
Convergence of Model-Based
Temporal Difference Learning for Control

Hado van Hasselt and Marco A. Wiering
Intelligent Systems Group, Department of Information and Computing Sciences

Utrecht University
Padualaan 14, 3508 TB Utrecht, The Netherlands

Telephone: +31 - 30 - 251 9372
Fax: +31 - 30 - 251 3791

Email: {hado,marco}@cs.uu.nl

Abstract— A theoretical analysis of Model-Based Temporal
Difference Learning for Control is given, leading to a proof of
convergence. This work differs from earlier work on the conver-
gence of Temporal Difference Learning by proving convergence
to the optimal value function. This means that not the values of
the current policy are found, but instead the policy is updated in
such a manner that ultimately the optimal policy is guaranteed
to be reached.

I. INTRODUCTION

Reinforcement Learning (RL) uses a notion of value to
guide the behavior of an agent. This value usually represents
the future discounted reward the agent is expected to receive
from a certain situation onward. If these values are known,
the agent can maximize its received rewards by selecting the
action corresponding to the maximal value. Unfortunately,
values are usually not known a priori and must thus be learned.

There are several different RL algorithms that attempt to
solve the same problem. Temporal Difference Learning (TD-
Learning) [1], Q-Learning [2] and SARSA [3] are the best
known examples. Here, TD-Learning can be used to find
values of states, given a certain policy of the agent, while
Q-Learning and SARSA find values for state-action pairs. Q-
Learning and SARSA have been proven to converge to the
optimal policies under certain assumptions. TD-Learning only
learns the values of the current policy, and not what the optimal
policy is, or what its values are. In this paper we do not discuss
eligibility traces and therefore whenever we refer to TD, we
in fact mean TD(0).

Model-Based TD-Learning uses TD-Learning to update the
current approximation of the value function. A model of
the dynamics of the environment is assumed to be known.
Problems where this is typically the case include games, such
as chess and go. Also maze problems and other settings
where the dynamics of the environment are known fall into
the scope of this approach. Note that it is not required that
the environment is deterministic. Stochastic environments, for
example in the game of backgammon, can also be solved
with Model-Based TD-Learning. In this paper, we show that
convergence to the optimal policy and corresponding value
function can be guaranteed under similar conditions as needed
for the convergence of SARSA.

In the next section we will first give a short summary of RL
and present the notation we will use in this article. Then we
present the convergence proof for general Model-Based TD-
Learning for Control. This proof will require that the policy
is greedy in the limit with infinite exploration.

II. REINFORCEMENT LEARNING

An agent is assumed to learn from interaction with its
environment. An underlying Markov Decision Process (MDP)
is assumed. An MDP can be viewed as a tuple (S, A,R, T)
where:
• S is the set of all states and st ∈ S is the state the agent

is in at time t.
• A is the set of all possible actions and at ∈ A is the

action the agent performs at time t.
• R : S × A × S → IR is the reward function that maps

a state st, an action at and the resulting state st+1 into
a reward R(st, at, st+1). The reward rt is known to the
agent when reaching the state st+1 and is sampled from
a distribution with expected value R(st, at, st+1).

• T : S × A× S → [0, 1] is the transition function, where
T (s, a, s′) gives the probability of arriving in state s′

when performing action a in state s.
We assume S and A to be discrete finite sets.

A. Values and Q-Functions

An agent can learn by storing values for each state or for
each state-action pair. State values represent the discounted
cumulative reward that the agent expects to receive in the
future when reaching that state. State-action values represent
the discounted cumulative reward it expects to receive after
performing that specific action in that state. The goal for the
agent is to learn an action selection policy π : S ×A → [0, 1]
that optimizes the cumulative reward. Here πt(s, a) gives the
probability of selecting action a in state s at time t. Formally,
starting at time t, we want the agent to optimize the total
discounted cumulative reward:

rt + γrt+1 + γ2rt+2 + . . . =
∞∑

i=0

γirt+i

60

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

0 ≤ γ < 1 is a discount factor that determines the relative
impact of immediate rewards compared to more distant re-
wards. It also ensures that the sum of discounted rewards, and
therefore the value, is finite. The value of a state s is denoted
by V (s). The value of a state-action pair (s, a) is denoted
by Q(s, a). Let Qπ and V π denote the Q-function and state
value function corresponding to some policy π. By definition,
we get:

