
Hierarchical Reinforcement Learning for Playing a
Dynamic Dungeon Crawler Game

Remi Niël
Department of Artificial Intelligence

Bernoulli Institute
University of Groningen

Groningen, The Netherlands
r.f.niel@student.rug.nl

Marco A. Wiering
Department of Artificial Intelligence

Bernoulli Institute
University of Groningen

Groningen, The Netherlands
m.a.wiering@rug.nl

Abstract—This paper describes a novel hierarchical reinforce-
ment learning (HRL) algorithm for training an autonomous
agent to play a dungeon crawler game. As opposed to most
previous HRL frameworks, the proposed HRL system does not
contain complex actions that take multiple time steps. Instead
there is a hierarchy of behaviours which can either execute an
action or delegate the decision to a sub-behaviour lower in the
hierarchy. The actions or sub-behaviours are chosen by learning
the estimated cumulative reward. Since each action only takes one
time step and the system starts at the top of the hierarchy at every
time step, the system is able to dynamically react to changes in its
environment. The developed dungeon crawler game requires the
agent to take keys, open doors, and go to the exit while evading
or fighting with enemy units. Based on these tasks, behaviours
are constructed and trained with a combination of multi-layer
perceptrons and Q-learning. The system also uses a kind of multi-
objective learning that allows multiple parts of the hierarchy to
simultaneously learn from a chosen action using their own reward
function. The performance of the system is compared to an agent
using MaxQ-learning that shares a similar overall design. The
results show that the proposed dynamic HRL (dHRL) system
yields much higher scores and win rates in different game levels
and is able to learn to perform very well with only 500 training
games.

Index Terms—Hierarchical reinforcement learning, Games,
Multi-layer perceptron, Q-learning

I. INTRODUCTION

Reinforcement learning algorithms enable an agent to learn
to optimize its behaviour from receiving rewards from an
environment, with which the agent interacts. Games are a
thriving area for reinforcement learning (RL) and have been so
for a long time [1], [2]. They provide varying challenges that
produce situations in which new and improved RL algorithms
can show their strengths and weaknesses. A relatively recent
example is double Q-Learning as a new deep reinforcement
learning algorithm for playing Atari 2600 games [3], and a
classical example would be TD-Gammon [4] that learned to
play the game Backgammon at human expert level. Among
RL techniques applied to games, temporal-difference learning
variants and evolutionary RL [5] are the most popular ones
[1]. A lot of RL techniques have in common that they are
based on a Markov decision process (MDP). An MDP is
a sequential decision making problem for fully observable
worlds where the Markov property is assumed [6]. The Markov

property holds if the next state can be predicted using only the
information that is available in the current state observation of
the agent, which means that the previous interaction history
does not need to be used for decision making.

Hierarchical reinforcement learning (HRL) is an extension
of RL where problems are decomposed into smaller sub-
problems, which allows RL to scale up to more complex
problems [7]. Dungeon crawlers and most other action games
contain many sub-tasks which have to be performed either
in parallel or in sequence. HRL allows these sub-tasks to be
based on their own MDP, which results in a divide and conquer
strategy. Some examples of HRL are MaxQ-learning [8], the
options framework [9] and Q-decomposition [10].

In Q-decomposition an agent is built from simpler sub-
agents and each of the sub-agents runs its own learning
process. The complex agent has a central arbitrator, which
chooses the action that has the highest sum of expected
rewards given by the sub-agents.

In the options framework [9], options are introduced, where
options are complex sets of actions which take multiple time
steps to complete. An agent using the options framework can
select such an option which would run until a terminating
state of the option is encountered. The options framework can
be extended by adding the possibility to terminate outside of
terminating states. The early termination could for example
occur if the option takes too much time. This can prevent the
overall system’s behaviour to get stuck in an option which has
become sub-optimal. A disadvantage is that the programmer
has to determine when an option can terminate early.

