
Using Continuous Action Spaces to Solve Discrete Problems

Hado van Hasselt Marco A. Wiering

Abstract—Real-world control problems are often modeled
as Markov Decision Processes (MDPs) with discrete action
spaces to facilitate the use of the many reinforcement learning
algorithms that exist to find solutions for such MDPs. For
many of these problems an underlying continuous action space
can be assumed. We investigate the performance of the Cacla
algorithm, which uses a continuous actor, on two such MDPs:
the mountain car and the cart pole. We show that Cacla has
clear advantages over discrete algorithms such as Q-learning
and Sarsa, even though its continuous actions get rounded
to actions in the same finite action space that may contain
only a small number of actions. In particular, we show that
Cacla retains much better performance when the action space is
changed by removing some actions after some time of learning.

I. INTRODUCTION

A large body of literature exists about learning to map an

input set to a finite set of outputs. A large subset of these

learning problems involve outputs that can be thought of as

lying on a continuous underlying real valued line. The actual

set of outputs is then a finite set of points in this continuous

space. It can be beneficial to approximate a continuous

mapping of the input space to this continuous output space

and only to discretize the output of the algorithm at the last

moment by rounding to one of the actually available options.

In particular, such an algorithm can generalize better over the

available options. This better generalization has two main

advantages. First, we expect an algorithm that makes use of

this to be able to learn faster, especially when the number

of discrete options is large. Second, it can be helpful to be

able to generalize when the output space is not fully fixed.

In this paper we consider reinforcement learning problems

that attempt to learn the mapping of a state space to an

action space. As an example, consider an agent trained to

drive a manual transmission car. First, due to generalization,

a continuous algorithm may more quickly learn that the third

gear will have an effect somewhere between the effects of the

second and fourth gears, even if it has not been tried often

yet. Second, assume that after a good policy has been learned

the third gear stops working altogether. It is an interesting

topic to see how an algorithm can adapt to such a situation

and our intuition is that algorithms that assume continuous

underlying spaces can more easily change their behavior to

compensate for missing actions. This kind of a changing

action space may also be an issue when training an algorithm

on an imperfect simulation before trying to exploit its learned

behavior in an actual system.

Hado van Hasselt is with the Intelligent Systems Group, Utrecht Uni-
versity, Utrecht (email: hado@cs.uu.nl) and Marco Wiering is with the
Department of Artificial Intelligence, University of Groningen, Groningen
(email: mwiering@ai.rug.nl)

We will use the Continuous Actor Critic Learning Au-

tomaton (Cacla) reinforcement learning algorithm [2] to

approximates a continuous mapping from state space to

action space. Cacla outputs real valued actions that will only

be discretized at the last moment and we will show that it

performs well compared to discrete reinforcement learning

algorithms that learn a separate value for each action on two

classical reinforcement learning problems: the cart pole and

the mountain car. Next to showing that the Cacla algorithm

can perform well on these problems, we also present a

new discrete version of the Cacla algorithm, named Actor

Critic Learning Automaton (Acla) [14] and show that it

also outperforms most of the conventional algorithms on the

selected problems. Finally, we will adapt the action space of

the cart pole after the algorithms are trained by removing

some of the possible actions and show that Cacla is far more

robust to such changes than the other tested algorithms.

The paper is organized as follows. In the next section we

will explain the reinforcement learning algorithms that are

used. Section III describes the experimental setting for the

mountain car and the cart pole problem. We will present and

analyze the results of the experiments in section IV. The last

section concludes the paper and gives directions for future

research.

II. METHODS

Problems that can be solved with reinforcement learn-

ing algorithms can be modeled as Markov Decision Pro-

cesses (MDPs). A finite MDP can be viewed as a tuple

(S,A,R, T, γ), where st ∈ S denotes the state the agent is in

at time t; at ∈ A denotes the action it performs in that state;

rt denotes the possibly stochastic reward received at time t

and Ra
ss′ denotes the expected value of such a reward when

moving from state s to state s′ after performing action a; T

is the transition function, where T a
ss′ gives the probability of

ending up in state s′ after performing a in s; and 0 ≤ γ ≤ 1
is the discount factor that discounts future rewards.

In the rest of this paper, we only look at problems with

continuous state spaces and discrete action spaces. We will

distinguish between conventional, discrete algorithms that

learn how to choose between the finite possible actions in

each state and the continuous algorithm Cacla that assumes

an underlying continuous action space. Each of the algo-

rithms has slightly different properties and as will we see in

section IV, in many cases there are significant differences in

performance.