Qπ(s, a) = E{
∞∑

i=0

γirt+i|st = s, at = a, π}

V π(s) = E{
∞∑

i=0

γirt+i|st = s, π}

We denote the optimal policy by π∗ and its corresponding
state and state-action functions by V ∗ and Q∗. There is always
at least one optimal policy. We know that the value function
corresponding to the optimal policy will have the following
property:

V ∗(s) = max
a

∑
s′

T (s, a, s′)(R(s, a, s′) + γV ∗(s′))

which is called the Bellman optimality equation for V ∗ [4],
[5]. Similarly, for Q we get:

Q∗(s, a) =
∑
s′

T (s, a, s′)(R(s, a, s′) + γ max
a′

Q∗(s′, a′))

When Q∗ is known, the optimal policy can be found simply
by selecting the action with the highest value given the current
state. The following properties hold for the optimal values:

∀s ∈ S : π∗ = arg maxπ V π(s)
maxπ V π(s) = V ∗(s) = maxa Q∗(s, a)

Below we give a short introduction in Reinforcement Learning,
where the values of states are approximated during learning.
T and R are presumed given, though they could also be
approximated by past experiences.

B. Learning the Values

The values of states can be updated using Temporal Differ-
ence (TD) learning [1]:

Vt+1(st) = Vt(st) + αtδt (1)

Where δt is the TD-error, defined as rt + γVt(st+1)− Vt(st)
and 0 ≤ αt ≤ 1 is a learning rate. It should be noted that
this equation converges to the values of states given a certain
policy and does not necessarily learn the optimal values. It
has been proven that when these values are stored in a table,
using update (1) will result in convergence of the values to
the actual expected returns for the current policy [1], [6].

Convergence to the optimal policy has been proven under
certain conditions for variants of this update using Q-values
instead of state values, such as Q-Learning [7]–[10] and
SARSA [3], [11]. For Actor-Critic Systems also a proof of
convergence to the optimal policy exists, where update (1) is
used to update their values and a separate actor determines the

action [12]. This proof requires updating the critic and actor
on two time scales, with specific restrictions on the update of
the actor.

When the state space is continuous, parametrized function
approximators (FAs) can be used to store the value of observed
states and generalize to unseen states. The update is then
performed on the parameters of the FA. For instance, a neural
network can be used. The parameters then are the weights
of the network. Let θV denote the parameters of the FA.
The update rule corresponding to Temporal Difference (TD)
learning is derived from update (1) and then becomes:

θV
i,t+1 = θV

i,t + αδt
∂Vt(st)
∂θV

i,t

(2)

Here θV
i,t is the ith component of the parameter vector θV

at time t and Vt(s) is the output of the FA at time t with
state s as input. The update rules corresponding to Q-learning
and SARSA are similar. These methods have been extensively
studied. See for instance the book by Bertsekas and Tsitsiklis
(1996).

In the rest of this paper, our analysis will be focused on the
discrete update (1). A logical next step for further work will
be to extend this analysis to include the use of linear function
approximators to store the value function.

Another possibility to approximate V is to use Least-
Squares TD-Learning (LSTD) [13]. LSTD has been proven to
be equivalent to standard, non-incremental least-squared linear
regression for λ = 1 [14], where λ is the eligibility trace
parameter that determines how far rewards are propagated back
to the features that determine the value function. A setting of
λ = 1 corresponds to updating V towards the full Monte-
Carlo return for each state. Conversely, a setting of λ = 0
corresponds to the sampled one-step lookahead. For simplicity,
in this paper we will only consider values updated with TD(0),
indicating that λ = 0 and the update used is (1).

C. Selecting Actions

In the case of Model-Based TD-Learning, we can use
the current approximation of the value function to determine
which action to choose. Using the model, for all actions a we
can determine E{rt +γVt(st+1)|at = a}, which is equivalent
to

∑
s′ T (st, a, s′)(R(st, a, s′)+γVt(s′)) . For instance we can

then use a ε-greedy exploration scheme, selecting the greedy
action maxa

∑
s′ T (st, a, s′)(R(st, a, s′)+γVt(s′)) with prob-

ability (1 − ε) and selecting a random action otherwise. Of
course, there are other possibilities for action selection and
exploration, but for now we limit ourselves to this approach.

