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Abstract—Social behavior and many cultural etiquettes are
influenced by gender. There are numerous potential applications
of automatic face gender recognition such as human-computer in-
teraction systems, content based image search, video surveillance
and more. The immense increase of images that are uploaded
online has fostered the construction of large labeled datasets.
Recently, impressive progress has been demonstrated in the
closely related task of face verification using deep convolutional
neural networks. In this paper we explore the applicability
of deep convolutional neural networks on gender classification
by fine-tuning a pretrained neural network. In addition, we
explore the performance of dropout support vector machines by
training them on the deep features of the pretrained network
as well as on the deep features of the fine-tuned network. We
evaluate our methods on the color FERET data collection and
the recently constructed Adience data collection. We report cross-
validated performance rates on each dataset. We further explore
generalization capabilities of our approach by conducting cross-
dataset tests. It is demonstrated that our fine-tuning method
exhibits state-of-the-art performance on both datasets.

I. INTRODUCTION

The distinction of gender has always played an important
role in many aspects of social interactions or communication
with machines. Depending on whether a person is a man or
a woman an interactive system might have to act accordingly.
Gender classification from face images has been a well-studied
topic in computer vision. Applications of face gender recogni-
tion range from human-computer interaction systems, content
based image search, video surveillance and others. Face gender
classification is a challenging problem since face images may
vary in pose, lighting, expression and other factors.

The common approach to face gender estimation is by
using supervised machine learning algorithms. Given the high-
dimensional nature of real-world image data, these algorithms
typically require large datasets to perform adequately. In the
closely related field of face recognition several large datasets
are currently available such as the Labeled Faces in the Wild
(LFW) [1] and YouTube Faces [2] datasets. Several tremen-
dous steps have been taken towards verification performances
that surpass human accuracy rates. Recently, the Adience
collection was made openly available particularly for age and
gender estimation [3]. In [3], Eidinger et al. pointed out that
gender classification on the Adience dataset is considerably
more difficult than other datasets for gender classification such
as the Gallagher images of groups collection [4].

The contributions of this paper. In order to investigate

Fig. 1. An impression of the challenging task of face gender classification.
Top row: face images from the color FERET dataset [5], [6]. Bottom row:
face images from the Adience dataset [3].

the applicability of current machine learning algorithms to face
gender classification we propose a hybrid machine learning
system. The proposed approach is based on combining a
pretrained convolutional neural network (CNN) [7] with a
linear support vector machine (SVM) [8]. A major motivation
for using CNNs for gender recognition is their impressive
success that was extensively demonstrated for face recognition
and verification [9]–[13]. Usually, SVM classifiers are used to
perform gender estimation on images by feeding them with
various image descriptors (e.g. [3]). Recently it was shown that
deep features of CNN models carry abstract representations of
image contents [14]. Following the approach by [14], the SVM
was trained on the deep features of a CNN that is based on
the approach formulated by Krizhevsky et al. [15]. In addition,
we adopt the dropout-SVM as proposed in [3] to avoid over-
fitting. In an attempt to improve the classification rates of
the SVM classifiers the CNNs were fine-tuned. Fine-tuning a
pretrained CNN has been shown to exhibit high performance
with a relatively short training time [14], [16].

Novelty of this paper. The proposed implementation is
tested on the color FERET [5], [6] and the Adience [3] data
collections (see Fig. I for an impression). Furthermore, we
adopt a new partitioning of train and test data of the color
FERET dataset. In our partitioning we have included faces
from all angles. To the best of our knowledge, we are the
first to partition the images in this particular way and test on
all possible angles. In order to explore generalization beyond
a single dataset we also provide cross-dataset classification
rates, which have not been reported for these two datasets978-1-4799-7560-0/15/$31 c©2015 IEEE



before. Both datasets are relatively small when compared
to popular computer vision benchmarks such as the LFW
[1] and the YouTube Faces datasets [2]. This enabled us to
feasibly optimize the SVM classifiers. We report the result
of hyperparameter determination. In the proposed system C-
SVM is considered for which the regularization parameter C
is determined using cross-validation. We extend the common
hyperparameter search to a combined search for both C and
the dropout rate pdrop. Finally, we compare the performance of
fine-tuned networks against using their deep features together
with an SVM.

