use the K-nearest neighbors method as classifier, due
to its speed and ease of scalability on multiple machines.
The K-nearest neighbors (KNN) algorithm is a supervised
non-parametric instance-based learning algorithm that has very
strong consistency results which have been analytically proven
[32]. The complexity of the decision boundary is a function
of the number of neighbors K. The larger K is, the smoother
the classification boundary.

It is common to use weights during the voting procedure,
such that the closer the neighbor, the higher the contribution
towards the average final vote. While this makes the decision
boundary fuzzy, the weighting scheme is a way of un-biasing
the classifier in cases where the number of examples for a
particular class outnumbers the others.

The K-nearest neighbors algorithm is sensitive to the
local structure of the data, hence the distance function is
very important. In the case of high dimensional vectors, the
Euclidean distance does not work well, since the distance to all
neighboring points can be almost identical [32]. The sample
negated correlation distance (Eq. 1) is a linear metric which is
derived from the sample variance and covariance between two
vectors and is a measure of multivariate independence. It is
one if the vectors are statistically independent. This metric is
often interpreted as an energy measure between two probability
distributions. The distance function is applied as a metric for
the KNN classifiers, as well as for K-means:

dcorr(ai, bi) = 1− (ai − a)T (bi − b)√
(ai − a)T (ai − a)

√
(bi − b)T (bi − b)

(1)
where ai and bi are two vectors and a and b denote the mean
vectors from the datasets.

In ensemble learning, multiple experts are strategically
combined to solve computational tasks such as classification or
prediction. The effectiveness of such learning paradigms comes
from the diversity of the experts. The distinction between
experts can reside in the type of classification algorithm, the
variance in parameters used during training of the same type
of classifiers, in the type of features used for each classifier or
using subsets of / re-sampling the training data (Bagging [33]
or Boosting [34]).

By using disjoint subsets of the data per expert we aim to
strengthen the overall performance, provided the convergence
of the clustering algorithm. The clustering result should ideally
represent different face regions, for any type of pose variation,
or expression, etc. A favorable consequence of using subsets

of training data is that we are less likely to require complex
decision boundaries for the classifiers when increasing the
number of examples N and the number of classes Ω. Since we
want to observe the performance and impact of clustering and
also compare the results of the ensemble, one single expert
was trained using the same data. We call this one single
classifier an ensemble since it makes use of the sum rule when
making decisions. However, this ensemble does not take into
consideration the clusters obtained in the clustering step.

Since the features correspond to specific areas of faces,
in a similar way to bagging (although without replacement)
the feature dataset D is partitioned in E distinct sets D =
{D1,D2, . . . ,DE} obtained during clustering with E denoting
the number of clusters.

Even though the subsets D1...E are ideally disjoint, they are
correlated by keeping track of the original camera observation
O from where the features were extracted. Thus, from the
complete dataset D with N examples, any camera observation
Oi = {Oi

1 ∈ D1, . . . ,Oi
E ∈ DE} can be composed of a

variable number of feature subsets. This happens since the
clustering is not optimal and we can get multiple hits from
one particular region per camera observation.

For each of the subsets Dε with ε ∈ [1, E], one expert
Cε is then trained. During testing, for any query frame, each
expert can process more than one feature vector and thus return
multiple results. In this case, the class posterior probability
estimates Pε are simply summed for each expert. Each camera
observation Oi is selected and used as probe. Then, for
each sampled feature vector the distance to each centroid is
computed and the corresponding expert Cε is activated for
processing the feature vector.

Each expert Cε returns a vector Pε(v) =
{Pε(ω1|v), . . . , Pε(ωΩ|v)} with v ∈ Dε which contains
the posterior probability of the expert Cε for each class ω.
The posterior probability that a query feature vector v belongs
to class ω is computed using equation 2 where wΩ(k) is
a weight vector computed as the inverse square distance
1/(d2 + C) where C is a very small constant and d is the
(negated correlation) distance between the query vector v and
a neighboring vector:

Pε(ω|v) =

∑
k∈K

wΩ(k) Φ(v, k, ω)∑
k∈K

wΩ(k)
(2)

where:

Φ(v, k, ω) =

{
1 if k ∈ K(v) , K(v) = the closest neighbors

and the class of k = ω
0 otherwise

(3)

The final ensemble decision is the class ω that receives the
largest support after the sum rule is applied to the individual
supports obtained by each expert:

Ω(v) = arg max
ω

E∑
ε=1

Pε(ω|v) (4)



TABLE I. SINGLE KNN AND SUM RULE VS ENSEMBLES OF KNN EXPERTS. 10 FOLD CROSS VALIDATION RESULTS ON THE INDIVIDUAL SETS. HERE
THE ACCURACY IS SHOWN AS THE PROPORTION OF THE NUMBER OF TEST EXAMPLES THAT ARE CORRECTLY CLASSIFIED. THE MOST CHALLENGING, AS

EXPECTED IS THE ALL-IN-ONE DATASET (VI). THE NEXT MOST DIFFICULT SET IS YAW, WHERE THE TRANSLATION OF FRAMES IS SLIGHTLY SOLVED
DURING NORMALIZATION. THE EASIEST SET IS ROLL WHERE THE FRAMES ARE ALMOST FRONTAL AND THE ROTATION VARIANCE IS SOLVED.

Dataset → Yaw Pitch Roll Z-Translation Expressions All-in-one Average
N =4675 610 608 452 854 697 1454 779
Single 0.931 0.976 0.985 0.983 0.963 0.917 0.959
Ensembles 0.925 0.971 0.985 0.979 0.962 0.900 0.953

E. Parameters

In all cases the normalized feature vectors and approximate
positions were used for clustering. Since the number of de-
tected keypoints vary for each camera observation and features
can be computed from keypoints which are in close proximity
to each other (Fig. 4), this does not imply that we should have
unique feature subsets per frame, that is, to have unique cluster
”hits”. The parameters for the KNNs and K-means clustering
were selected during a 10 fold cross validation on set VI.
Consequently, the number of neighbors was set to K = 3
to generate smoother decision boundaries which imply higher
generalization on simpler sets hence less overfitting on the
training set. The number of clusters was set to the average
number of keypoints detected for this dataset, namely E = 50
in all cases. It should be noted that these are not necessarily
the best parameters for all datasets.

IV. RESULTS

First, a 10 fold cross validation was performed using both
methods depicted in Figure 3, with parameters K = 3 and
E = 50. Although we have not included visualizations from
each dataset for reasons of space, the challenge for each set
is also consistent with the intuition that larger changes in
pose, expression and distance to sensor imply a more difficult
problem. This is also consistent with the results. Table I shows
the cross validation results, in which the average error ranges
between ±2× 10−2 with a 99% confidence on all subsequent
results.

The accuracies when using Ensembles of specialized ex-
perts are slightly lower in overall than with the single expert
ensemble. We can notice a decrease of almost 2% accuracy on
set VI (All-in-one), while the other results have decreased by
0.5% on average. Set VI has the lowest recognition rate and
is also the dataset with the largest difference between using
one single classifier and the ensembles method. The results
show that there is no added benefit of using an ensemble
of specialized classifiers. There could be several reasons for
this. Firstly, the clustering might not have separated the face
regions accordingly and in turn this can be due to the feature
descriptor. Furthermore, each specialized expert in the second
ensemble technique has much less data to learn from. This is
because of the suboptimal splitting of the data into disjoint
sets and as such the experts are trained with examples from a
wrong face region, in effect leading those particular examples
as unreliable. Since we do not use so many observations per
class, the benefit of the specialization is diminished, because
they have much less relevant data to learn from.

A. Single Expert Ensemble with Pair-tests

Although in most research only cross validation results are
presented, we also computed the results of all 36 pair-tests in

which the system was trained on one dataset and tested on a
different one. With the right representation this would result
in a transfer learning-like experiment. We first evaluated the
ensemble method using the single expert. The results for all the
pair-tests are displayed in Table II. The accuracy is reported
with a 99% confidence interval, with the error in the order of
±10−3 for all following pair-test tables.

The results show that the accuracies between the pairs are
not symmetric. The last row, containing the average testing
errors shows a similar pattern to the cross validation results: the
lowest average testing accuracy is on all-in-one, followed by
Yaw, with the highest on Roll. The absolute highest accuracy
(bold) is observed when the Z-Translation dataset is used for
training and Expressions is used for testing.