In MaxQ-learning [8], an MDP is decomposed into a
hierarchy of smaller semi-MDPs (SMDPs), where the value
function of the decomposed MDP is the additive combination
of the value functions of the smaller SMDPs [8]. A hierarchy
of behaviours is then constructed which corresponds with the
SMDPs. These behaviours can either execute simple actions
or execute other behaviours which take multiple time steps.
The tasks of the behaviours depend on their location in the
hierarchy. The top of the hierarchy is responsible for deciding
the current sub-goal, while behaviours lower in the hierarchy
are responsible for attaining their sub-goals. A disadvantage of
this system is that the current sub-goal cannot be changed until



a behaviour that is currently running has reached a terminating
state. From this it follows that either the system can not react
quickly to sudden changes in the environment or that the
programmer has to generate extensive terminating rules for
every behaviour in the hierarchy.

Related to HRL is the recent Hybrid Reward Architecture
(HRA) [11]. Here the reward function of an environment is
decomposed into multiple different reward functions. Each
of them is assigned to its own RL agent. Each agent gives
its expected value for every possible action to an aggregator,
which combines those into a single value for each action. The
current action is then selected based on that aggregated value.
HRA was used to learn to optimally play the game Ms. Pac-
Man in [11].

Contributions We propose a new approach to HRL in
which an MDP is decomposed into MDPs. Each time the
system needs to determine which action to take, it goes
through the entire hierarchy and ends up with a single primitive
action. The result of this is that choices by nodes in the
hierarchy always take exactly one time step which is why
MDPs still apply. The system can continue its sub-behaviours
multiple time steps if the choices of the hierarchy result in
the same leaf of the hierarchy. Hence sub-behaviours can run
as long as they are needed, but can also stop at any point
in time should some other sub-behaviour be better suited for
the current situation. The system can react dynamically to
changes in its environment and instead of the programmer
determining when that happens, the system learns this by itself.
To speed up learning all behaviours in the hierarchy are trained
simultaneously on an action if the following two conditions
hold: 1) the behaviour can choose the performed action, and
2) the behaviour’s overall goal is currently reachable.

For learning to play the dungeon crawler game, the HRL
system is combined with multi-layer perceptrons (MLPs) and
Q-learning [12] to learn the value function for all behaviours.
The combination of RL and MLPs has been successfully
applied to other games [13]–[15]. The MLPs receive higher-
order inputs, an approach where only a subset of (processed)
inputs is used. This approach has been successfully applied
to the game Ms. Pac-Man where it learned to play the game
very well within 10,000 training games [14].

A dungeon crawler game was developed in such a way that
the agents can be tested on both simple and complex tasks.
Levels consist of one or more rooms separated by doors. One
of the rooms contains an exit which has to be reached by the
agent in order to win. Doors are locked and can be unlocked
using keys which have to be picked up by the agent. Rooms
can also contain spawners, these spawners spawn enemy units
which attack the agent. The agent can move and shoot in 8
directions, resulting in 16 different possible actions.

The performance of the proposed dHRL system will be
compared to that of an agent using MaxQ-learning in varying
levels: a simple level where only navigation needs to be
learned, a small level with enemies and four rooms, and finally
a large level with many rooms and more enemies. This will
show how the systems compare to each other in environments

of varying complexity.
Outline Section II describes the game and the theory

behind the used RL algorithms. Section III explains the HRL
algorithms and the constructed behaviour hierarchies for the
agents. Section IV describes the performed experiments and
their results. Section V presents our conclusions.

II. METHODS

A. Dungeon Crawler

Our game is a dungeon crawler modelled to be a simplified
version of the game ”Gauntlet” on the NES (1988). The goal
of the game is to reach the exit of a level, while most of the
time the path is blocked by locked doors and enemies. Points
can be gained by reaching the exit, picking up keys, opening
doors and destroying enemies, see Figure 3 for an illustration
of this type of game.

The agent is controlled by either manual input or an
artificial intelligence system (AI). The AI can directly access
all important information: where are keys, doors, enemies, etc.
Note that the AI can only access information which a human
player could see or deduce while playing. The AI also has
access to a path-finding algorithm that determines the travel
distance between two points using the A* algorithm.