In the next section we will show that as long as our policy
is greedy in the limit with infinite exploration (GLIE) [15]
in terms of E{rt + γVt(st+1)}, the value function V will
converge to the optimal value function V ∗ and therefore, the
greedy policy in terms of this function will in fact be the
optimal policy. This means that our convergence proof does
not strictly require a model for convergence, though one-step
model-based lookahead may be the most apparent application.

61

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

D. Dynamic Programming and Model-Based TD-Learning

If T and R are completely known, it is possible to determine
the V and Q values of any policy through dynamic program-
ming (DP) [4]. This also allows the optimal policy to be found.
However, in most real-world settings DP requires extreme
amounts of computation. This is because DP computes the
value functions for all states, and does not consider that
promising policies only bring the agent in a small part of the
state space.

Instead of using one-step lookahead to select an action and
update the value function using temporal difference learning,
it is also possible to backup the state value using the one-
step lookahead. This algorithm is called real-time dynamic
programming [16]. For deterministic environments this al-
gorithm would be the same as the method using temporal
difference learning when we set α to 1. However, for stochastic
environments such as the game of backgammon, computing
an action based on a one-step lookahead is not the same as
backing up a state value using one-step lookahead. The dif-
ference is that when selecting an action, the dice have already
been rolled, while for backing up a state value we have to
compute transitions based on all possible dice rolls. Therefore
it is logical that Tesauro used TD-learning in his famous
TDGammon program for learning to play backgammon [17].

On the other hand, even when the MDP is known, we
could also use for example Q-learning to learn the optimal
policy. However, for particular problems where there are many
possible actions and different actions in different states lead
to the same consecutive states, learning action values is much
less efficient than only learning state values.

Therefore we believe that the model-based TD algorithm
for learning an optimal policy is a promising algorithm for
particular types of problems. We will next show that this
algorithm converges to the optimal policy under particular
conditions. It should be noted that instead of using a model,
it would also be possible to train an actor using Actor-Critic
algorithms. The proof below is also applicable in such cases as
long as the actor is updated such that it is GLIE with respect
to E{rt + γVt(st+1)}.

III. CONVERGENCE

In this section we prove that under certain conditions TD-
Learning converges with probability one to the optimal value
function. Further we show what the conditions for convergence
are.

First a small note on rewards. In this section we will first
consider an alternative value V̄ instead of the normal V . The
difference between these values is that V̄ is updated with the
non-stochastic reward R(st, at, st+1) instead of the usual rt,
resulting in the following update:

V̄t+1(st) = (1− αt)V̄t(st)+
αt(R(st, at, st+1) + γV̄t(st+1)) (3)

This is equivalent to assuming that rt = rn when st = sn,
at = an and st+1 = sn+1. We do this to make the proof

shorter and easier to read. However, the proof can easily be
extended to include stochastic reward functions as we will
show further on. Based on the definitions of V and V̄ , we can
already conclude that the optimal values are equal: V ∗ = V̄ ∗.

A. G Values

For our proof we define a new value function G : S ×A×
S → IR. We initialize the values of G by means of the initial
values of V̄ as follows:

G0(s, a, s′)
def
= R(s, a, s′) + γV̄0(s′) (4)

The G values are never actually stored or used by any
algorithm. Rather they serve as theoretical values. We will
show a connection between the G values and the V̄ values as
would be observed when updating the critic of an Actor Critic
System using equation (3). Then we use the G values to prove
convergence of the V̄ values to the optimal values V̄ ∗.

We can view the G values as the target for updates on
another alternative value function V G. We define the initial
values as ∀s : V G

0 (s) = V̄0(s). Given an experience consisting
of a state st, an action at and a consecutive state st+1, V G

and G are updated by means of the following update rules:

V G
t+1(st) = (1− αt)V G

t (st) + αtGt(st, at, st+1) (5)

∀s, a : Gt+1(s, a, st) = (1− αt)Gt(s, a, st)+

αt

(
R(s, a, st) + γGt(st, at, st+1)

)
(6)

The latter update bears some similarity to the SARSA
update, with the important difference that each time step a
whole range of G values is updated instead of a single Q
value as in the case of SARSA.

