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Abstract— A robot’s local navigation is often done through
forward simulation of robot velocities and measuring the possible
trajectories against safety, distance to the final goal and the
generated path of a global path planner. Then, the computed ve-
locities vector for the winning trajectory is executed on the robot.
This process is done continuously through the whole navigation
process and requires an extensive amount of processing. This only
allows for a very limited sampling space. In this paper, we propose
a novel approach to automatically detect the type of surrounding
environment based on navigation complexity using unsupervised
clustering, and limit the local controller’s sampling space. The
experimental results in 3D simulation and using a real mobile
robot show that we can increase the navigation performance by
at least thirty percent while reducing the number of failures due
to collision or lack of sampling.

I. INTRODUCTION

The use of autonomous robots in our daily lives are on the
rise. From autonomous drones delivering packages [1], mobile
security robots [2], autonomous vehicles [3] to domestic robots
that monitor elderly and help them in their activity of daily
living [4]. The first and foremost responsibility of all these
robotic systems is to navigate safely and efficiently in their
environments. The navigation stack usually consists of a global
localization module and path planner, a local base controller,
and a set of sensor processing systems. The global localization
is usually done through a mapping and localization process
[5]. When a map is made, these robots estimate their position
based on the erroneous movement of the base and precise
sensory readings using probabilistic methods such as adaptive
Monte Carlo localization (AMCL) [6]. At this point, the only
remaining task is to calculate a set of velocities to make
sure that the robot reaches its goal safely. For this process,
generally a two or three dimensional cost map is made. In
the case of three dimensions, all sensor readings, such as
rotating lasers, infrared devices, and sonars are added to a
three dimensional pointcloud structure called voxel/octo map
[7]. For a two dimensional cost map, all sensors information is
projected down into a two dimensional array. In each control
cycle, the system has to mark or clear these cells using ray
tracing techniques [8]. Finally, the robot searches for the
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best local trajectory by forward simulating a set of velocities
over time using discrete sampling, taking into account all
the obstacles on the way and the robot footprint and shape.
A set of velocities that helps the robot to reach the goal
safely will be selected. This process is done multiple times
a second to achieve a required control frequency for the
robot. This requirement can be different depending on the type
and application of the robot. All the parts of the navigation
stack have parameters to be tuned. Precision of the cost
maps, number of the particles in AMCL, velocity sample rate,
simulation time, scoring parameters, etc. It is important to note
that these parameters have significant effects on the processing
load. Therefore, one can conclude that it is hard to select
one set of parameters for all navigation tasks that may differ
in complexity. For example, in cluttered environments, tight
corners, or doors a higher resolution cost map and velocity
sample rate will help the robot to navigate more safely and
efficiently, while in larger hallways, the system can use faster
speeds and a lower number of samples.

Contributions: In this paper, we propose a novel approach
to automatically identify the complexity of scenes by ex-
tracting a customized histogram of oriented gradients (HoG)
[9] from a two dimensional projection of sensory readings
(cost maps), and clustering them using multiple unsupervised
methods such as K-means and agglomerative clustering. In ad-
dition, we identify a tuned set of parameters for each of these
clusters. Our experiments show that the clustering methods
successfully separate the situations into meaningful and human
understandable clusters. Therefore, our contributions can be
summarized as follows:

• Automatic navigational complexity classification
• Dynamic parameter update for the local navigation sys-

tem and the cost maps
• Performance increase of the navigation system

Structure of the paper: In section II we describe the full
navigation system in detail. In section III we present the cus-
tomized HoG feature extractor, the used clustering methods,
and our approach to extract the best possible parameters for
the navigation system. We describe the experiments and the
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Fig. 1. The structure of the navigation system.

results in section IV. Finally, we conclude the paper in section
V and discuss possible future work.