There are 2 different types of enemies: spawners and ghosts.
Ghosts are simple enemies, when the player is in range they
walk straight to the player, and the ghosts die when they
contact the player. When this happens the player gets damaged
and if a player’s health reaches 0, the player dies and the game
ends. Spawners are stationary and do not attack the player
but spawn ghosts. The player has 16 possible actions it can
execute any moment: shoot or move in eight directions. When
the player shoots, the bullet continues and kills all enemies
(including the spawner) until a wall is hit. The player’s score
determines its performance, the score function can be found
in Table I.

B. Reinforcement Learning

We use reinforcement learning to teach a hierarchy of neural
networks to play the game. For a reinforcement learning
system you need 5 parts, a model, an agent, actions, a reward
function and a value function [16]. In our case the game is the
model, the agent consists of a hierarchy of neural networks,
the policy determines how states are mapped to actions using
the value function, the reward function defines which game
events get rewarded or punished, and finally the value function
modelled with the neural networks returns the expected sum
of discounted future rewards for state-action pairs. The goal
of the agent is to maximise the sum of rewards.

TABLE I: Score gained for specific events

Event Score
Damaged enemy 10
Damaged player -10
Picked up key 5
Opened door 10
Reached exit 100
Impossible move -0.1



TABLE II: Game states are represented by 75 input variables

Input type Amount

Agent health 1
Keys 1
Normalised distance to target compared to other targets 3
Normalised distance to specific targets from tiles adjacent to agent 4 for each target type (12 in total)
Amount of enemies that can be hit in a specific direction 8
Vision grid 49
Normalised sum of enemies in shooting range or close to the agent 1

C. Q-learning

Reinforcement learning algorithms are used to optimize the
action-selection policy by letting the agent interact with the
environment. From this interaction, the agent observes which
state-action pairs are visited and which rewards they produce.
There are various learning algorithms that can be used to learn
the value function. We use Q-learning here, because previous
research indicates it works well for similar problems [14], [15].

A state at time t is referred to as st and an executed action
at time t is denoted as at. The total reward received after
action at and before st+1 is denoted as rt. For HRL, the
time that rt spans can be arbitrarily long. Q-learning is an
online learning algorithm that uses its experiences in the form
of (st, at, rt, st+1) to update the state-action value function.
The state-action value function estimates the expected sum
of future rewards given a state and an action. The general
Q-learning rule is [12]:

Q(st, at) = Q(st, at) + α · (rt + γ ·max
a
Q(st+1, a)−Qt(st, at))

Where α is the learning rate and γ is the discount
factor. The learning rate determines how strongly the error
changes the existing value function, while the discount factor
determines the importance of future rewards vs immediate
rewards.

The neural networks are updated using the back-propagation
algorithm where the target value is determined by the Q-
learning algorithm. In case the last action was a terminating
action the final reward gained is used as target for the last
state-action pair:

T (st, at) = rt

In all other situations the following formula is used:

T (st, at) = rt + γ ·max
a

Q(st+1, a)

After computing the target for the multi-layer perceptron,
the corresponding action at is trained with the target value
using the state representation of st as input. We use MLPs
with outputs that represent the Q-values of all possible actions
or sub-behaviours.

III. HIERARCHICAL REINFORCEMENT LEARNING

In an attempt to reduce the overall complexity of the system,
HRL systems decompose large MDPs in hierarchies of smaller
(s)MDPs. It is a divide and conquer strategy where a difficult
task is divided into a set of sub-tasks which are easier to
solve. The bottom of the hierarchy contains simple tasks which
directly call primitive actions, while tasks above determine
which sub-task(s) should currently be running. We imple-
mented two different HRL systems and compared their results:
MaxQ-learning [8] and our novel dynamic HRL (dHRL).

Some properties are shared between the systems in the
experiments. In both systems the nodes in the hierarchy use
MLPs to approximate their value function. They also use
Boltzmann exploration during training, which is used on the
output of the MLPs. Boltzmann exploration gives actions (or
sub-behaviours) with high expected values a larger chance to
be selected. The temperature changes the absolute difference
in chances, high temperatures reduce the difference while low
temperatures increase the difference. The formula describing
this exploration strategy is:

P (a|s) = exp(Q(s, a)/T )∑
a′∈A

exp(Q(s, a′)/T )

Where P (a|s) is the probability an action is chosen given
the current state, T is the temperature and A is the set of
possible actions.