We will first show that by construction, for each state
and time step V G

t (s) = V̄t(s). Then we will show that G
converges to the optimal values G∗ which by definition fulfill
the following equality:

G∗(s, a, s′)
= R(s, a, s′) + γV̄ ∗(s′)
= R(s, a, s′) +

γ max
a′

∑
s′′

T (s′, a′, s′′)
(
R(s′, a′, s′′) + γV̄ ∗(s′′)

)
= R(s, a, s′) + γ max

a′

∑
s′′

T (s′, a′, s′′)G∗(s′, a′, s′′)

In order to prove that for all states and all time steps we
have V G

t (s) = V̄t(s), we first prove the following lemma:
Lemma 1: Consider values G that are initialized by defini-

tion (4) and updated by update (6). Then for all time steps t,
all states s and s′ and all actions a the following equation is
valid:

∀t, s, a, s′ : R(s, a, s′) + γV̄t(s′) = Gt(s, a, s′) (7)

62

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Proof: This proof will be by induction on t. By definition
(4) we have:

G0(s, a, s′) = R(s, a, s′) + γV̄0(s′) ,

which is our induction basis. We assume

Gt(s, a, s′) = R(s, a, s′) + γV̄t(s′) ,

for some t and all s, a and s′. We show that it follows from
updates (3) and (6) that then

Gt+1(s, a, s′) = R(s, a, s′) + γV̄t+1(s′) ,

for all states s, s′ and actions a. For all s′ 6= st, from updates
(3) and (6) it immediately follows that:

Gt+1(s, a, s′) = Gt(s, a, s′) =
R(s, a, s′) + γV̄t(s′) = R(s, a, s′) + γV̄t+1(s′)

Now we consider all G values that are updated at time t:

Gt+1(s, a, st)
def
= (1− αt)Gt(s, a, st) +

αt

(
R(s, a, st) + γGt(st, at, st+1)

)
= (1− αt)

(
R(s, a, st) + γV̄t(st)

)
+

αt

(
R(s, a, st) + γGt(st, at, st+1)

)
= R(s, a, st) + γ

(
(1− αt)V̄t(st) +

αtGt(st, at, st+1)
)

= R(s, a, st) + γ
(
(1− αt)V̄t(st) +

αt

(
R(st, at, st+1) + γV̄t(st+1)

))
def
= R(s, a, st) + γV̄t+1(st)

The second and fourth equalities hold because of the induction
hypothesis. This proves that property (7) holds and therefore
proves Lemma 1.

Now we will use Lemma 1 to prove another lemma, stating
that for all time steps and states V G

t (s) = V̄t(s).
Lemma 2: Given a sequence {V̄0, s1, a1, r1, α1, s2, . . . ,

st}, for each time t and each state s the value of V̄t(s) as
updated by update (3) is equal to the value of V G

t (s) as
updated by update (5).

Proof: We will also prove this by induction on t. Clearly,
by definition, ∀s : V̄0(s) = V G

0 (s). This is our induction basis.
Now assume that ∀s : V̄t(s) = V G

t (s). Because updates (5)
and (3) only update the values of state st, it follows that:

∀s 6= st : V̄t+1(s) = V̄t(s) = V G
t (s) = V G

t+1(s)

Now we have to show that V̄t+1(st) = V G
t+1(st). For clarity,

we repeat updates (3) and (5) in our present notation:

V̄t+1(st) = (1− αt)V̄t(st)+
αt(R(st, at, st+1) + γV̄t(st+1))

V G
t+1(st) = (1− αt)V G

t (st) + αt(Gt(st, at, st+1))

Clearly, the required result is reached if we can show that
R(st, at, st+1) + γV̄t(st+1) = Gt(st, at, st+1) for all time
steps. This follows from Lemma 1, proving Lemma 2.

To prove convergence of G to G∗, we use a similar
construction as Singh et al. used to prove the convergence of
SARSA [15]. For clarity we repeat the lemma given as Lemma
1 in that paper. We use || · || to denote a maximum norm.