All algorithms keep track of a state value or a state-action

value that gives the expected value of state s or of a state-

action pair (s, a) respectively. How these values are updated

and used to get a policy for behavior is outlined below for



each of the algorithms. We use the following notation:

Xt+1
α←− Tt , (1)

to denote an update of X towards target Tt with a step size

of α. This notation is shorthand for the following update:

Xt+1 = Xt + α(Tt −Xt) . (2)

In this paper we use neural networks as function approxi-

mators. If X is approximated with a neural network, we use

the shorthand in (1) for the gradient descent update on the

squared difference between target and former value:

wX
t+1 = wX

t + α(Tt −Xt)∇Xt , (3)

where wX
t is the weight vector at time t of the network

approximating X and ∇Xt is the gradient of the output of

the network to this weight vector. Now we will describe all

the different algorithms, starting with the discrete algorithms.

A. Discrete Algorithms

1) Q-learning: One of the best known and most used

reinforcement learning algorithms is Q-learning [11]. This

algorithm uses a one step temporal difference update to

update its approximation of the value of the state-action pair

(st, at). The update of Q-learning looks as follows:

Qt+1(st, at)
αt←− rt + γ max

a
Qt(st+1, a) , (4)

where 0 ≤ αt ≤ 1 is a step size parameter.

Q-learning is an off-policy algorithm, which means the

optimal policy is approximated even if a non-optimal (i.e.

exploring) policy is followed.

2) Sarsa: The update for Sarsa [5], [9] is similar to that

of Q-learning:

Qt+1(st, at)
αt←− rt + γQt(st+1, at+1) . (5)

The main difference lies in the lack of a max operator in

the case of Sarsa. This implies that Sarsa is on-policy, which

means that Sarsa learns an approximation of the values of

the state-action pairs including exploration steps.

3) Actor Critic: Actor Critic (AC) is the first of three

algorithms that we discuss that use a state value function

updated with Temporal Difference (TD) learning [8]:

Vt+1(st)
βt←− rt + γVt(st+1) . (6)

An advantage of using update (6) is that because the V values

get updated every time a state gets visited, they can become

reliable approximations more quickly than Q values, that are

only updated whenever the corresponding action is selected

in that state.

The AC algorithm uses the state values to update a

preference function P , which gives the preference for each

action:

Pt+1(st, at) = Pt(st, at) + αtδt , (7)

where δt is called the TD-error and is defined as follows:

δt = rt + γVt(st+1)− Vt(st) . (8)

Using the general update (1), which also includes the pos-

sibility for neural networks, this update can be written as

follows:

Pt+1(st, at)
αt←− Pt(st, at) + δt . (9)

4) QV-learning: A newer algorithm that has been shown

to perform well on some problems is the QV-learning al-

gorithm [13], [14], which also uses the value function as

updated with update (6) and approximates the state-action

values as follows:

Qt+1(st, at)
αt←− rt + γVt(st+1) . (10)

This algorithm can be viewed as a mix of Sarsa and the AC

algorithm. It uses state values that may learn quickly, but

it approximates actual Q values, and not preference values

such as AC does.

5) R-learning: We also consider the R-learning algorithm

[6], [3]. This algorithm uses a slightly different paradigm in

that it does not try to approximate the value of the discounted

cumulative future rewards, but rather approximates the gain

when comparing the expected value of the present action

to the average rewards over all states. This means that in

principle the average rewards are optimized instead of the

discounted cumulative rewards. The algorithm updates its R

values with the following update:

Rt+1(st, at)
αt←− rt + max

a
Rt(st+1, a)− ρt , (11)

where ρt gives an approximation of the average reward,

updated as follows:

ρt+1
βt←− rt + max

a
Rt(st+1, a)−max

a
Rt(st, a) , (12)

where ρt is only updated when the greedy action was selected

in state st.

R-learning is an important addition to our set of algo-

rithms since amongst other performance measures we will be

looking at average rewards. R-learning is the only algorithm

that explicitly optimizes this performance measure, but as we

will see this does not necessarily mean that it reaches better

performance levels in the experiments in this paper when

compared to algorithms optimizing the related cumulative

discounted rewards.

6) Acla: The last discrete algorithm we consider is a new

and simpler version of the Actor Critic Learning Automaton

(Acla) algorithm [14]. It also uses update (6) and then

updates preference values for the selected action as follows:

Pt+1(st, at)
αt←− 1 if δt > 0

Pt+1(st, at)
αt←− 0 if δt ≤ 0

(13)

For Acla, only the sign of the TD-error matters and not its

size.

This version of Acla differs from the original version that

also updated the preferences of all actions that were not

selected in order to let the preferences of all actions sum

to one in every state. We relaxed this constraint by only

updating the last performed action and have observed better

results with this new, simpler version.



B. Cacla

The forementioned algorithms will be compared to an

algorithm that was originally designed for continuous action

spaces. The algorithm we will use is called the Continuous

Actor Critic Learning Automaton (Cacla) [2].