Both systems also use the same global state representation,
from which each behaviour within the hierarchy uses a subset
as its input. The global state representation consists of 75
inputs, an overview of which can be found in Table II. One
of the inputs simply contains the amount of keys the player
currently has, another the amount of health normalised to a
value between 0 and 1.

The next 15 inputs are used to give the agent information
about the relative distances to the closest key, door and exit.
These distances are calculated using the A* algorithm. The
distances are then normalised between 0 and 1, where 0 means
furthest away and 1 closest, with a possible -1 value if the
target is not reachable. From the 15 inputs, 3 inputs are used
to represent the relative distances to the targets compared to
each other. These are normalised with respect to each other.
The other 12 distance inputs are divided up into three groups of
four, one group for each target. The four distances are between
the four tiles adjacent to the player and one of the three targets.



The values are normalised within the groups as mentioned
before.

The rest of the inputs are used to represent enemies. A
vision grid is included covering a 7×7 area around the agent,
which gives a 1 if there is an enemy on that tile and 0 if
there is not. Then for each direction in which the agent can
shoot the amount of enemies that would be hit if the agent
were to shoot in that direction is returned. Finally there is a
safety input which has the value 1

1+x , where x is the sum of
all enemies within the 7×7 square and the enemies which the
AI could hit if it shoots.

A. MaxQ-learning

In MaxQ-learning the programmer constructs the hierarchy
of sub-tasks. For every task the programmer determines the
rewards, when rewards are received and the terminating states.
We implemented the MaxQ-Q algorithm [8] in which each
sub-task has two types of rewards: pseudo and normal rewards.
Pseudo-rewards are used to train only the specific sub-task,
while normal rewards are also passed on to the tasks higher
up in the hierarchy.

There are two different types of actions a task-module (or
behaviour) can perform: primitive actions and starting other
sub-task behaviours. Primitive actions take one time step and
are the most basic actions the agent can perform, in our case
these are moving and shooting.

The algorithm will attempt to choose optimal sub-
behaviours until it reaches a leaf in the hierarchy. It then keeps
running that behaviour until one or more nodes in its hierarchy
path reach a terminating state. After this it will update and
terminate all behaviours underneath the highest node in the
hierarchy that reached a terminating state.

When a behaviour is started it keeps track of the discounted
sum of rewards. When the behaviour finishes it passes the
discounted sum of rewards onto the behaviour that started it. A
behaviour updates its network using the Q-learning rule where
the reward used is sum of the normal and pseudo rewards
gained during the chosen behaviour plus the discounted sum
of normal rewards obtained after state st by its sub-behaviours.
Note that the next state st+1 in this case is the state encoun-
tered when the chosen action or behaviour terminates. The
MaxQ hierarchy is represented by the tree in Figure 1. The
different tasks it contains will now be described, specifically
their possible choices, reward function, terminating states and
the inputs and composition of their MLP. All hyper-parameters
have been optimised using some preliminary experiments.

1) Root: The root sub-behaviour chooses the current sub-
goal, which is either to open a door, reach the exit or fight with
enemies. It decides this using the distance to various targets
(doors, keys, exits), the amount of health it has and finally
the safety of the current environment. This sub-behaviour
terminates when the game is over, this occurs when the agent
wins, the agent runs out of health (and dies) or the maximal
amount of time steps is reached. Its reward function can
be found in Table III. The MLP consists of an input layer

Root

Open door

Go to door Get key

Navigate

Go to exit Combat

Fig. 1: MaxQ-Q AI hierarchy

consisting of 5 neurons, 1 hidden layer with 30 neurons and
3 output neurons.

TABLE III: Reward function for Root

Event Type Reward
Win the game normal 10
Lose the game normal -10

2) Open door: The sub-behaviour ’go to door’ either de-
cides to pick up a key or go to a door. It has to decide this
using the distances to the closest door and key. It also receives
the amount of keys the player currently has. It terminates if
it has opened a door or if there are no reachable doors. Its
reward function can be found in Table IV. The MLP consists
of an input layer consisting of 3 neurons, 1 hidden layer with
20 neurons and an output layer containing 2 outputs.