Lemma 3: Consider a stochastic process (αt,∆t, Ft), t ≥
0, where αt,∆t, Ft : X → IR satisfy the equations

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x),

where x ∈ X and t = 0, 1, 2, Let Pt be a sequence of
increasing σ-fields such that α0 and ∆0 are P0-measurable
and αt,∆t and Ft−1 are Pt-measurable, t = 1, 2, Assume
that the following hold:

1) the set X is finite.
2) αt(x) ∈ [0, 1] ,

∑
t αt(x) = ∞ ,

∑
t(αt(x))2 < ∞

w.p.1.
3) ||E{Ft(·)|Pt}|| ≤ κ||∆t||+ ct, where κ ∈ [0, 1) and ct

converges to zero w.p.1.
4) Var{Ft(x)|Pt} ≤ K(1 + κ||∆t||)2, where K is some

constant.
Then, ∆t converges to zero with probability one.
For a proof of this lemma we refer to the work by Singh et
al. (2000). Now we will use this lemma to prove convergence
of G. We assume the MDPs we discuss are unichain in order
to fulfill the infinite exploration condition. An MDP is called
unichain when each policy results in an ergodic Markov chain.

Theorem 1: In a finite unichain state-action MDP, consider
a policy π that ensures non-zero probabilities for every action
in every state. Assume at is chosen according to πt and
assume π is updated such that it is greedy in the limit with
infinite exploration (GLIE) in terms of G. Further assume
that G is updated by update (6). Then G converges to G∗

and π converges to the optimal policy π∗ under the following
assumptions:

1) The values G are stored in a lookup table.
2) The learning rates satisfy αt(s, a, st) ∈ [0, 1] ,∑

t αt(s, a, st) = ∞ ,
∑

t(αt(s, a, st))2 < ∞ and
αt(s, a, s′) = 0 unless s′ = st.

3) ∀s, a, s′ : Var{R(s, a, s′)} < ∞.
Proof: We define X = S × A × S. Then the iterative

process presented in Lemma 3 reduces to:

∆t+1(s, a, st) = (1− αt(s, a, st))∆t(s, a, st)+
αt(s, a, st)Ft(s, a, st)

Now we choose:

∆t(s, a, st) = Gt(s, a, st)−G∗(s, a, st),

and

Ft(s, a, st) = R(s, a, st) + γGt(st, at, st+1)−G∗(s, a, st).

63

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

The first two conditions of Lemma 3 hold by definition of
the state and action spaces and the learning rates. The last
condition holds because we define the reward function to be
bounded. This means that we only have to show that the third
condition of Lemma 3 holds to prove convergence of Gt to
G∗.

Let Pt denote the past {V̄0, s1, α1, a1, r1, . . . , rt−1, st,
αt} up until reaching state st. Note that G0, . . . , Gt are Pt-
measurable, thus so are ∆t and Ft−1. Then Ft satisfies the
following property, where we denote R(s, a, st) as r to save
space:

||E
{

Ft(s, a, st)|Pt

}
||

def
= ||E

{
r + γGt(st, at, st+1)−G∗(s, a, st)|Pt

}
||

def
= ||E

{
r + γGt(st, at, st+1)−(

r + γ max
a′

∑
s′′

T (st, a
′, s′′)G∗(st, a

′, s′′)
)
|Pt

}
||

= γ||E
{

Gt(st, at, st+1)−

max
a′

∑
s′′

T (st, a
′, s′′)G∗(st, a

′, s′′)|Pt

}
||

= γ||
∑
a′

πt(st, a
′)

∑
s′′

T (st, a
′, s′′)Gt(st, a

′, s′′)−

max
a′

∑
s′′

T (st, a
′, s′′)G∗(st, a

′, s′′)||

≤ γ||max
a′

∑
s′′

T (st, a
′, s′′)Gt(st, a

′, s′′)−

max
a′

∑
s′′

T (st, a
′, s′′)G∗(st, a

′, s′′)||+

γ||
∑
a′

πt(st, a
′)

∑
s′′

T (st, a
′, s′′)Gt(st, a

′, s′′)−

max
a′

∑
s′′

T (st, a
′, s′′)Gt(st, a

′, s′′)||

≤ γ||∆t||+
γ||

∑
a′

πt(st, a
′)

∑
s′′

T (st, a
′, s′′)Gt(st, a

′, s′′)−

max
a′

∑
s′′

T (st, a
′, s′′)Gt(st, a

′, s′′)||

The second term corresponds to ct in the lemma. This term
converges to zero, based on the assumption that the policy
is GLIE and the conditions on the reward function and the
learning rates. This requires that G is bounded, which follows
from the definition of G and the assumption that R is bounded.
Therefore G converges to G∗. Because the policy is greedy in
the limit, this automatically means π converges to π∗.
Now we prove the convergence of V̄ and π to V̄ ∗ and π∗.