II. PRELIMINARIES

Before continuing with the methodology section, we would
like to depict the navigational structure that we use in detail.
The used navigational stack is based on the work by David
Lu [10]. This work was implemented as a package for the
Robot Operating System (ROS) [11]. The general structure
of the navigation stack is depicted in Figure 1. This stack
requires certain inputs to be able to function correctly. The
inputs outside the rectangle in Figure 1 require:
• A pre-generated 2D map of the environment.
• A localization method, in our case AMCL.
• Odometry information
• Base velocity control
• Sensor sources
• A complete transformation function to relate all the robot

links in real-time.
Having a pre-generated map, we can use the AMCL method

to localize and track the position of the robot. When a
destination goal is sent to move base, the global planner will
attempt to find a path towards the selected goal using either
the A? [12], or Dijkstra’s shortest path [13] algorithm. The
calculated path is then sent to the local planner that will use
the projected cost map to find the best set of velocities to
approximately follow the global trajectory to reach the goal.
In case of failures due to incorrect sensor readings or possible
deadlocks, the system can initiate recovery behaviours. In this
paper, our optimization is done using the dynamic window
approach local planner [14].

A. Dynamic Window Approach

We selected the dynamic window approach (DWA) because
it is used mostly in robots with good acceleration rates,
and has a higher performance due to the window approach
in comparison to other methods such as the trajectory roll
out planner which simulates the entire path [15]. The DWA
needs the local cost map, a window section of the calculated
global path, the projected footprint of the robot, robot base
capabilities, and a set of simulation parameters. The robot
base capabilities are the achievable acceleration and velocities
in X , Y , and θ directions. In Table I, the important simulation
parameters are described. We omitted parameters with low
importance and the ones that we do not optimize1. If all the
above requirements are fulfilled, the robot navigates safely
and reliably. However, different environmental circumstances
require different parameters for optimal performance. Simulat-
ing unnecessary velocity trajectories in an empty hallway is a
waste of resources, and lack of this sampling can be dangerous
in crowded and narrow hallways. In section III, we explain
how we solve this problem by applying an unsupervised
situation detector.

III. METHODOLOGY

In this section we present our novel approach for au-
tonomous situation analysis of the environment and a method
to select suitable parameters for each situation.

1The full list of parameters can be found in http://wiki.ros.org/dwa local
planner.



TABLE I
DWA PARAMETER STRUCTURE.

Category Parameter Description
Acceleration Limits Rotational and translational acceleration in m/s2.

Robot Configuration Velocity Limits Rotational and translational speed in m/s.

Yaw Tolerance Yaw threshold for the goal in radians.
Goal Tolerance X-Y Tolerance X and Y distance threshold to the goal in meters.

Latch X-Y If True, after position is reached, only rotation will be checked.
Simulation time and Granularity Simulation resolution (meters) and length of time (seconds).

Forward Simulation Sampling rates of X-Y-Theta The number of velocity samples for simulation, limited by robot configuration.
Controller Frequency Planner’s desired loop for driving

Path Distance Higher score if the simulated path is close to global path.
Trajectory Scoring Goal Distance Higher score if the simulated path is closer to the local goal.

Collision Distance Lower score if the simulated path is close to obstacles.

A. Unsupervised Environmental Situation Analysis

The cost map is a representation of the surrounding en-
vironment of the robot. Therefore, we believe that we can
find certain patterns in these costmaps and classify different
situations on this basis. The first step is to collect data
points. This is done through moving the robot through the
environment several times. The next step is to come up with
a feature set that can help us in the classification procedure.

1) Customized Histograms of Oriented Gradients: The His-
togram of oriented gradients (HoG) [9] is a suitable method to
represent the structure in images. It has been used extensively
in both two and three dimensional data. The three dimensional
case is called the unique signatures of histograms (SHOT)
[16]. The two dimensional case (HoG) has been applied to
human detection [9], indoor localization [17], object recogni-
tion [16], and many other applications. Therefore, we believe
that it is also a suitable method for our application. The local
cost map is centered on the robot. However, this cost map
is invariant to robot rotation, therefore, we first calculate the
rotation with a translation matrix using equation 1.

[
α β (1− α) · center.x− β · center.y
−β α β · center.x+ (1− α) · center.y

]
(1)

where center.y and center.x are the center of the cost map
and

α = cos(angle)

β = sin(angle)

Then, we apply an affine transform to the cost map matrix
using the calculated rotation matrix. We lose a part of the
image during these operations, but since this information lies
on the corners of the cost map, the effect is minimal and can be
neglected. Note that the center of the image is not necessarily
the center of the robot. It is the main rotation axis of the
robot. In addition, we also altered the windowing mechanism
of the HoG feature set. We changed the window approach to
emphasize this characteristic. Figure 2 shows the new window
selection.