TABLE IV: Reward function for Open door

Event Type Reward
Opened door normal 10
No reachable door normal -1

3) Navigate: The navigate sub-behaviour chooses a basic
action, so either shoot or move in a direction. It gets the
distance to the current target from the adjacent tiles, on which
tiles enemies are present in a 7× 7 square around the player
and how many enemies it would hit if it shoots in a certain
direction. It only terminates when it reaches its target. Its
reward function can be found in Table V. The MLP consists
of an input layer consisting of 63 neurons, 1 hidden layer with
300 neurons and 16 output neurons.

TABLE V: Reward function for Navigate

Event Type Reward
Target reached pseudo 5
Moved away from target pseudo -5
Damaged by enemy normal -10
Killed by enemy pseudo -10

4) Combat: The combat sub-behaviour handles fighting
with enemies, it can use the primitive actions move and shoot.
As input it is given the current player health, on which tiles
enemies are present in a 7×7 square around the player and how
many enemies it would hit if it shoots in a certain direction.
The combat sub-behaviour terminates if either an enemy unit



has been killed or there are no enemies in any of its inputs. Its
reward function can be found in Table VI. The MLP consists
of an input layer consisting of 60 neurons, 1 hidden layer with
100 neurons and 16 outputs neurons.

TABLE VI: Reward function for Combat

Event Type Reward
Killed an enemy normal 20
Damaged by enemy normal -10
Player died pseudo -10
No enemy in range normal -1

5) Get key, go to door, go to exit: The ’get key’, ’go to
door’ and ’go to exit’ sub-behaviours are different from the
other sub-behaviours in that they can only choose the navigate
sub-behaviour as an action. They are in the hierarchy only to
give the navigate sub-behaviour the correct target (by using
the inputs representing the relative distances to the target for
each adjacent tile) and to keep track of rewards. All of the
sub-behaviours terminate when their target has been reached
(key, door or exit) or when the target is not reachable. The
reward functions for get key, go to door and go to exit can be
found in Tables VII, VIII and IX respectively.

TABLE VII: Reward function for get key

Event Type Reward
Picked up the key normal 5
Key not reachable normal -1

TABLE VIII: Reward function for go to door

Event Type Reward
Opened door normal 0
Reached door without key normal -1
Door not reachable normal -1

TABLE IX: Reward function for go to exit

Event Type Reward
Reached exit normal 0
Door not reachable normal -1

B. Dynamic Hierarchical Reinforcement Learning

Our novel hierarchical AI consists of a root behaviour which
can choose from various sub-behaviours. Each (sub-)behaviour
has its own reward function which is not dependent on the
reward of other behaviours. Behaviours can either execute
primitive actions or delegate the decision to another sub-
behaviour until a primitive action has been determined as
seen in Algorithm 1. After the action has been performed all
sub-behaviours that have chosen an action or sub-behaviour
are trained using the Q-learning update rule with the starting
state, the reached state and the rewards obtrained. Each sub-
behaviour for which the following two conditions hold are
also trained: the sub-behaviour can call the primitive action
performed by the agent and the starting state is a state in which

Root

Go to door Get key Go to exit Combat

Fig. 2: dHRL AI hierarchy

the goal of the sub-behaviour is reachable. A counter example
for the second situation would be when there are no enemies
around the player or in shooting range, so that the combat
behaviour would not learn since its goal (killing enemies) is
not possible. Algorithm 2 shows how multiple behaviours can
be updated at the same time on an experience.

Algorithm 1 Choosing action

action = Root
while action is not a primitive action do

behaviour = action
action = behaviour.getAction()

end while

Algorithm 2 Training behaviours

at = chosen action
st = state in which action was chosen
st+1 = next state
rt = list of rewards received before reaching the next state
for b in list of behaviours do

if b.goal is reachable(st) and b.choosable(at) then
b.update(st, at, rt, st+1)

end if
end for

The main advantage of this system compared to MaxQ
is that the agent does not get stuck in specific sub-tasks.
Instead the agent can dynamically react to changes in its
environment. Because of this, sub-behaviours can be made to
be even more specialised on a single sub-goal. For example,
the navigation behaviour does not need to learn how to evade
enemies because the root-behaviour could simply choose the
combat behaviour when enemies get close by.