Outline. Section II discusses other work that is related
to our approach. Section III provides a detailed description
of our gender classification system. Section IV addresses the
experiments that were conducted and their results. Finally,
section V provides a conclusion and a discussion of our
findings.

II. PREVIOUS WORK

This section addresses recent developments in various
related areas of computer vision. Lately, state-of-the-art per-
formance is often achieved using CNN architectures [13], [17].
Hence, this section provides a brief outline of previous work
that is related to this approach. This section is concluded with
a brief overview of other efforts on face gender classification.

A. Convolutional neural networks

Since LeCun et al. introduced CNN models in [7], sig-
nificant steps have been made towards robust optimization.
Nowadays large image datasets are used thanks to millions
of digital images available online. Fast optimization can be
achieved using modern day hardware and GPU accelerated
programs. Recent studies on image classification demonstrate
impressive results on highly challenging benchmarks. Some
machine learning applications approach human performance,
particularly using deep CNNs [9]–[13]. Recent efforts on
deep CNNs for face verification tasks have even surpassed
human performance [10], [13]. The face verification problem
is to determine whether two queried faces are of the same
individual. The majority of recent face recognition systems
are benchmarked using the LFW dataset [1].

Deep CNN models have been shown to perform well
despite strong variance in pose, lighting and expressions. The
robust properties of CNNs and their major success in the
closely related task of face verification make them a plausible
candidate for a face gender classification system.

B. CNN features as generic image descriptors

In [14] the features from the pretrained OverFeat net-
work [18] were extracted from a hidden layer at the end of
the network containing 4096 units. In [14] Razavian et al.
demonstrated that the deep hidden units can be used as generic
image descriptors. After manipulating the extracted features by
conducting PCA and component-wise transformations, linear
SVM classifiers were trained on these features to tackle various
image recognition problems including object classification,
scene classification, object detection and others. Razavian et

al. showed that the highest performance is attained when using
the deepest feature layers.

In [14] no further model fine-tuning was performed. In our
research the effect of fine-tuning on the resulting classification
performance is also considered. The idea of fine-tuning a deep
CNN will be discussed next.

C. Fine-tuning

In [15] a CNN was trained for the Imagenet Large Scale
Visual Recognition Challenge (ILSVRC) competition [19].
However, training a CNN is a lengthy process and requires
a large amount of data. Even when using multiple high-end
GPUs training a network for the ILSVRC competition can take
about 2-3 weeks depending on the network size [20]. Model
fine-tuning avoids the need for large amounts of data, yet it
is reported to achieve state-of-the-art performance [16], [21],
[22]. In the fine-tuning procedure a pretrained network is used
for a more domain-specific task. The pretrained weights are a
useful initialization state for the network. In [21] and [22] a
multistage training procedure was adopted where the network
was first configured using unsupervised learning followed by
domain-specific fine-tuning using supervised learning.

In [15] Krizhevsky et al. constructed a CNN to classify 1.3
million images in the Imagenet Large Scale Visual Recognition
Challenge (ILSVRC). The network consists of multiple convo-
lutional layers, max pooling layers and uses Rectified Linear
Units (ReLUs). Although the task for ILSVRC is considerably
different, the low-level kernels that were trained presumably
serve as a good initialization point for a pretrained network
devoted to gender classification.

In our approach a pretrained network based on [15] was
adopted for implementing the gender classification systems.
The CNN architecture used here is based on the submission
of [15] for the ILSVRC competition. There are some subtle
differences which will be described further on. After initial-
ization of the pretrained weights the model was fine-tuned for
gender estimation. We compare the performance of linear SVM
classifiers on the pretrained model and the fine-tuned model.
We also report the performance of the fine-tuned network
alone.

D. Preventing overfitting

In general, training large models naively can quickly lead to
overfitting which makes models only useful for the particular
dataset they were trained for. This section briefly discusses two
common methods to reduce the risk of overfitting.

Krizhevsky et al. and many others have demonstrated
that data-augmentation can significantly improve classification
performance by avoiding overfitting [15]. Data augmentation is
a way of increasing the size of a dataset. Moreover, it increases
the inner-class variety. Data augmentation during the training
phase can be achieved by using label preserving transforma-
tions, such as mirroring, random cropping and altering RGB
intensities [15], [23]. These transformations do not alter the
gender label that belongs to the image.