Cacla uses a critic that stores the expected sum of dis-

counted rewards for states, using update (6). Then, the TD-

error δt is used to determine if at was a good action or

not. A function approximator Ac is used as an actor that

approximates a function Ac∗ : S → A, where Ac∗(s)
denotes the optimal action for state s. This actor is updated

by noting that if the TD-error is positive, the action that was

just performed is better than expected and should therefore

be enforced. The actor is then updated towards this action,

with the intent that its output becomes more similar to the

last performed action for the present state. The update then

becomes:

Act+1(st)
αt←− at if δt > 0 . (14)

Note that this update only changes the actor when the action

at that is actually performed differs from Act(st), which
is why the Cacla algorithm can only learn new actions on

exploratory steps. Of course, non-exploratory steps can still

improve the accuracy of the value function.

Like Acla, Cacla only uses the sign of the TD-error and

not its size. If the TD-Error is negative, the policy is not

updated, because it can not be guaranteed that updating away

from an action that resulted in a negative TD-error will result

in an update towards an action that would have resulted in

a positive TD-error [2]. This is different from Acla, where

the action is updated towards a preference value of zero

when the TD-error is negative. However, in Acla there is

no interference between the separate actions, as there is in

Cacla since we only keep track of a single approximation

of the optimal action instead of a preference value for each

action. In a sense, this algorithm performs a form of hill-

climbing in the policy function space, using the TD-error as

guidance.

For our comparison to the discrete algorithms, we dis-

cretize the output of the actor of Cacla by simply rounding it

to the nearest allowed action in the action space of the MDP.

This makes sure that Cacla does not have the advantage of

being able to more finely determine its action, though since

it is a feature of the design of the algorithm, this advantage is

arguably neither unrealistic nor unfair. However, one of the

purposes of this paper is to show that Cacla can find good

solutions when the actions that can actually be performed

must be chosen from a limited, finite set.

C. Function Approximation

In this paper we consider MDPs with continuous state

spaces and therefore we need some kind of function ap-

proximation to be able to store the value functions used

by the algorithms. For this, we use neural networks. All

neural networks in our experiments have 15 hidden nodes.

This number was varied in preliminary experiments, but

the results seem to be relatively invariant to the precise

number of hidden neurons used. Using much lower numbers

resulted in lower performance levels, whereas using much

more neurons increased the learning time. Numbers within

the range of 10 to 20 hidden neurons behaved similarly

and the major differences in performance result from the

algorithm that is used. In short, neural networks with 15

hidden units are general enough function approximators for

all the functions we try to approximate in our experiments.

An in depth comparison for different numbers of hidden units

and different topologies of neural networks is beyond the

scope of this paper.

To avoid interference to the values of other actions when

the value of an action is updated, a separate neural network

is used to store the value of each action for the discrete

algorithms. Cacla simply uses a single neural network as its

actor.

D. Exploration Considerations

The simplest form of exploration is ǫ-greedy exploration,

where the highest valued action is chosen with probability

(1 − ǫ) and a random action is chosen with probability ǫ.

However, this form of exploration uses very little of the

available information about the values of states or state-action

pairs. Therefore also Boltzmann exploration was tested,

where the Q values or the preference values of the algorithms

are used to calculate the probabilities as follows:

πt(st, a) =
eXt(st,a)/τ

∑
b eXt(st,b)/τ

, (15)

where τ is a temperature parameter and X is P , R or Q,

depending on the algorithm. Compared to ǫ-greedy explo-

ration, Boltzmann exploration makes more use of the values

found so far. Actions that seem more promising because of

higher values have a higher probability of being selected.

It should be noted that unlike ǫ-greedy exploration, Boltz-

mann exploration cannot be used with Cacla, since the

Cacla algorithm does not store action values. Since the

Cacla algorithm can be viewed as a kind of hill climbing

algorithm in the policy space, it is useful for Cacla to perform

many exploratory actions, which are especially useful when

they are relatively close to the present approximation of

the optimal action. Therefore, Gaussian exploration seems

a sensible choice for Cacla. Gaussian exploration draws a

value stochastically from the Gaussian probability function

G(x, µ, σ) centered around the output of the actor Ac(st):

G(x,Ac(st), σ) =
1√
2πσ

e−(x−Ac(st))
2/2σ2

, (16)

where σ is the width of the Gaussian, which will be an

exploration parameter. Then, the action from the action space

that is closest to the resulting value is selected. If the

actions have more than one dimension, the variance for each

dimension could be chosen separately, but in this paper we

only consider problems with one dimensional actions.

For instance, consider an action space containing the

integers between 0 and 5. Then if the actor outputs the action



TABLE I

THE DIFFERENT PARAMETERS THAT NEED TO BE SET.

Parameter Description

σ Width of the Gaussian exploration
τ Temperature of Boltzmann exploration
α Learning rate of action values or actor
β Learning rate of state value (if applicable)

3 and the Gaussian width σ is 2, we get the following action

selection probabilities:

a 0 1 2 3 4 5
π(s, a) 0.01 0.06 0.24 0.38 0.24 0.07

Note that even though the actions are the same distance

from action 3, action 5 has a slightly higher chance of being

selected than action 1, because it is the result of rounding

any value above 4.5 to the nearest available action, whereas

action 1 only gets chosen when the result of adding Gaussian

noise to action 3 results in a value between 0.5 and 1.5.
In all experiments all algorithms were tested with both

Gaussian and ǫ-greedy exploration. Also, for all algorithms

except Cacla experiments were run with Boltzmann explo-

ration. In every experiment, Gaussian was significantly better

than ǫ-greedy for Cacla and Boltzmann exploration was

the best type of exploration for all the other algorithms.