The structure of the hierarchy is represented by the tree in
Figure 2. It should be noted however that although go to door,
get key and go to exit are displayed as different leaves, they
actually share the same neural network. This underlying neural
network is trained to give the best action based on the distance
to the target from the 4 tiles directly adjacent to the agent.

1) Root: The root sub-behaviour chooses the current sub-
goal, which is either to go to a door, get a key, go to
an exit or fight with an enemy. It gets positively rewarded
when a sub-goal is finished successfully, but choosing an
impossible task, getting damaged by an enemy or losing the
game is rewarded negatively. The exact rewards can be found
in Table X. For each sub-goal it is easy to check whether it is
currently possible to reach it. For the three navigation goals
the AI simply checks whether the target is reachable, while



the combat behaviour is deemed impossible if there are no
enemies in the current state representation, or in other words:
the safety input equals 1. The neural network consists of 6
input neurons, 1 hidden layer with 50 neurons and 4 output
neurons.

TABLE X: Reward function for Root

Event Reward
Win the game 10
Got a key 5
Opened a door 10
Sub-goal not possible -1
Killed an enemy 20
Damaged by an enemy -10
Lose the game -10

2) Combat: As the name suggests the combat sub-
behaviour handles combat related actions. To this end it
gets rewarded for killing enemy units, but getting damaged,
walking into walls and missing an enemy while shooting are
punished. The exact rewards can be found in Table XI. As
inputs it uses the current player health, on which tiles enemies
are present in a 7×7 square around the player and how many
enemies it would hit given it shoots in a direction. The neural
network consists of 60 input neurons, 1 hidden layer with 100
neurons and 16 outputs neurons.

TABLE XI: Reward function for Combat

Event Reward
Killed an enemy 5
Killed by an enemy -10
Damaged by an enemy -2
Walked into a wall -1
Missed a shot -2

3) Get key, Go to door and Go to exit: The Get key,
Go to door and Go to exit sub-behaviours are all extremely
similar and share the same underlying neural network. These
behaviours get rewarded when their specific target has been
reached, but if the agent moved away from the target or
the behaviour walks against a wall, the agent is punished.
The exact rewards can be found in Table XII. As input the
behaviours only get the relative distance to their target from
the four tiles adjacent to the agent. The neural network consists
of 4 input neurons, 1 hidden layer with 50 neurons and 16
outputs neurons.

IV. EXPERIMENTS AND RESULTS

A. Testing Setup

The two AIs are tested in 3 environments scaling up in diffi-
culty. Each AI is trained and tested using 200 simulations with

TABLE XII: Reward function for the navigation behaviours

Event Reward
Reached target 5
Walked away from target -5
Walked into a wall -1

(a) Navigation task (b) Simple combat task

(c) Hard combat task (d) Training map

Fig. 3: The different maps on which the AIs are tested. Black
tiles represent walls. White tiles represent floors. Yellow tiles
represent keys. Orange tiles represent locked doors. Purple
tiles represent spawners. Red circles represent enemy ghosts.
Grey tiles represent the exit.

a length of 500 games (epochs) in each of the environments.
The environments are given in Figure 3. The first environment
is a simple navigation map as can be seen in Figure 3a, it has a
size of 16×16 tiles and consists of 2 rooms, in which the AIs
only have to learn to first pickup the key, then open the door
and finally reach the exit. The second map, found in Figure 3b,
is larger with a size of 24×24 and consists of four rooms, two
of which contain a spawner that generates enemy units. The
AIs will have to pick up keys and open doors, and also have
to learn how to deal with enemy units. Evasive manoeuvres
are enough to reach the end of the level but killing the enemy
units results in a higher score. The final map, which is shown
in Figure 3c, is a large map with a size of 32×32 and consists
of seven rooms of different sizes. The level has been setup in
such a way that switching between navigation and combat on
the fly is necessary because evading the enemy units is not
possible in all locations.