Fig. 2. The window structure of the HoG. The underlying picture is a sample
projected cost map. The middle rectangle is the robot footprint and with its
rotational axis point in the middle of the image. Each rectangular section is
used to calculate the HoG features. This way, the resulting descriptors are
more suitable for our problem.

2) Clustering and Center Selection: We use K-means clus-
tering [18] to separate the data into multiple clusters. The
problem is to select a good value for the number of clusters.
We perform agglomerative hierarchical clustering using the
single linkage [19] method to find the best number of clusters
which can be seen in Figure 3.

Algorithm 1 Agglomerative Hierarchical Clustering using
Single Linkage

1: begin initialize c, ĉ← n,Di ← xi, i = 1, . . . , n
2: repeat
3: ĉ← ĉ− 1
4: findnearestclusters,Di and Dj

5: usedmin(Di, Dj) = minx∈Di,x′∈Dj
‖x− x′‖

6: merge Di, and Dj

7: until c = ĉ
8: end



Fig. 3. The dendogram constructed from the single linkage algorithm. There
is a large similarity gap for all the joint clusters between c = 6 and c = 5,
and also another gap between c = 4, and c = 3. By inspecting the average
image of each cluster number, we found out that five clusters are the most
intuitive number for the k-means clustering.

We repeat the above procedure for different numbers of
clusters and draw the dendrogram based on the single linkage
result which can be seen in Figure 3. Finally, we analyze
the similarity values, and select a number of clusters which
has a large similarity gap with the next number of clusters.
However, since this step requires human observation, it is
best to test different clustering numbers and compare the
final experiment results. Due to the large required number of
experiments, we only observed the members of each cluster for
cluster numbers between 3 to 6. With five clusters, the results
were most intuitive which can be seen in Figure 4. It is also
notable that the current dendrogram uses a binary approach
to separate clusters. However, a study by Louis Vuurpijl et
al. [20] shows that the structure of the underlying data can
hinder the effectiveness of a binary approach. Instead, they
propose an N-ary approach by comparing the distance of the
child clusters to the parent cluster considering the standard
deviation between all the child clusters and their respective
parent. We left this method for future work.

B. Parameter Selection

When the clustering is finished, we can analyze the results
by means of an average image for each cluster. The procedure
is to compare the distance between each recorded cost map im-
age to the center of the cluster. Using an exponential function,
we give higher weights to the closer points, and lower weights
to the points far from the center. The final result is an average
image which describes the surrounding environment (Figure
4). Using these images, we arrange the clusters based on
danger level. This parameter selection, however, is dependent
on the type of the robot used. The requirement is to have
one safe parameter setting with a low maximum speed and
high simulation sampling, and a fast parameter set with a
higher maximum speed and lower sampling rate of velocities.
From these two parameters, we can extrapolate the rest of the
parameters for clusters based on their danger level.

C. Parameter Update

Every time the cost map is updated, our algorithm analyses
and determines the environmental situation. Before proceeding

(a) Open area (b) Approach Corridor

(c) Doors (d) Corner on the left

(e) Hallway

Fig. 4. The weighted average image of all the clusters. Black pixels mean
free space, white pixels means obstacles. The intensity level of white pixels
show how close they are to the cluster center. (a) shows low congested areas
and open spaces, (b) shows that the robot is approaching corridors, (c) shows
very dense areas such as doors, (d) shows close proximity to corners, specially
on the left side, and (e) shows hallways.

to update the optimal navigation parameters, we make sure that
the analysis is correct and coherent. This is done by accepting
only results which are coherent over three consecutive cost
map updates. This also prevents continuous parameter updates
due to outliers which leads to latency in the navigation control
loop. For the actual update of the navigation parameters,
the method sends the chosen parameters to the navigation
stack by calling a specific ROS service. This service updates
the parameters in the interval between the navigation control
loops. This generates a latency that could lead to the control
loop missing the desired control frequency, causing the robot
to stop.



(a) Gazebo Environment (b) Real Environment

Fig. 5. The map of the environment in Gazebo (a) and for the real experiments (b). The robot starts from checkpoint A, and continues through all the
checkpoints. The robot collects the time data when it reaches checkpoint E. If a failure or collision occurs, a penalty of one thousand seconds is recorded,
and the experiment is restarted.