A second method for avoiding overfitting is the relatively
new dropout procedure [24], [25]. Dropout is commonly used
for training deep CNNs where it is applied to fully connected



layers that are often located at the end of the network. The
activation of the neurons within the network are randomly set
to zero when processing a training instance with a probability
of pdrop = 0.5. This prevents hidden units from complex
co-adaptations that might ultimately lead to overfitting. An-
other perspective explains the success of dropout training by
considering every iteration as training a different model that
consists of only the active units. At test time all units are
active simultaneously. By readjusting the weights of the model
the prediction mimics the averaged prediction of all possible
models together.

In [3] Eidinger et al. proposed a method for training SVM
classifiers with dropout. Input units were dropped out by
setting the features of the descriptors randomly to zero. Using
multiple datasets they demonstrated that dropout effectively
improves classification rates. Moreover, they showed that by
choosing a dropout rate of 0.8 and presenting each training
instance twice, the system outperforms the implementation
with using a dropout rate of 0.5. In this paper, the potential
of model optimization using dropout is further explored by
performing a grid search on the dropout rate pdrop and regu-
larization parameter C for the linear SVM.

E. Gender classification

In [26] a CNN was presented using shunting inhibitory
neurons which are further discussed in [27]. This particular
CNN has only 3 layers and is not comparable with recent
CNN architectures. The network was used to perform gender
classification on solely frontal face images from the color
FERET dataset [5], [6]. Tivive et al. achieved a classification
rate of 97.1% on these images after selecting only the frontal
face images [26]. In [28] the related gray FERET dataset was
addressed where near-perfect classification rates are achieved
using Weber’s Local Descriptors (WLDs) [29]. Again, in [28]
only frontal face images were considered. Moreover, the train
and test sets were not configured to be subject-exclusive (i.e.
subjects were mixed as they occurred in both the train and test
sets). This could have led to gender estimation that is based on
a person’s identity instead of the gender-dependent attributes.
In [30] a subject-exclusive protocol was compared to a mixed
protocol. Their results confirmed that the mixed partitioning
makes classification considerably more challenging. We adopt
our own subject-exclusive partitioning on the color FERET
dataset of train and test data which is used to cross-validate
algorithm performances.

More recently, Eidinger et al. offered the publicly available
Adience dataset particularly intended for age and gender
estimation [3]. It is notably more unconstrained than the color
FERET dataset and the difficulty is comparable to the LFW or
YouTube Faces datasets. This dataset was presented along with
their approach to dropout-SVM. In [3] the SVMs were trained
with local binary patterns (LBP) and Four Path LBP codes
(FPLBP) with which an accuracy of 76.1% was obtained.
Compared to CNN features these descriptors are considerably
more efficient in terms of representation and time. In [31] the
current state-of-the-art for gender classification was achieved
on the Adience dataset using a CNN. The CNN architecture
provided by [31] is shallower than our architecture. Levi et
al. used smaller fully connected layers and less convolutional
layers compared to [15], thereby reducing the number of

TABLE I. DETAILED ARCHITECTURE THAT WAS USED FOR FEATURE
EXTRACTION AND FINE-TUNING. THE ARCHITECTURE IS INCLUDED IN

THE CAFFE TOOLBOX [32] AND WAS BASED ON [15]. THE ORIGINAL FC8
HAS BEEN REPLACED BY A TWO NODE LAYER WITH HINGE LOSS.

Name Type Output dimensions Description
data Input 3 × 227 × 227 Mirroring,

random crops
conv1 Convolution 96 × 55 × 55 96 kernels of size 11,

stride 4, ReLU
pool1 Max pooling 96 × 27 × 27 96 kernels of size 3,

stride 2, LRN
conv2 Convolution 256 × 27 × 27 256 kernels of size 5, pad

5, group 2, ReLU
pool2 Max pooling 256 × 13 × 13 Pool size 3,

stride 2, LRN
conv3 Convolution 384 × 13 × 13 384 kernels of size 3,

stride 1, pad 1, group 2,
ReLU

conv4 Convolution 384 × 13 × 13 384 kernels of size 3,
stride 1, pad 1, group 2,
ReLU

conv5 Convolution 256 × 13 × 13 256 kernels of size 3,
stride 1, pad 1, group 2,
ReLU

pool5 Max pooling 256 × 6 × 6 Pool size 3,
stride 2

fc6 Fully connected 4096 × 1 × 1 ReLU,
Dropout

fc7 Fully connected 4096 × 1 × 1 ReLU,
Dropout

fc8 Fully connected 2 × 1 × 1 Classification with hinge
loss

parameters and possibly avoiding the risk of overfitting. As
opposed to our approach, their CNN was not pretrained. They
reported an average accuracy of 86.1%. We compare our test
results with their test results on the Adience dataset.