The dHRL AI will also be tested on how well it generalises
what it learned on one map. To that end the AI will be trained
on the map found in Figure 3d which has a size of 48×48 and
tested on the hard combat task without further training. The
training map has been designed so that it contains most if not
all possible situations a player would encounter on an arbitrary
map. So the AI should be able to apply what it learned in these



TABLE XIII: Performance of both AIs on various tasks after 500 games of training. Results are averaged over 200 simulations.

Task
MaxQ-Q AI dHRL AI

Score Win rate Score Win rateMean Standard error Mean Standard error
Navigation 109.7 2.1 0.97 114.9 3.4×10−3 1.0
Simple combat 86.2 4.5 0.52 160.7 1.7 0.97
Hard combat 52.5 2.1 0.02 216.3 2.1 0.96

situations in other environments.
During training and testing the MaxQ-Q and dHRL AIs

share similar settings which were found to perform best.
During training both start with a temperature of 4 for the
Boltzmann exploration algorithm which is multiplied by 0.98
after each game, to a minimum of 0.1. Their neural network
learning rates are initialised slightly differently, for MaxQ-Q
it starts at 0.001 while for dHRL it starts at 0.0005. Both have
a decay after each game of 0.995.

We found that when a greedy policy is used during testing,
both AIs sometimes got stuck in small loops of states. When
the Boltzmann exploration algorithm is used with a low
temperature, it significantly improves performance for both
systems. Hence both use the Boltzmann algorithm with a
temperature of 0.1 during performance tests.

B. Results

As can be seen in Figures 3.2 to 3.4 the dHRL AI outper-
forms the MaxQ-Q AI on all tasks. For the simple navigation
task its mean score reaches the maximum score after about
200 epochs and although MaxQ-Q comes close, it does not
reach the same performance. Table XIII also shows that the
dHRL AI obtains a win rate of 1.0, while the MaxQ-Q AI
only reaches a final win rate of 0.97.

In Figure 3.3 it can be observed that when combat is
introduced the difference in scores of the two AIs grows. The
dHRL AI learns faster than the MaxQ-Q AI and has a higher
average score when it stabilises after around 200 epochs. Table
XIII also shows that the difference between win rates also
grows significantly. The dHRL reaches a win rate of 0.97 while
the MaxQ-Q AI only reaches 0.52.

Figure 3.4 shows that the dHRL AI still performs well
on the hard combat task and its mean score even increases
compared to the simple combat task. This is because there
are more enemy units that can be killed. The win rate is
only lowered by 0.01 which indicates that the AI could likely
learn to finish even harder and longer levels. The MaxQ-Q AI
however scored less points on the hard combat task and its
win rate dropped to 0.02.

The performance of dHRL drops however when it needs
to generalise what it learned to different maps. As shown
in Figure 3.5, its average score drops about 70 points com-
pared to when it was trained on the same map. Its win
rate also dropped from 0.96 to 0.59. Please have a look
at: https://youtu.be/LJpuK3eWQeQ for a video showing the
behaviour of agents trained with the 2 systems.

Fig. 3.2: Graph that shows average score and standard error
for both AIs over time in the navigation task

Fig. 3.3: Graph that shows average score and standard error
for both AIs over time in the simple combat task

Fig. 3.4: Graph that shows average score and standard error
for both AIs over time in the hard combat task

C. Discussion

The results clearly show that the dHRL algorithm signif-
icantly outperforms the MaxQ-Q AI on all of the tasks. On



Fig. 3.5: Graph that shows average score and standard error for
the dHRL when tested on the hard combat task while trained
on the same map, compared to when it is trained on a different
map.

the navigation task the results are still relatively close. This
is because in the navigation task the optimal sequence of
tasks is sequential. The agent should always first pick up a
key, then open the door and finally go to the exit. There
are no enemies hence dynamically switching between sub-
behaviours does not give an inherent advantage. The difference
in performance is most likely caused by how each AI learns.
Since the dHRL AI uses multi-objective learning after each
movement the navigation network is trained for each target
(key, door, exit) that is currently reachable. When approaching
the key, the door is also reachable and this speeds up learning
significantly. The MaxQ-Q AI however is only trained on the
current target, which makes learning take longer, even though
the navigation behaviour is shared for different sub-tasks.