IV. EXPERIMENTS

For the experiments, we use both a 3D simulator and a
real robot. The 3D simulator used is an open source program
called Gazebo [21] which simulates physics and allows us to
have access to sensors, actuators, etc. This simulator is selected
because of its wide spread use in robotics, such as the DARPA
robotic challenges 2. The robot is controlled through the robot
operating system (ROS) framework [11]. The environment
used for the simulation and real life can be seen in Figure 5.
We use OpenCV, MATLAB and Numpy libraries for feature
extraction and clustering [22], [23],[24].

The robot in Figure 6 is used for our experiments. The robot
uses a differential drive base, and a frame which carries the
manipulator, two RGB and depth sensors, and a laser range
finder. We modeled this robot in Gazebo using the Unified
Robot Description Format (URDF), which is an XML format
for representing a robot model.

A. Clustering Results

We gathered nine thousand cost map data points, and
calculated the customized HoG features from it. A single

2http://www.darpa.mil/program/darpa-robotics-challenge

linkage was done on this set, and we extracted a dendrogram
based on the distance values which can be seen in Figure 3.
The best number of clusters is 5, since the similarity distance
is large between this level and the previous one. We used
this number for our K-means clustering method, and Figure 4
shows the average images of these clusters. Hallways, doors,
and the situation when approaching doors are evident in these
images. When a cluster is detected, the navigation parameters
will be changed on the fly.

B. Base Parameter Selection

In order to select the best base parameters, we first hand
tuned the values to match the robot’s differential drive base
capabilities. Then, we sampled exploration values for each of
the DWA parameters in Table I. We calculated all possible
combinations of these values, and compared the time it took
to reach a point. The timeout to reach a point is 200 seconds,
if the robot collides with an object or cannot reach the goal
in time, it receives a penalty of 1000 and the trial is reset. For
each combination, we simulate 100 rounds. The best selected
base parameters are depicted in Table II.



TABLE II
BEST CALCULATED PARAMETERS FOR THE DWA METHOD.

Category Parameter Value
Acceleration X-θ 1.0m/s2, 1.0rad/s2

Robot Config Velocity X-θ 0.4m/s, 1.0m/s

Simulation granularity, time 0.05m, 3.5s
Forward Simula-
tion

Sampling rate X-θ 15, 45

Controller Frequency 5(Hz)
Path Distance 0.2

Trajectory Goal Distance 0.3
Collision Distance 0.05

TABLE III
THE SIMULATION RESULTS. ON AVERAGE THE DYNAMIC PARAMETER

SETS PERFORM 33.8% BETTER THAN THE BEST STATIC PARAMETER, AND
A HIGH SPEED SET. IN ADDITION, THE NUMBER OF FAILURES IS ALSO

LOWER THAN THAT OF THE REST.

Param Type Mean (without
Penalty)

Standard
Dev.

Failures

Dynamic 56.32 (37.37) s 19.22 s 10
Best Static (Safe) 85.08 (60.76) s 30.36 s 13
Fast 89.29 (61.44) s 28 s 15

C. Simulation

In order to test the performance of our method, we made
sure that the navigation environment has different varieties
such as narrow hallways, open space, doors, etc. which can
be seen in Figure 5a. The robot starts from point A, and
continues through all checkpoints until it reaches point E.
We measure the time between each pair, and average the
results for comparison. We performed 500 trials for each of
the best static settings (safe setting), fast parameter and our
dynamic parameter setting. If the robot was not able to reach
a point, we added it to the number of failures and marked
that trial length as one thousand seconds. We then calculated
the average time without penalty, and calculated the standard
deviation not considering the failures. Table III shows the time
average, standard deviation and the number of failures due to
collision or lack of sampling in the simulated environment. It is
evident that our dynamic situation analysis performs superior
to a single parameter set. The reasoning is straightforward, the
clustering method correctly detects the majority of situations,
and sets the best parameters. For example, close to the doors,
the system uses the safest approach. With a limited velocity
space, the system can simulate enough velocity points to find
the best path in a congested area. On the other hand, in an
open space, the system can use a lower number of sample
points and reach higher speeds without reliability and safety
issues.