III. GENDER CLASSIFICATION SYSTEM

This section elaborates on the details of our approach to
gender classification. First we will describe the deep CNN
architecture from which features were extracted. Then we
briefly explain the use of dropout-SVM and we report the
training and test configurations.

A. The CNN architecture

The pretrained network was deployed using the C++
Caffe toolbox [32]. This toolbox can be used as a framework
for convolutional feature embedding and offers a wide range
of layer configurations, some trivial data augmentation tech-
niques and supports NVIDIA GPU acceleration. The pretrained
weights are hosted online1. The model is referred to as the
BVLC CaffeNet which was made available for unrestricted
use. The model’s architecture is based on the architecture pro-
posed by Krizhevsky et al. [15]. The network differs slightly
from [15]: During training no relighting data-augmentation
was used and the order of pooling and normalization layers
is switched.

For our fine-tuning network the final 1000 unit softmax
layer with a cross-entropy loss was replaced by a 2 unit layer
with a hinge loss function using an L2 norm. The reason
to favor a hinge loss over a softmax loss is arbitrary, since

1http://dl.caffe.berkeleyvision.org/bvlc reference caffenet.caffemodel
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Fig. 2. An illustration of the general model architecture. Preprocessing consists of detecting and cropping the face. The data obtained after detection and
cropping is augmented using label preserving transformations. The augmented data is processed by a CNN. The deep features of the CNN are then used for
gender classification using an SVM. A more detailed description of the deep CNN structure is given in Table I.

both loss functions tend to perform comparably in practice
[33]. However, in [34] it is reported that the squared hinge
loss outperforms the cross-entropy loss. Using Caffe we
regularize the weights by defining the loss function as follows:

min
w
λwT w +

1

N

N∑
n=1

max(1− wT xntn, 0)2 (1)

Where

tn =

{
1 if class n is the ground truth (2a)
−1 otherwise (2b)

And where N is the number of examples and λ is the weight
decay term.

Table I provides a detailed overview of the CNN architec-
ture that we adopted for fine-tuning and feature extraction. At
every convolutional layer and fc6 and fc7 a Rectified Linear
Unit (ReLU) was used for activation. The ReLU nonlinearity is
given by the activation function f(x) = max(0, x) [35]. After
performing max pooling at pool1 and pool2 the activations
are locally normalized using Local Response Normalization
(LRN) as proposed by Krizhevsky et al [15]. This network also
uses parameter grouped convolution. A grouped convolution
with two groups implies that the first half of the respective
preceding layer is only connected to the first half of the current
layer, while the second half of the former is only connected
to the second part of the latter.

B. SVM classifiers

In our approach we used the activations at layer fc7 (see
Table I) as generic image descriptors. After the features were
extracted we used linear SVM classifiers to predict the person’s
gender. The SVM with linear kernel was trained using the
LIBLINEAR library [36]. The SVM classifiers were also
trained to minimize the squared hinge loss with a regularization
term. In LIBLINEAR the loss function is defined by the
following:

min
w

1

2
wT w + C

N∑
n=1

max(1− wT xntn, 0)2 (3)

where xn is now the n-th feature vector obtained from the
CNN. This loss function also involves a hyperparameter C
which determines the penalty for a misclassification. Note

that this equation is equivalent to (1). The primal solver from
LIBLINEAR was used for optimization.

The features are taken from the last fully connected layer
similar to the approach in [14]. Every feature was scaled
between 0 and 1 to avoid numerical difficulties and to balance
the importance of every feature [37]. The hyperparameter C
from equation 3 was determined using cross-validation. The
full model architecture is illustrated in Fig. 2.

It is important to stress that the training of these SVM
classifiers is, apart from the optimization algorithm, essentially
the same as training the fc8 layer of the CNN. However, no
feedback was back-propagated through the network as opposed
to the fine-tuning stage.