Therefore, in all experiments, the results are shown for

Gaussian Cacla and the Boltzmann versions of all the other

algorithms.

III. EXPERIMENTAL SETUP

To measure the performance of the algorithms, we used

a cart pole balancing task and a mountain car task, which

are explained below. For R-learning the best results were

obtained with an optimistic initialization of ρ at ρt =
maxt rt, which equals 100 for the mountain car and 1 for the

cart pole. All algorithms except R-learning used a discount

factor of 0.99. With this discount factor, there is no difference

between an optimal solution in the average rewards setting

and the discounted rewards setting for the tasks in this paper.

The parameters used for the experiments are given in

Table I. Because the values of these parameters are not fully

independent, for each problem we ran 100 experiments for a

wide range of combinations of parameter settings. The best

parameter setting of these experiments was then taken and

run for a separate 300 trials to give the results in the sections

below. Every parameter had as possible values 1 × 10x,

2 × 10x and 5 × 10x, for x ∈ [−6, 0] for the learning rates

and x ∈ [−3, 3] for the exploration parameters. Therefore,

we step through the parameter space approximately with

multiples of 2. A more fine grained resolution for these

parameters can result in slightly better results. However,

preliminary experiments indicate that all the conclusions in

this paper continue to hold for more finely tuned parameter

settings.

A. Mountain Car

For the mountain car problem [7] we used the same

problem description as in the book by Sutton and Barto [10].

This means that the position of the car x and its velocity dx

are updated as follows:

xt+1 = xt + dxt+1 ,

dxt+1 = dxt + 0.001at − 0.0025cos(3xt) .
(17)

Furthermore, the position is bounded to [−1.2, 0.5] where

when it drops below −1.2 it is reset to −1.2 with zero

velocity and the episode is considered a success when a

position higher than 0.5 is reached.

The algorithms receive a reward of −1 on every time step,

except when an episode ends in a success. Then a reward of

+100 is received. If no success is obtained for 500 time steps,

the episode is considered a failure and the episode also ends.

Whenever an episode ends, the car is reset to the bottom of

the track with zero velocity. The state vector given to the

algorithms consists of the position and the velocity of the

car. The available actions are −1, 0 and 1.

B. Cart Pole

For the cart pole task, we use commonly used system

dynamics [1], [12]. The cart weighs 1.0 kg and the algorithms

all push the cart with an integer amount of Newtons from

the interval [−10, 10]. The pole is 1 m long and weighs

0.1 kg. The time steps between consecutive actions are 0.02
seconds. An episode is ended when either the cart hits one

of the walls at 2.4 m in each direction, or when the pole

drops further than 12 degrees from its upright position. An

episode is considered a success and also ends when the pole

is balanced for at least 40 seconds.

When an episode ends, the cart is reset at the center of the

track with the pole tilted randomly between 0 and 3 degrees

either to the left or to the right. The dynamics do not include

friction, but are realistic in the other aspects. The state vector

given to the algorithms consists of the position and velocity

of the cart and the angle and angular velocity of the pole.

On every time step the algorithms receive a reward of +1,
except when an episode ends with a failure. Then a reward

of −1 is received.

An important difference between the cart pole and the

mountain car is that a poorly performing algorithm will get

a lot of meaningful feedback on the cart pole, since the

pole will drop quickly and will allow the algorithm to get

information about good and bad situations to be in. In the

mountain car such an algorithm will only observe rewards of

−1 for all time steps, which by themselves do not carry much

information. We will see that the two tasks are sufficiently

different to require quite different settings of the parameters

for the algorithms to reach the best performances.

IV. RESULTS

In this section we present the results of the different

algorithms with various parameter settings on the two tasks.

We will begin with the mountain car and will then discuss

the results on the cart pole task. The results are obtained by

running offline tests without exploration as well as observing

the online performance of the algorithms during the training.

We will look at performance measures that indicate how



quickly the algorithms reach good solutions as well as

measures that indicate how good the final solution is. We

note that the best combination of exploration and learning

rates for any algorithm can differ for all types of performance

measures.

In the mountain car problem, we are interested in the

number of steps before the goal is reached and we will show

the results of the average number of steps during training,

as well as the number of steps of the final solution found by

each algorithm. In the cart pole problem, we will look at the

number of seconds before the pole drops or the cart bumps

against a wall. To give an indication of this, we will use the

average number of failures per second to balance the pole.