The lowest accuracy (last column, italic) was recorded
when set VI was used for testing, since it contains all types
of variances and is not pre-processed. The average accuracy
(last column, 5th row) is also the lowest, for the same set.
We also note that the overall accuracy using the negated
correlation distance is almost 1.5% higher when compared to
the results obtained using the Euclidean distance (not shown
here). Finally, although the results of the pair-tests are much
worse than those of cross validation, they are still quite good
when we realize that the datasets are very different and that we
are therefore testing the extrapolation power of the different
methods.

B. Ensembles of Specialized Experts on Pair-tests

The results of the ensemble method with specialized ex-
perts are displayed in Table III where the overall accuracy is
lower than when using the one single classifier architecture.
There are however two cases when the accuracy is higher than
the results in Table II, when training on Pitch and testing on
Yaw and when training on Pitch and testing on Roll we can
observe a 1% increase in accuracy.

Again, the overall lower accuracy is due to the fact that
the features and the metric used do not cause the unsupervised
identification of face regions to be optimal. Thus, the clusters
do not represent perfect face regions. Furthermore, again each
expert has much less training data to learn from.

V. DISCUSSION

We described a novel approach for recognizing faces from
3D recordings obtained with a Kinect sensor. The method
makes use of 3D SIFT to sample keypoints with high curvature
and uses a 3D feature descriptor to extract features describing
the region around each keypoint. We compared two different
algorithms that can deal with occlusions and the variable
amount of extracted feature vectors. The simpler technique
uses a classifier to classify each feature vector and uses the



TABLE II. SUM RULE OVER ONE KNN CLASSIFIER WITH K = 3 TRAINED USING THE NEGATED CORRELATION DISTANCE.

Testing → Yaw Pitch Roll Z-Translation Expressions All-in-one Average
Training ↓ N = 610 608 452 854 697 1454 Train
Yaw - 0.463 0.780 0.616 0.541 0.510 0.582
Pitch 0.349 - 0.765 0.717 0.741 0.324 0.579
Roll 0.495 0.652 - 0.684 0.672 0.355 0.572
Z-Translation 0.396 0.659 0.797 - 0.840 0.349 0.608
Expressions 0.415 0.636 0.631 0.683 - 0.316 0.536
All-in-one 0.602 0.476 0.536 0.521 0.602 - 0.548
Avg. Test 0.451 0.577 0.702 0.644 0.679 0.371 0.571

TABLE III. ENSEMBLES AND SUM RULE ACCURACY OVER PAIR-TESTS USING K = 3 NEIGHBORS AND E = 50 CLUSTERS. THE NEGATED
CORRELATION DISTANCE WAS USED FOR K-MEANS AND THE 50 KNNS.

Testing → Yaw Pitch Roll Z-Translation Expressions All-in-one Average
Training ↓ N = 610 608 452 854 697 1454 Train
Yaw - 0.449 0.768 0.596 0.541 0.507 0.572
Pitch 0.357 - 0.773 0.715 0.725 0.320 0.578
Roll 0.499 0.645 - 0.677 0.650 0.328 0.560
Z-Translation 0.385 0.645 0.795 - 0.839 0.347 0.602
Expressions 0.413 0.604 0.616 0.673 - 0.320 0.525
All-in-one 0.569 0.460 0.518 0.515 0.450 - 0.502
Avg. Test 0.444 0.560 0.694 0.635 0.641 0.365 0.557

sum-rule to compute the final classification decision. The
second approach uses K-means clustering to automatically
generate face region experts, which then classify feature vec-
tors only lying in their specialized region. We performed
the experiments on a newly recorded real world scenario
dataset containing 18 different persons. The results using both
methods are very promising. For the easier cross validation
experiments an average accuracy of 96% is obtained. For the
more challenging transfer learning like setting — the pair-
tests, we still obtain an average accuracy around 55-57% and
furthermore, in some cases the accuracy reaches 84%. The
experimental results also showed that the simpler ensemble
technique slightly outperformed the more complex ensemble
method. One reason is that the clustering of feature vectors did
not result in perfect face regions. Another reason is that with
the more complex technique each expert had less data to learn
from. In future work, we are interested in learning better 3D
representations for handling 3D face images. Sparse coding
strategies have been extensively used for object recognition
in video [11], [35], [36], and we also want to use these
techniques. Furthermore, evaluations of purely appearance
based methods tested under equal working conditions [37],
[38] confirm that metrics are quite important. Hence, in the
future, we also aim to include configural information — a
validation of the agreement between the different face region
experts. Finally, we remind the reader that this system can
potentially be used for any face recognition task, even in
complete darkness.
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