C. Data augmentation and dropout training

In order to reduce overfitting, the training data were aug-
mented using label-preserving transformations [23]. Similar to
[15], the data were augmented by taking random crops from
the square face images. The resulting 227×227 sub-image was
horizontally mirrored or not with a 50% chance. By using both
augmentations the theoretical size of the training set increases
by a factor of 1682. However, the majority of the augmented
instances will be too similar to improve the classification rate
significantly. Therefore, every image was augmented only eight
times for training the SVMs. Data augmentation has been
shown to be effective for both training a CNN [15] and for
training SVMs on their deep feature layers [14].

Another measure to prevent overfitting is to use the com-
putationally inexpensive dropout technique [15]. During the
fine tuning phase the dropout rate within the CNN was set
to pdrop = 0.5. Dropout training has been shown to boost the
classification accuracy of at least linear SVMs significantly
[3], [38]. Here we adopt the approach proposed by [3]. First
we drop a random subset of the features. A dropout rate of
pdrop = 0.5 means that half of all features are set to zero. The
learned weights are divided by (1 − pdrop) to compensate for
this effect. We considered the effect of the dropout rate on the
classification rate since in [3] it is demonstrated that this can
affect performance substantially.

While testing, there is no dropout and so the network uses
all of its connections simultaneously. No data augmentation
was used for the test set.



D. Train and test configurations

For fine-tuning the network the weights W to the final
classification units are initialized using a Gaussian W ∼
N (0, 0.0001). The bias terms are filled with zeros. All other
weights are initialized from the pretrained model. The network
was fine-tuned using stochastic gradient descent including
a momentum term [39]. Given a loss function L(W ) to
minimize, the weight updates V are determined by:

Vt+1 = µVt − α∆L(Wt) (4)

Wt+1 = Wt + Vt+1 (5)

where ∆L(Wt) is the gradient of the loss function, µ is the
momentum coefficient and α is the local learning rate. Here
µ was set to 0.9. The learning rate is initialized at 0.0001 and
it is then lowered by a factor of 0.1 after a certain amount
of iterations, depending on the dataset that was used. For the
newly added layer (fc8) the global learning rate was multiplied
by 10 and by 20 for the weights and biases respectively. The
learning rate is locally higher since this layer has not been
trained for any task before. All other layers use the global
learning rate as their local learning rate for training the weights
and twice the global rate as the rate for the biases. Optimization
was conducted using 8 images per batch. The main reason for
using this batch size is that of hardware constraints.

At test time the center 227 × 227 crops of the original
256× 256 images were extracted to predict the gender. In an
attempt to improve the prediction performance the test data
were augmented by conducting an over-sampling procedure.
This was accomplished by extracting five crops (one at each
corner and one at the center) and their mirrored versions
and feeding them to the network. The class scores were then
averaged to obtain the final prediction.

IV. EXPERIMENTS

In order to test our proposed models on gender classifi-
cation we measured classification performances on the color
FERET [5], [6] and the Adience benchmarks [3]. To explore
generalization beyond a particular dataset we also tested cross-
dataset classifications. The results are reported in section IV-D.

A. The color FERET benchmark

The color FERET benchmark [5], [6] contains face images
of 591 men and 403 women. The images were collected by
photographing the subjects at 13 different angles. The face
often covers only a small part of the image. Therefore, the
images were preprocessed to extract the face in a square sub
image. The face detection algorithm from dlib [40] was
adopted to detect and crop the faces from the images. The face
detection is implemented using a 68 face landmark predictor
as proposed by Kazemi et al. [41]. The bounding box of
the face was enlarged by 150% to also capture the hair and
possibly other relevant content. If the algorithm could not
detect a face, the image was omitted from the dataset. This
procedure resulted in discarding the majority of side-views
of faces (90 degree angle). After detection and cropping, the
dataset consisted of 8364 face images stored in 256×256 jpeg
files. No further alignment was applied, since the faces in this
dataset are only rotated about the yaw axis.