We will also look at the final performance after 2000 seconds

of training. Also interesting for the cart pole is how much

time it takes before the algorithms can balance the pole. For

this, we looked at the number of seconds before the pole

was balanced for the first time for at least 40 consecutive

seconds.

After this, we include the results for an experiment to test

how robust the algorithms are when some of the actions are

no longer available. For this, we train the algorithms for 2000

seconds on the cart pole task, using an action space consisting

of all the integer actions from the interval [−10, 10]. Then
we exclude some actions from this interval and see how long

it takes for each algorithm to adapt to the new situation.

We now continue with the results. In the tables containing

the results also the parameters that were used to obtain these

are given. The exploration parameter is σ in the case of

Cacla and τ in the case of all the other algorithms, since

as mentioned before the exploration methods corresponding

to these parameters performed best. We show the mean

performance over all 300 trials, which in the mountain car is

the mean number of steps to reach the goal and in the cart

pole is the mean number of times the pole is not balanced

per second. In both cases, lower numbers are better and the

algorithms are sorted by their performance. We also give the

standard error on the means.

A. Mountain Car

Training in this task was limited to 1000 episodes, each

of which lasted a maximum of 500 time steps. After every

episode, a test episode was run without exploration and

without updating any of the algorithms. This problem is

arguably less suited to Cacla than the cart pole problem,

because even though we can still assume an underlying

continuous action space, there are only two actions of real

interest: driving as fast to the left as possible and driving as

fast to the right as possible. This means the ability of Cacla

to finely tune its actor output becomes less important.

The average results over all the training episodes are given

in Table II. We see that in offline performance Acla performs

significantly better than Cacla, which in turn significantly

outperforms the rest. In online performance, Cacla manages

to outperform all the other algorithms with QV-learning

a relatively close second. We see that in both cases the

TABLE II

AVERAGE NUMBER OF STEPS UNTIL GOAL IS REACHED: MEAN

PERFORMANCE DURING TRAINING. AVERAGES OVER 300 TRIALS.

Offline performance

α β exploration mean std error

Acla 0.01 0.05 100.0 179.2 0.5

Cacla 0.00005 0.05 100.0 282.8 2.4

QV 0.00002 0.1 0.002 363.6 4.5

AC 0.001 0.2 1.0 456.4 2.1

Sarsa 0.0005 - 0.01 471.5 2.8

R 0.0002 0.01 100.0 471.6 3.2

Q 0.00002 - 1.0 479.8 3.1

Online performance

α β exploration mean std error

Cacla 0.0002 0.05 20.0 306.0 2.0

QV 0.00001 0.2 0.001 351.5 4.6

AC 0.001 0.2 1.0 428.4 3.3

Acla 0.0002 0.002 0.01 430.2 5.3

Sarsa 0.0005 - 0.01 461.2 3.9

Q 0.001 - 0.01 478.5 2.6

R 0.0001 0.005 0.01 483.4 2.5

TABLE III

AVERAGE NUMBER OF STEPS UNTIL GOAL IS REACHED: FINAL

PERFORMANCE AFTER TRAINING. AVERAGED OVER 300 TRIALS.

Offline performance

α β exploration mean std error

Acla 0.005 0.05 100.0 132.2 0.9

Cacla 0.00002 0.05 100.0 187.3 3.1

QV 0.00002 0.1 0.002 273.4 9.2

AC 0.0005 0.2 1.0 416.4 8.5

R 0.01 0.05 2.0 461.5 5.3

Sarsa 0.0002 - 0.01 462.7 5.9

Q 0.00002 - 1.0 472.1 5.1

Online performance

α β exploration mean std error

Cacla 0.00005 0.02 50.0 222.4 4.4

QV 0.00002 0.1 0.002 309.9 7.6

AC 0.001 0.2 2.0 345.3 7.1

Sarsa 0.0002 - 0.01 453.6 6.0

Acla 0.0005 0.001 0.01 455.0 6.4

R 0.0001 0.005 0.01 475.2 4.0

Q 0.0001 - 0.01 495.9 1.2

algorithms using state values outperform Q-learning and

Sarsa by a significant margin.

Interestingly, we see that Cacla uses very large values for

its Gaussian exploration in this problem. This is because for

the mountain car only the two extreme actions are relevant.

The idea is to drive as fast as you can to the left and then

as fast as you can to the right. Cacla can learn to output

actions far above 1 and far below −1, because the outputs

are rounded to these actions anyway. Even in the online

results, Cacla can perform well with very high exploration,

while most other algorithms use quite low temperatures that

translate into little exploration. This is also why there is such

a large difference between the offline and online performance

of Acla. The offline performance uses a high temperature,

resulting in much exploration. This apparently allows Acla

to learn good offline policies, but such a high temperature

will not lead to good online performance.