In the simple combat task the difference between the two
AIs becomes bigger. This is because enemies are introduced
and enemies create situations where it would be more optimal
to switch to the combat behaviour while navigating and vice
versa. The MaxQ-Q AI is not able to do this so its navigation
behaviour now needs to learn how to either evade enemy units
or attack them should they be encountered. In the dHRL AI
the navigation behaviour only learns to navigate, because the
root behaviour can simply choose to call the combat behaviour
when enemies are close by. The reason why the MaxQ-Q AI
still reaches a 0.52 win rate is because in the simple combat
task walking around enemies is still a viable tactic, and the
navigation behaviour is able to learn how to do that reliably
in about 52% of the trials.

On the hard combat task the performance of dHRL is almost
as good as on the simple combat task with a win rate of 0.96
versus 0.97 on the simple combat task, whereas the MaxQ-Q
AI now reaches a win rate of 0.02. The main difference is the
size of the map, and that there are now enemies which are
almost impossible to dodge.

Finally the results show that although the dHRL AI can
generalise what it learned on one map to other maps, it
performs significantly worse. The problem is that the AI
overfits on the map it trained on. This could be resolved by

creating multiple maps on which the AI can train and then
randomly choosing a map at the start of each epoch during
training. That would minimise overfitting on specific maps.

V. CONCLUSIONS

We described a new way to create and train a hierarchical re-
inforcement learning system, where the programmer does not
determine when behaviours start or finish. The combination
of the hierarchical system, Q-learning, multi-layer perceptrons
and higher-order inputs enabled the AI to win dungeon crawler
levels of various difficulty within 500 training games. The
system also has a limited ability to generalise the knowledge
gained in a specific level to other levels.

In future work, we recommend to investigate if the ability
to generalise can be improved given a better training setup:
multiple levels to train, one of which is randomly chosen at the
start of each epoch. The system should also be tested on how
well it scales to more difficult tasks which need a hierarchy
tree that is more than two layers deep.

REFERENCES

[1] I. Szita, “Reinforcement learning in games,” in Reinforcement Learning
State-of-the-Art. Springer, 2012, pp. 539–577.

[2] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer, 2018, http://gameaibook.org.

[3] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning.” in AAAI, vol. 16, 2016, pp. 2094–2100.

[4] G. Tesauro, “Temporal difference learning and TD-Gammon,” Commu-
nications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[5] M. Wiering and M. Van Otterlo, Reinforcement Learning State-of-the-
Art. Springer, 2012, vol. 12.

[6] A. A. Markov, “The theory of algorithms,” Am. Math. Soc. Transl.,
vol. 15, pp. 1–14, 1960.

[7] A. Barto and S. Mahadevan, “Recent advances in hierarchical reinforce-
ment learning,” Discrete Event Dynamic Systems, vol. 13, pp. 341–379,
2003.

[8] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ
value function decomposition,” J. Artif. Intell. Res.(JAIR), vol. 13, no. 1,
pp. 227–303, 2000.

[9] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[10] S. J. Russell and A. Zimdars, “Q-decomposition for reinforcement
learning agents,” in Proceedings of the 20th International Conference
on Machine Learning (ICML-03), 2003, pp. 656–663.

[11] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and
J. Tsang, “Hybrid reward architecture for reinforcement learning,” in
Advances in Neural Information Processing Systems, 2017, pp. 5392–
5402.

[12] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, 1989.

[13] I. Ghory, “Reinforcment learning in board games.” Department of
Computer Science, University of Bristol, Tech. Rep, 2004.

[14] L. Bom, R. Henken, and M. Wiering, “Reinforcement learning to train
Ms. Pac-Man using higher-order action-relative inputs,” in Adaptive
Dynamic Programming and Reinforcement Learning (ADPRL), 2013
IEEE Symposium on, 2013, pp. 156–163.

[15] R. Niel, J. Krebbers, M. M. Drugan, and M. A. Wiering, “Hierarchical
reinforcement learning for real-time strategy games,” in Proceedings of
the 10th International Conference on Agents and Artificial Intelligence,
vol. 2, 2018, pp. 470–477.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1.