The data was first partitioned into a training set and a test
set using a random permutation of the subjects. The training
set conisists of 6073 images, which are 80% of the data. The
test set consists of 2291 images, which are the remaining
20%. We have adopted our own partitioning by including non-
frontal angles of face images as opposed to many others [26],
[28], [29]. It is important to note that in our partitioning a
single individual is not both in the train set and the test set
even though the photographs were taken form different angles
(unmixed partitioning). This separation is to prevent gender
classification that is based on a person’s identity. The training
set was cross-validated tenfold to find C and pdrop and to
compare classification performances among the models. This
means the validation sets within the train data contained either
607 or 608 images each. After cross-validation the final models
are trained using the selected C and pdrop, after which they
are tested on the 20% of the data that were isolated from the
parameter search.

B. The Adience benchmark

The Adience benchmark was originally constructed for
gender and age classification [3]. Images were collected from
Flickr uploads mainly from smart-phone devices. The con-
ditions under which these images were taken more closely
resemble real-world challenges like the LFW [1] or Youtube
faces [2] collections. Faces from this dataset are often highly
occluded by e.g. heavy make-up or by being covered partly
by hands. Another challenging factor is that there are many
photos of babies where gender dependent attributes are not
clearly visible yet.

The Adience dataset contains about 26K images of 2284
subjects. For testing our models we have adopted the parti-
tioning protocol as proposed by Eidinger et al. [3]. We report
results on gender classification using their subject-exclusive
partitioning for five-fold cross validation. In this protocol, the
average result of the cross-validation procedure will be the
resulting measure of performance. Hence, we performed 5 tests
for each model configuration. To compare our classification
method against [3] and [31] we used the aligned and cropped
versions of the face images that were also included in the
dataset. During the alignment and cropping some images were
discarded because of alignment failure, which is why there are
17492 images left. The five test sets contain 3995, 3609, 3137,
3306 and 3445 images, respectively. Again, we determined C
and pdrop using cross-validation.

C. Implementation details

For training the deep CNN we used the popular Caffe
toolbox [32]. Training was conducted on a NVIDIA GeForce
GT 540M GPU with 96 CUDA cores and 1 GB of DDR3
memory. Training a single deep CNN on a train and validation
pair required about 1 to 4 hours depending on when the
classification rates saturated for different datasets.

D. Results

While conducting a grid search for C and pdrop we observed
that the classification rates were slightly higher if we set the
dropout ratio of fc6 (see Table I) to zero while extracting the
features. This was observed for both datasets. We will not



Fig. 3. Misclassifications of the color FERET benchmark (top row) and the Adience benchmark (middle row and bottom row). These images were misclassified
while testing the fine tuned networks with using oversampling. The bottom row shows misclassified images where the face is aligned improperly..

discuss the comparison between this dropout rate and other
configurations for briefness. The results of the SVM systems
that follow were obtained with the dropout ratio of fc6 set to
zero. Only the dropout ratio at fc7 was optimized for of the
systems with SVMs.

1) The color FERET benchmark: Table II shows classifi-
cation results on the color FERET dataset. Fine tuning was
stopped after 3500 iterations, since the classification rates
appeared to saturate at that stage.

For all SVM classifiers C and pdrop have been determined
using cross-validation. For the SVM that was trained on the
fine-tuned network C = 128 and pdrop = 0.5 were obtained.
The SVM that was trained on the pretrained network per-
formed best with C = 0.011049 and pdrop = 0. From Table II
it is evident that fine-tuning the network substantially improves
classification performance. In addition, it can be observed that
performance benefits from using the oversampling procedure.
No further improvement is obtained when using the SVM after
fine-tuning the network. This was to be expected, since both
algorithms have an equivalent cost function.

TABLE II. CLASSIFICATION SCORES ON THE COLOR FERET DATASET
USING OUR UNMIXED PARTITIONING. MEAN ACCURACY (± STANDARD

ERRORS).

Method Accuracy (%)
CNN + dropout-SVM 94.8 ± 0.6

CNN + dropout-SVM + oversampling 95.8 ± 0.6

CNN + Fine tuning 96.9 ± 0.5

CNN + Fine tuning + oversampling 97.3 ± 0.5

CNN + Fine tuning + dropout-SVM 96.2 ± 0.8

CNN + Fine tuning + dropout-SVM + oversampling 96.6 ± 0.8

TABLE III. CLASSIFICATION SCORES ON THE ADIENCE DATASET
USING AN UNMIXED PARTITIONING AS PROPOSED IN [3]. MEAN

ACCURACY (± STANDARD ERRORS).