The final performances after 1000 episodes are given in

Table III. This table shows the performance of the last

training and the last testing episode. In the offline case

Acla reached the best performance, followed by Cacla. In



TABLE IV

AVERAGE RESULTS OVER THE WHOLE TRAINING RUN CONSISTING OF

2000 S OF TRAINING AND 4000 S OF TESTING. THE AVERAGE NUMBER

OF FAILURES PER SECOND IS SHOWN FOR BOTH ONLINE AND OFFLINE

PERFORMANCE. AVERAGED OVER 300 TRAILS.

Offline performance

α β exploration mean std error

Cacla 0.0005 0.002 10.0 0.107 0.003

AC 0.002 0.002 10.0 0.113 0.002

Acla 0.05 0.005 0.1 0.131 0.003

R 0.02 0.002 0.1 0.335 0.005

QV 0.005 0.005 1.0 0.229 0.005

Q 0.01 - 0.5 0.230 0.004

Sarsa 0.01 - 0.5 0.332 0.005

Online performance

α β exploration mean std error

Acla 0.05 0.005 0.1 0.103 0.002

Cacla 0.0005 0.002 20.0 0.141 0.003

AC 0.01 0.002 5.0 0.148 0.002

R 0.02 0.002 0.1 0.170 0.003

QV 0.005 0.005 1.0 0.206 0.004

Sarsa 0.01 - 0.5 0.316 0.005

Q 0.01 - 0.5 0.320 0.006

TABLE V

AVERAGE AMOUNT OF SECONDS BEFORE THE START OF THE FIRST

PERFECT TEST AND TRAINING RUN. AVERAGED OVER 300 TRAILS.

Offline performance

α β exploration mean std error

Cacla 0.01 0.005 5.0 181.1 10.0

QV 0.005 0.005 1.0 232.0 7.2

Acla 0.05 0.005 0.1 236.4 8.3

R 0.01 0.0005 0.5 265.8 9.2

AC 0.01 0.005 2.0 359.6 13.6

Q 0.005 - 1.0 385.5 12.0

Sarsa 0.01 - 0.5 453.6 22.4

Online performance

α β exploration mean std error

Acla 0.05 0.005 0.1 191.0 5.7

Cacla 0.005 0.002 5.0 281.6 5.2

QV 0.005 0.005 1.0 340.8 9.6

R 0.01 0.0005 0.5 374.4 10.0

AC 0.01 0.005 2.0 439.8 13.5

Q 0.01 - 0.02 638.1 27.2

Sarsa 0.005 - 0.5 665.6 22.5

online performance Cacla outperforms the other algorithms,

showing a similar picture as in the average results.

On a whole the results show that Cacla is a very rea-

sonable choice to solve problems similar to the mountain

car problem, despite the low number of available actions.

Depending on the performance measure that you consider,

Cacla performs best or second best to Acla. However, if one

would combine the online and offline performance measures,

Cacla is a better choice than Acla, because of the better

performance in the online results. In general, algorithms that

use state values outperform algorithms that use state-action

values for all performance measures in this task.

We will now continue with the cart pole task, to see how

many of the conclusions on the mountain car task continue

to hold in this different problem.

B. Cart Pole

Table IV shows the average results of the algorithms

on the cart pole task. For the offline performance, a test

run of 40 seconds using the policy found so far was run

without exploration after each 20 seconds of training. For the

online performance simply the performance during training,

including exploration, was used.

In the offline average results over all test runs, we see the

algorithms fall more or less into three groups. The lowest

performance comes from the group with the conventional

state-action value based algorithms: Q-learning and Sarsa.

Performing somewhat better are the state-action value based

algorithms that use extra information in the form of average

rewards or state values: R-learning and QV-learning. The best

performance is observed for the algorithms that use Actor

Critic methods: Actor Critic, Acla and Cacla. In a sense,

these algorithms do not try to learn something about the

whole state-action space, but are more focused on just finding

the optimal policy. In the cart pole task this apparently

translates into good average performance.

In the online results we observe more or less the same

separation. We do note that the difference between the best

performing algorithm and the worst performing algorithm

is smaller than in the offline results. Apparently, most al-

gorithms do not suffer from some exploratory steps, since

except for Actor Critic and Cacla all algorithms in fact reach

slightly better results in the online performance.

Apart from the average results during training, there are

two other performance measures for the cart pole task that

can be considered interesting. The first is the performance

measure that measures how quickly each algorithm reached

a perfect run for the first time. The first perfect offline run

is defined as the first test run of 40 seconds in which the

pole does not fall down and the cart does not bump against

either side of the track. Similarly, the first perfect online run

is defined as the first period of 40 seconds during training in

which no such failure is observed. Table V shows the results

of this measure.

We see that although Actor Critic reaches similar results

as Acla and Cacla in average performance, the latter two

algorithms reach a flawless performance a lot faster. In offline

performance Cacla outperforms all the other algorithms,

while in online performance the same holds for Acla. In

both cases, the difference is statistically significant, as can

be observed from the low standard error compared to the

actual difference. Interestingly, Actor Critic only manages to

outperform Q-learning and Sarsa, which again finish last. For

this measure we see that for all algorithms except Acla, the

online performance is worse than the offline performance by

a considerable margin.

