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Abstract: In this paper we describe a novel extension of the support vector machine, called
the deep support vector machine (DSVM). The original SVM has a single layer with kernel
functions and is therefore a shallow model. The DSVM can use an arbitrary number of layers,
in which lower-level layers contain support vector machines that learn to extract relevant
features from the input patterns or from the extracted features of one layer below. The
highest level SVM performs the actual prediction using the highest-level extracted features
as inputs. The system is trained by a simple gradient ascent learning rule on a min-max
formulation of the optimization problem. A two-layer DSVM is compared to the regular SVM
on ten regression datasets and the results show that the DSVM outperforms the SVM.
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1 Introduction

Machine learning algorithms are very useful for re-
gression and classification problems. These algorithms
learn to extract a predictive model from a dataset of
examples containing input vectors and target outputs.
Among all machine learning algorithms, one of the most
popular methods is the SVM. SVMs have been used for
many engineering applications such as object recogni-
tion, document classification, and different applications
in bio-informatics, medicine and chemistry.

Limitations of the SVM. There are two important
limitations of the standard SVM. The first one is that
the standard SVM only has a single adjustable layer of
model parameters. Instead of using such “shallow mod-
els”, deep architectures are a promising alternative [4].
Furthermore, SVMs use a-priori chosen kernel functions
to compute similarities between input vectors. A prob-
lem is that using the best kernel function is important,
but kernel functions are not very flexible.

Related Work. Currently there is a lot of research in
multi-kernel learning (MKL) [1, 5]. In MKL, different
kernels are combined in a linear or non-linear way to
create more powerful similarity functions for comparing
input vectors. However, often only few parameters are
adapted in the (non-linear) combination functions. In
[2], another framework for two-layer kernel machines is
described, but no experiments were performed in which
both layers used non-linear kernels.

Contributions. We propose the deep SVM (DSVM),
a novel algorithm that uses SVMs to learn to extract
higher-level features from the input vectors, after which
these features are given to the main SVM to do the ac-

tual prediction. The whole system is trained with sim-
ple gradient ascent and descent learning algorithms on
the dual objective of the main SVM. The main SVM
learns to maximize this objective, while the feature-
layer SVMs learn to minimize it. Instead of adapting
few kernel weights, we use large DSVM architectures,
sometimes consisting of a hundred SVMs in the first
layer. Still, the complexity of our DSVM scales only
linearly with the number of SVMs compared to the
standard SVM. Furthermore, the strong regularization
power of the main SVM prevents overfitting.

2 The Deep Support Vector Machine
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Fig. 1: Architecture of a two-layer DSVM. In this example,
the feature layer consists of three SVMs Sa.

We use regression datasets: {(x1, y1), . . . , (x`, y`)},
where xi are input vectors and yi are the target out-
puts. The architecture of a two-layer DSVM is shown
in Figure 1. First, it contains an input layer of D in-
puts. Then, there are a total of d pseudo-randomly
initialized SVMs Sa, each one learning to extract one
feature f(x)a from an input pattern x. Finally, there is
the main support vector machine M that approximates
the target function using the extracted feature vector as



input. For computing the feature-layer representation
f(x) of input vector x, we use:

f(x)a =
∑̀
i=1

(α∗
i (a)− αi(a))K(xi,x) + ba,

which iteratively computes each element f(x)a. In this
equation, α∗

i (a) and αi(a) are SVM coefficients for SVM
Sa, ba is its bias, and K(·, ·) is a kernel function. For
computing the output of the whole system, we use:

g(f(x)) =
∑̀
i=1

(α∗
i − αi)K(f(xi), f(x)) + b.

Learning Algorithm. The learning algorithm adjusts
the SVM coefficients of all SVMs through a min-max
formulation of the dual objective W of the main SVM:

min
f(x)

max
α,α∗

W (f(x),α(∗)) = −ε
∑̀
i=1

(α∗
i + αi) +

∑̀
i=1

(α∗
i − αi)yi

−1

2

∑̀
i,j=1

(α∗
i − αi)(α

∗
j − αj)K(f(xi), f(xj))

We have developed a simple gradient ascent algorithm
to train the SVMs. The method adapts the SVM co-
efficients α(∗) (standing for all α∗

i and αi) toward a
(local) maximum of W , where λ is the learning rate:

α
(∗)
i ← α

(∗)
i + λ · ∂W/∂α(∗)

i . The resulting gradient
ascent learning rule for αi is:

αi = αi + λ(−ε− yi +
∑
j

(α∗
j − αj)K(f(xi), f(xj)))

We use radial basis function (RBF) kernels in both lay-
ers of a two-layered DSVM. Results with other kernels
were worse. For the main SVM:

K(f(xi), f(x)) = exp(−
∑
a

(f(xi)a − f(x)a)2

σm
)

The system constructs a new dataset for each feature-
layer SVM Sa with a backpropagation-like technique for
making examples: (xi, f(xi)a − µ · δW/δf(xi)a), where
µ is some learning rate, and δW/δf(xi)a is given by:

δW

δf(xi)a
= (α∗

i − αi)
∑̀
j=1

(α∗
j − αj)

f(xi)a − f(xj)a
σm

·K(f(xi), f(xj))

The feature extracting SVMs are pseudo-randomly ini-
tialized and then alternated training of the main SVM
and feature layer SVMs is executed a number of epochs.
The bias values are computed from the average errors.

3 Experimental Results

We experimented with 10 regression datasets to com-
pare the DSVM to an SVM, both using RBF kernels.

Both methods are trained with our simple gradient as-
cent learning rule, adapted to also consider penalties,
e.g. for obeying the bias constraint. The first 8 datasets
are described in [3] and the other 2 datasets are taken
from the UCI repository. The number of examples per
dataset ranges from 43 to 1049, and the number of fea-
tures is between 2 and 13. The datasets are split into
90% trainingdata and 10% testingdata. For optimizing
the learning parameters we have used particle swarm
optimization. Finally, we used 1000 or 4000 times cross-
validation with the best found parameters to compute
the mean squared error and its standard error.

Dataset SVM results DSVM results

Baseball 0.02413 ± 0.00011 0.02294 ± 0.00010
Boston H. 0.006838± 0.000095 0.006381 ± 0.000090
Concrete . 0.00706± 0.00007 0.00621± 0.00005
Electrical 0.00638 ± 0.00007 0.00641 ± 0.00007
Diabetes 0.02719± 0.00026 0.02327± 0.00022
Machine-CPU 0.00805± 0.00018 0.00638± 0.00012
Mortgage 0.000080 ± 0.000001 0.000080 ± 0.000001
Stock 0.000862± 0.000006 0.000757± 0.000005
Auto-MPG 6.852 ± 0.091 6.715 ± 0.092
Housing 8.71 ± 0.14 9.30 ± 0.15

Tab. 1: The mean squared errors and standard errors of
the SVM and the two-layer DSVM on 10 regression datasets.

Table 1 shows the results. The results of the DSVM
are significantly better for 6 datasets (p < 0.001) and
worse on one. From the results we can conclude that
the DSVM is a powerful novel machine learning algo-
rithm. More research, such as adding more layers and
implementing more powerful techniques to scale up to
big datasets, can be done to discover its full potential.
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