Method Accuracy (%)
Best from [3] 76.1 ± 0.9

Best from [42] 79.3 ± 0.8

Best from [31] 86.8 ± 1.4

CNN + dropout-SVM 80.2 ± 1.2

CNN + dropout-SVM + oversampling 81.4 ± 1.3

CNN + Fine tuning 86.2 ± 0.7

CNN + Fine tuning + oversampling 87.2 ± 0.7

CNN + Fine tuning + dropout-SVM 86.2 ± 0.8

CNN + Fine tuning + oversampling + dropout-SVM 87.1 ± 0.7

2) The Adience benchmark: Table III depicts the perfor-
mance of our methods against two methods using dropout-
SVM classifiers [3], [42] or a deep CNN [31]. It can be
observed that our best results are somewhat better than what
was reported by [31]. In this case the classification rates
saturated after 20.000 iterations of fine-tuning.

For the fine-tuned network C = 0.003906 and pdrop = 0.4
were obtained. The pretrained network performed best when
C = 0.001953 and pdrop = 0. Again, our results confirm that
oversampling effectively improves classification rates. Reason-
able results were already obtained when using the pretrained
network without any fine-tuning. However, the best results
were obtained by using the fine-tuned network. For the same
reasons as before, there are no performance gains observed
when using the SVM after fine-tuning the network.

Fig. 3 shows misclassifications by the fine-tuned networks
that were trained on each of the datasets. The faces that
are misclassified typically include features of the opposite



sex. This is especially true for the misclassifications among
the color FERET collection. Men with long hair are often
classified as women. The middle row of Fig. 3 suggests that the
classifiers still have trouble with faces where gender dependent
attributes are not clearly visible, such as the baby. However,
some misclassified images still appear trivial to the human
observer.

The bottom row of Fig. 3 depicts cases of misalignment.
Since alignment and cropping were conducted automatically,
these images remained in the dataset since it was released by
[3].

3) Cross-dataset results: Cross-dataset experiments were
conducted to explore the generalization capabilities of the
models. Here the CNNs were fine-tuned once more on each
dataset while including all data within the set simultaneously.
We trained one model on the color FERET dataset and tested
it on the Adience dataset and vice-versa.

The results are depicted in Table IV. It can be observed
that there is a considerable drop in accuracy. This might be
caused by the fact that only the faces in the Adience dataset
were aligned, while the faces in the color FERET dataset were
only cropped. Consequently, the average appearance of faces
from a side-angle differed considerably between both datasets.
Second, the model that was trained on the color FERET dataset
might have been subject to overfitting, since the pictures were
taken under constrained conditions, whereas the images from
the Adience dataset are taken in unconstrained conditions.

TABLE IV. CROSS-DATASET RESULTS. THE CROSS-DATASET RESULTS
WERE OBTAINED FROM TRAINING AND TESTING ON ALL AVAILABLE DATA.

Train set
Adience color FERET

Test set
Adience 87.2 67.1

color FERET 83.7 97.3

V. CONCLUSIONS

In this paper we explored the applicability of deep convolu-
tional neural networks on face gender recognition. We showed
that despite the challenging nature of the problem, state-of-
the-art classification rates can be achieved using relatively
short training times. On both datasets, the best results were
obtained when using the fine-tuned networks. Oversampling
by averaging class scores of the final classifiers was shown to
improve classification rates in all cases.

For future work, results can possibly be improved even fur-
ther by excluding the extreme cases of misalignment (bottom
row Fig. 3) from the train and test phases of our experiments.
Furthermore, classification could benefit from frontalization
where faces from a non-frontal angle are frontalized with
the help of 3D modeling of the face [12], [42]. Further
performance gain could be achieved by using other network ar-
chitectures. Since the ILSVRC 2012 submission of Krizhevsky
et al. [15] others have submitted models that exhibit superior
results [11], [17]. In addition, ensembles of pretrained and
fine-tuned CNNs could be explored as well. Instead of merely
averaging the class scores when performing oversampling, the
system might be enhanced by training a classifier that linearly
combines the class scores for each crop and mirroring.

The results obtained here suggest that there is much left to
explore within applications of convolutional neural networks.
The large availability of image data nowadays and the major
successes with deep CNN systems can push machine learning
systems further towards human-level recognition and beyond.
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