The last performance measure we consider measures the

final performance, sorted by the percentage of successful

runs. This performance measures captured how good the

policy is that is found by each algorithm after 2000 seconds

of training. This tells us how good the solution actually is

that is found by each algorithm. In Table VI the percentage

of successful runs is shown of the final 40 seconds of training

and for the offline test run of 40 seconds after training

has ended. The most interesting result from this table is

that the performance of Cacla is apparently more reliable



TABLE VI

AVERAGE RESULTS OVER THE LAST TRAINING RUN CONSISTING OF 40 S

OF TESTING WITHOUT EXPLORATION. AVERAGE FAILURES PER SECOND

AND PERCENTAGE OF FLAWLESS RUNS OVER 300 TRIALS IS SHOWN.

Offline performance

α β exploration mean success

Cacla 0.0005 0.001 10.0 0.003 98.8 %
Acla 0.002 0.001 10.0 0.019 91.7 %
AC 0.002 0.002 0.5 0.037 82.6 %
QV 0.02 0.001 0.2 0.022 80.5 %
R 0.002 0.002 1.0 0.089 68.5 %
Sarsa 0.002 - 1.0 0.156 55.7 %
Q 0.05 - 0.01 0.131 54.8 %

Online performance

α β exploration mean success

Cacla 0.002 0.002 0.2 0.005 97.7 %
Acla 0.1 0.002 0.05 0.011 95.2 %
AC 0.002 0.002 5.0 0.012 87.7 %
R 0.02 0.001 0.1 0.030 79.3 %
QV 0.005 0.005 1.0 0.117 48.2 %
Q 0.005 - 0.2 0.128 37.6 %
Sarsa 0.005 - 0.01 0.150 35.5 %

over different trials, since it reaches a higher percentage of

successful runs than all the other algorithms, with Acla being

the best of the rest.

C. Cart Pole with Removed Actions

For the following results we removed some of the available

actions after the algorithms were trained on the cart pole

task. Three scenarios were tested, where after 2000 seconds

of training a subset of the actions was made unavailable.

In the first scenario Even, all the odd positive and negative

integer forces were removed, leaving the even integers. In

the second scenario Bang, we removed all actions except

−10, 0 and 10, essentially testing the performance of the

algorithms when only the actions of a bang-bang controller

were allowed. For the third scenario No Extreme we only

removed the most extreme options −10 and 10, since we

observed that these were often used by all algorithms. In

the third scenario therefore 19 of the original 21 actions

are still available. For all discrete algorithms the state action

values corresponding to the removed actions are simply not

considered anymore and for Cacla the output of the actor gets

scaled to the closest available action from the new action set.

After removing the actions, we first measured the perfor-

mance with a test run of 40 seconds without exploration or

updating the algorithms. The results are given in Table VII.

The parameter settings are the same that were used for the

best final offline performance after 2000 seconds of training,

as shown in Table VI.

We see that Cacla manages to adapt very successfully to

the changed situations. The percentage of successful test runs

remain high and the average number of failures per second

remains very small.

It is very interesting to view the differences between the

three scenarios. We see that on average performance goes

down significantly for all algorithms except Cacla when the

odd actions are removed. However, Acla and Actor Critic still

manage to reach a perfect run without additional training in

more than half of the 300 trials. However, in the scenario

TABLE VII

MEAN AMOUNT OF FAILURES PER SECOND OF THE FIRST TEST RUN

AFTER REMOVING ODD ACTIONS (Even), ALL EXCEPT −10, 0 AND 10

(Bang), OR JUST ACTIONS −10 AND 10 (No Extreme). AVERAGE MEANS

AND PERCENTAGES OVER 300 TRIALS, SORTED BY PERFORMANCE

BEFORE REMOVING THE ACTIONS.

Even Bang No Extreme

mean success mean success mean success

Cacla 0.002 98.8 % 0.004 96.0 % 0.003 98.5 %
Acla 0.117 77.3 % 0.209 44.1 % 1.028 3.8 %
AC 0.068 61.5 % 0.154 45.9 % 1.920 0.0 %
QV 2.967 11.8 % 2.894 0.6 % 4.136 0.0 %
R 2.071 22.2 % 3.702 2.5 % 4.187 0.1 %
Sarsa 3.512 10.7 % 2.411 0.2 % 4.107 0.0 %
Q 3.200 11.5 % 3.334 1.5 % 4.284 0.1 %

2000 4000
0.0

0.1

0.2

a
v
e
ra

g
e
 f

a
ilu

re
s 

p
e
r 

se
co

n
d

Even

Cacla
Acla
AC

2000 4000
time in seconds

Bang

2000 4000

No Extreme

Fig. 1. The offline performance measured in average failures per second
for Cacla, Acla and Actor Critic. After 2000 s the odd actions (top panel,
scenario Even), all actions except −10, 0 and 10 (middle panel, scenario
Bang), or −10 and 10 (bottom panel, scenario No 10 are removed.

where we only removed the actions corresponding to −10
N and 10 N performance of all discrete algorithms drops

considerably. This is due to the fact that almost all policies

found by the algorithms in the first 2000 seconds use these

actions regularly. Using its ability to generalize, Cacla will

immediately push with 9 N where it used to push with 10 N,

but the other algorithms have to relearn which action then to

take, since they regard all actions as qualitatively different

options and apparently have not learned that 9 N is the second

best option when 10 N becomes unavailable.