Theorem 2: In a finite unichain state-action MDP, consider
a policy π that ensures non-zero probabilities for every action
in every state. Assume at is chosen according to πt and assume
π is updated such that it is GLIE with regard to G. Further
assume that V̄ is updated by update (3). Then V̄ converges

to V̄ ∗ and π converges to the optimal policy π∗ under the
following assumptions:

1) The values V̄ are stored in a lookup table.
2) The learning rates satisfy αt(st) ∈ [0, 1] ,

∑
t αt(st) =

∞ ,
∑

t(αt(st))2 < ∞ and αt(s) = 0 unless s = st.
3) ∀s, a, s′ : Var{R(s, a, s′)} < ∞.

Proof: By construction of G, an optimal policy with
respect to G must also be an optimal policy with respect to
V̄ . Note the following - perhaps somewhat unexpected - side
effect of Lemma 1:

∀t, s′, a′, s : V̄t(s) =
1
γ

(
Gt(s′, a′, s)−R(s′, a′, s)

)
This property allows us to make the following derivation
concerning V̄ :

lim
t→∞

V̄t(s)

= lim
t→∞

1
γ

(
Gt(s′, a′, s)−R(s′, a′, s)

)
=

1
γ

(
G∗(s′, a′, s)−R(s′, a′, s)

)
def
= V̄ ∗(s)

This proves that V̄ as updated by update (3) converges to
the optimal value V̄ ∗. Because we consider a policy that is
greedy in the limit, automatically the policy then converges to
the optimal policy π∗.

B. Including stochastic rewards
When we consider stochastic rewards, it is possible that

rt 6= rn, while (st, at, st+1) = (sn, an, sn+1). Now we will
show that the convergence proof above also holds for the value
V as updated by update (1). To show this, we will prove
that the difference between V and V̄ converges to zero with
probability one. Again, we use Lemma 3.

Theorem 3: The difference between V̄ as updated by update
(3) and V as updated by update (1) converges to zero with
probability one if Var{r} < ∞.

Proof: To apply Lemma 3, we define X = S and require
αt(s) = 0 when s 6= st. Further, we have ∆V

t (st) = Vt(st)−
V̄t(st) and therefore the following definition for FV

t (st):

FV
t (st)

=
(
rt + γVt(st+1)

)
−

(
R(st, at, st+1) + γV̄t(st+1)

)
= γ

(
Vt(st+1)− V̄t(st+1)

)
+

(
rt −R(st, at, st+1)

)
= γ∆V

t (st+1) +
(
rt −R(st, at, st+1)

)
Clearly, when Var{r} < ∞ and the usual restrictions on α
apply, we have conditions 1,2 and 4 of Lemma 3. Since E{rt−
R(st, at, st+1)} = 0, it is also easy to show that condition 3
holds in the present case:

||E{FV
t (·)|Pt}||

= ||E
{

γ∆V
t (·) +

(
rt −R(st, at, st+1)

)
|Pt

}
||

= γ||∆V
t (·)||

64

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Because all conditions specified in Lemma 3 are fulfilled, we
have the desired result.

This leads us to our main Theorem, proving convergence
of Model-Based TD for Control with minimal restrictions on
the updates.

Theorem 4: V as updated by update (1) converges to V ∗

with probability one under the following assumptions:

1) The values V are stored in a lookup table.
2) The learning rates satisfy αt(st) ∈ [0, 1] ,

∑
t αt(st) =

∞ ,
∑

t(αt(st))2 < ∞ and αt(s) = 0 unless s = st.
3) Var{r} < ∞.
4) The policy followed is greedy in the limit with respect

to E{rt + γVt(st+1)} with infinite exploration.
Proof: V converges to V̄ by Theorem 3 and V̄ converges

to V̄ ∗ by Theorem 2. This immediately implies convergence
of V to V̄ ∗ with the restrictions as given above. Since V̄ ∗

and V ∗ are equal, this implies V as updated by update (1)
converges to V ∗, concluding our proof.

IV. A FAILURE OF DIRECT CONVERGENCE OF V

In this section we attempt to directly prove convergence of
V to V ∗ by simple application of Lemma 3 with X = S.
The proof will fail, allowing us to locate the exact problems
with this approach. The approach above, using G values, was
constructed to avoid exactly those obstacles.