D. Real Experiments

We used a similar approach to that of section IV-C. The
selected path included narrow and large hallways, congested
areas, and doors which can be seen in Figure 5b. We performed
20 trials for each of the base, fast, and our dynamic param-
eters for A-B, B-C, and C-D-E points. Table IV shows the

Fig. 6. The robot used for the experiments. The laser in the front of the robot
is used for localization and obstacle avoidance. The two 3D sensors on both
ends of the top bar are for 3D obstacle avoidance. The front sensor rotates
based on the current speed of the robot to better detect obstacles.

average time, standard deviation, and the number of failures
for each method and their respective pair of points. There
were some complications during the real experiments. Unlike
the simulator, after online parameter changes of the navigation
system, the sensor buffers were frozen for approximately one
second which resulted in a full stop of the robot. Depending
on the complexity of the scene, the number of parameter
change operation varied. However, our dynamic method is still
superior (18% faster than the safest method) in comparison to
the fast and safest set of parameters with the total time of
116.01s without considering collision penalty. We estimate
that this number will be closer to that of our simulation
results if this sensor buffer failure did not occur. If we
take a look at point to point results, we see that the best
static method is performing better than our dynamic approach
between point A and B. The main reason here was indeed
the sensor buffer freezing problem because of high number
of parameter changes. In the rest of the path, however, the
dynamic parameter system performs better. It is notable that
the fast parameter set is very unreliable in crowded areas with
18 total collisions, some of which actually damaged one of
our sensors. We can conclude that using our approach, we can
achieve a safer, faster, and more reliable navigation.

V. CONCLUSION

In this paper, we introduced a novel approach to automat-
ically analyze a robot’s surrounding environmental situation
using HoG features and unsupervised clustering. The feature
extraction and clustering were done on an obstacle matrix
(cost map) which is a two dimensional projection of realtime
sensory readings. We first extracted the best safe and fast
parameter sets without using our dynamic approach. Then,
using our method, we determined the congestion and danger
level of these clusters by calculating a scaled average image
for each cluster. Finally, we tuned multiple parameters for
the local planning module of the robot in order to navigate



TABLE IV
THE REAL EXPERIMENT RESULTS. ON AVERAGE THE DYNAMIC PARAMETER SETS PERFORM 18% BETTER THAN THE BEST STATIC SET OF PARAMETERS,

AND A HIGH SPEED SET. IN ADDITION, THE NUMBER OF FAILURES IS SIGNIFICANTLY LOWER THAN THAT OF THE REST.

A to B B to C C to E Full Path
Parameter
Type

Mean
(w/o
Penalty)

Standard
Dev.

Failures Mean
(w/o
Penalty)

Standard
Dev.

Failures Mean
(w/o
Penalty)

Standard
Dev.

Failures Mean
(w/o
Penalty)

Dynamic 137.71
(26.5) s

16.9 s 2 90.51
(42.51) s

5.14 s 1 94.64
(47.0) s

23.32 s 1 326.06
(116.01)s

Best
(Safe)

120.59
(22.9) s

5.3 s 2 111.52
(64.27) s

7.0 s 1 196.73
(55.0) s

11.57 s 3 893.151
(118.82)s

Fast 372.96
(35.44) s

26.22 s 8 144.58
(43.9) s

7.31 s 2 375.63
(39.4) s

7.18 s 8 428.38
(142.13)s

with a higher performance and reliability. Using the clusters
and danger level scores, we extrapolated new parameters and
performed simulation experiments. In simulation, we had a
performance increase of 33%, and a reliability increase of
28% in terms of navigation failure. We then performed the
experiments on a real mobile robot with the same cluster
centers that were learned during the simulation experiments.
The performance and reliability increase were 18%, and
30% respectively. We can conclude that by understanding
the surrounding environment, we can dynamically change
navigational parameters to allow for a faster and more reliable
movement.

Future Work: There are several improvements that can be
done to further enhance the reliability and performance of the
system. Currently, the number of clusters and the danger levels
are calculated by manually observing the dendrogram and av-
erage images of the clusters. This procedure can be automated
by calculating similarity values between cluster levels (Figure
3), and assigning scores to different sections of our windowing
approach (Figure 2). In addition, in this research, we only
optimize the parameters for the dynamic window approach.
However, we can also customize the sampling procedure itself
based on the robot and the detected density of the current
environment. Finally, we can use a reinforcement learning or
other optimization algorithms to tune the parameters for each
of the detected environments.
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