Theorem 5: In a finite unichain state-action MDP, consider
a policy π that ensures non-zero probabilities for every action
in every state. Assume at is chosen according to πt and assume
π is GLIE. Further assume that V is updated by update (1).
Then V converges to V ∗ and π converges to the optimal policy
π∗ under the following assumptions:

1) The values V are stored in a lookup table.
2) The learning rates satisfy αt(st) ∈ [0, 1] ,

∑
t αt(st) =

∞ ,
∑

t(αt(st))2 < ∞ and αt(s) = 0 unless s = st.
3) Var{r} < ∞.

Attempted Proof of Theorem 5:

We define X = S and require αt(s) = 0 when s 6= st.
Then the iterative process presented in Lemma 3 becomes

∆t+1(st) = (1− αt(st))∆t(st) + αt(st)Ft(st),

where we choose:

∆t(st) = Vt(st)− V ∗(st)
Ft(st) = rt + γVt(st+1)− V ∗(st)

Once again, the only condition of real interest is condition 3
of Lemma 3. The goal is to find a way to show that Ft is less
or equal to κ||∆t||+ ct for some κ and ct. We will be able to
derive this. However, knowledge about either π∗ or V ∗ will
be needed for ct to converge to zero, as we will see in the

following derivation:

||E{Ft(st)|Pt}||
= ||E{rt + γVt(st+1)− V ∗(st)|Pt}||
= ||

∑
a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−

V ∗(st)||
= ||

∑
a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

There are a few options to continue from here. We note that
for any policy π and any transition function T by definition
we have:

||
∑

a

π(s, a)
∑
s′

T (s, a, s′)(Vt(s′)− V ∗(s′))|| ≤ ||∆t|| (8)

To make use of this fact, we must replace the sum over the
current policy with a sum over the optimal policy, or vice
versa. This is exactly what we will do in the following two
options for the continued derivation.

a) Option 1:

||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

≤ ||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))||+

||
∑

a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

= ||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))||+

||γ
∑

a

π∗(st, a)
∑
s′

T (st, a, s′)(Vt(s′)− V ∗(s′))||

≤ ||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))||+

γ||∆t||

This last result is of the required form. We have κ = γ and:

ct = ||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))||

65

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

However, for convergence, ct should go to zero in the limit,
which is only possible if we can get πt to converge to π∗. This
is of course not an option, since this would require knowledge
of the optimal policy before actually finding it. Therefore, we
explore another option:

b) Option 2:

||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

≤ ||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))||+

||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

= ||γ
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(Vt(s′)− V ∗(s′))||+

||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

≤ γ||∆t||+
||

∑
a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

≤ γ||∆t||+
||

∑
a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))−

max
a

∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

Again κ = γ. And this time:

ct = ||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))−

max
a

∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

This time, the only way to get ct to converge to zero is
by updating the present policy πt towards the maximum a.
Though this looks similar to just requiring the policy to be
greedy in the limit, in this case unfortunately it is not the
same. When examining the term carefully, we see that the
requirement here is to make the policy greedy in terms of V ∗

and not Vt as would be the case with normal GLIE policies.
Of course, since V ∗ is not known, once again the proof is
stuck.

We show one final attempt for convergence by first finding
a term that will converge to zero and then trying to establish
a connection of the remaining terms to ||∆t||.

c) Option 3:

||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−∑
a

π∗(st, a)
∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

= ||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−

max
a

∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

≤ ||
∑

a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−

max
a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))||+

||max
a

πt(st, a)
∑
s′

T (st, a, s′)(rt + γVt(s′))−

max
a

∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

= ct +
||max

a
πt(st, a)

∑
s′

T (st, a, s′)(rt + γVt(s′))−

max
a

∑
s′

T (st, a, s′)(rt + γV ∗(s′))||

This time we succeed in finding a term that converges
to zero and can be used as ct. However, the second term
does not necessarily converge to zero and also cannot be
guaranteed to be smaller than ||∆t||. To show this, consider a
deterministic MDP with two possible actions a and b in state
st that correspond to two different consecutive states x and
y such that T (st, a, x) = T (st, b, y) = 1 and T (st, a, y) =
T (st, b, x) = 0. Further, assume the following values hold at
time t:

Vt(st) Vt(x) Vt(y) V ∗(st) V ∗(x) V ∗(y)
2 1 0 2 2 0

Finally, assume that γ = 0.9, E{rt|at = a} = 0.2 and
E{rt|at = b} = 0. Obviously, we have ||∆t|| = |Vt(x) −
V ∗(x)| = 1. However, the second term above will reduce to:

|πt(st, a)(0.2 + γ)− 2.0|

This term is larger than ||∆t|| whenever πt(st, a) < 1/(0.2 +
0.9), which is of course by no means impossible. Therefore,
also in this case convergence cannot be guaranteed.

The analysis above shows why a direct attempt to prove
convergence of TD-Learning to the optimal values does not
work. Luckily by using G values as defined above, conver-
gence in fact can be guaranteed. However, we showed that
to simply apply Lemma 3 on V knowledge of V ∗ or π∗ is
required for convergence, thus showing the need of the detour
through G values.

V. CONCLUSION

We have shown how convergence to the optimal value
function V ∗ and the optimal policy π∗ can be guaranteed

66

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

when using Temporal Difference Learning to update V and
using a model-based one-step lookahead action selection pro-
cedure. Also we have shown where a direct attempt to prove
convergence of V can fail.

The only restriction for convergence is a policy that is
greedy in the limit with infinite exploration (GLIE) with
respect to the expected value of the reward and discounted
value of the next state. Model-Based TD-Learning fulfills this
restriction. However, other action selection methods are also
possible, as long as the GLIE restriction is met. Application of
this restriction to variants of general Reinforcement Learning
algorithms is a subject for future research. Most notably,
successful application to variants of model-free Actor Critic
Systems seems possible. It will also be interesting to extend
the proof to parametrized value functions, for instance using
linear function approximators.

REFERENCES

[1] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[2] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, England, 1989.

[3] R. S. Sutton, “Generalization in reinforcement learning: Successful
examples using sparse coarse coding,” in Advances in Neural Infor-
mation Processing Systems 8, D. S. Touretzky, M. C. Mozer, and M. E.
Hasselmo, Eds. MIT Press, Cambridge MA, 1996, pp. 1038–1045.

[4] R. E. Bellman, Dynamic Programming. Princeton University Press.,
1957.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT press, Cambridge MA, A Bradford Book, 1998.

[6] P. Dayan, “The convergence of TD(λ) for general lambda,” Machine
Learning, vol. 8, pp. 341–362, 1992.

[7] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, pp. 279–292, 1992.

[8] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of
stochastic iterative dynamic programming algorithms,” Neural Compu-
tation, vol. 6, pp. 1185–1201, 1994.

[9] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
learning,” Machine Learning, vol. 16, pp. 185–202, 1994.

[10] C. Szepesvári and M. Littman, “A unified analysis of value-function-
based reinforcement-learning algorithms,” Neural Computation, vol. 11,
no. 8, pp. 2017–2059, 1999.

[11] G. Rummery and M. Niranjan, “On-line Q-learning using connectionist
systems,” Cambridge University, UK, Tech. Rep. CUED/F-INFENG-TR
166, 1994.

[12] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,”
SIAM Journal on Control and Optimization, vol. 42, no. 4,
pp. 1143–1166, 2003. [Online]. Available: http://epubs.siam.org/sam-
bin/dbq/article/38569

[13] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for
temporal difference learning,” Machine Learning, vol. 22, pp. 33–57,
1996.

[14] J. A. Boyan, “Technical update least squares temporal difference learn-
ing,” Machine Learning, vol. 49, no. 2-3, pp. 233–246, 2002.

[15] S. Singh, T. Jaakkola, M. Littman, and C. Szepesvári, “Convergence
results for single-step on-policy reinforcement-learning algorithms,”
Machine Learning, vol. 38, no. 3, pp. 287–308, 2000.

[16] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-
time dynamic programming,” Artificial Intelligence, vol. 72, pp. 81–138,
1995.

[17] G. Tesauro, “Practical issues in temporal difference learning,” in Ad-
vances in Neural Information Processing Systems 4, D. S. Lippman,
J. E. Moody, and D. S. Touretzky, Eds. San Mateo, CA: Morgan
Kaufmann, 1992, pp. 259–266.

67

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