To get a better intuition of what happens to the perfor-

mances, we include Fig. 1 with the offline performances of

the best three algorithms: Cacla, Acla and Actor Critic. As

explained above, after 2000 seconds actions are removed

from the action space. In the left panel, we see that if

the odd actions are removed, Acla and Actor Critic get a

temporary setback, but quickly regain former performance

levels. However, in the right panel we see that if the actions

corresponding to −10 N and 10 N are removed they recover

much slower. Note that all algorithms that are not shown

in the figure perform much worse, as can be deducted from

Table VII.

The results in this subsection show that Cacla can easily

adapt to changing action spaces when some of the actions

are removed. We expect this to also be the case if the action

space is changed in other ways. It is non trivial how to adapt



a conventional reinforcement learning algorithm such as Q-

learning when for instance a different set of available actions

is chosen from the continuous underlying action space, but

Cacla can still simply use its generalization property and

adapt with little problems as long as the actions come

from the same range as the actions used for training. This

is a useful property, also because often one will want to

simulate a real-world problem and train an algorithm on this

simulation. If then the actual problem turns out to use a

different action space than the simulation, the training can

still be useful. For completeness, we note that the online

results that are not shown in this subsection are very similar

to the offline results.

V. CONCLUSION

In this paper we compared the performance of the contin-

uous action algorithm Cacla with several discrete reinforce-

ment learning algorithms: Q-learning, Sarsa, Actor Critic,

QV-learning, R-learning and a new version of the Acla

algorithm. The performance was tested on discrete action

MDPs, modeling a cart pole task and a mountain car task.

We observed that the best performance was reached by

either Cacla or Acla in both problems for all performance

measures we looked at. Both online and offline performance

was measured and in both cases Cacla performs well.

We also observed that with almost all performance mea-

sures we discussed, algorithms that in some way make use of

the state values outperform the conventional algorithms Q-

learning and Sarsa that only make use of state-action values.

These algorithms are widely used, so it is interesting to note

that their performance did not match the best performing

algorithms in this paper. Also, it is quite easy to extend state

values with eligibility traces to speed up learning. Although

we have not tested this in the experiments in this paper, the

expectation is that the algorithms using state values will then

profit even more of a performance gain compared to the state-

action based algorithms. This hypothesis should be tested in

future research.

Perhaps the most important result in this paper is the

observation that Cacla can easily handle the removal of some

of the possible actions in the cart pole task. While the other

algorithms had to spend some time learning new policies with

the changed action spaces, Cacla could easily adapt by using

its underlying continuous action space. It is easy to think of

scenarios where this can be important. For instance, consider

an application where a discrete algorithm such as Q-learning

is trained on a simulation with a set of possible actions.

Now suppose that the actual problem involves actions that are

slightly different or a different number of possible actions.

It is then non-trivial how the learned policy can be used on

the actual problem, making the simulation less useful. On

the other hand, Cacla should be able to adapt to the new set

of actions easily, whether there are more, less or different

actions available, as long as the available actions can be

thought of as lying on the same continuous underlying action

space as the ones that were used for training.

The idea used for the Cacla algorithm can not only be

applied in the reinforcement learning domain. It would be

interesting to see if similar good results can be obtained

in classification, if the classes can also be considered a

subset of a continuous underlying class. For instance, this

approach seems promising for classification problems where

the classes correspond to rankings, since here it is simple

to assume a continuous underlying space, even if the actual

space is not continuous.

Some reinforcement learning problems have inherently

discrete actions. In such problems, is may be harder to apply

the paradigm of an underlying continuous space. However,

we have shown that the novel Acla algorithm performs

well on the problems in this paper. Therefore, it would be

interesting to see if Acla also outperforms many of the other

available algorithms in other problems. Also extensions to

batch learning can easily be made. For instance, one could

construct a Neural Fitted Acla Iteration algorithm similar to

the Neural Fitted Q Iteration algorithm [4].

REFERENCES

[1] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE

Transactions on Systems, Man, and Cybernetics, SMC-13:834–846,
1983.

[2] Sridhar Mahadevan. Average reward reinforcement learning: Founda-
tions, algorithms, and empirical results. Machine Learning, 22:159,
1996.

[3] Martin Riedmiller. Neural fitted Q iteration - first experiences with a
data efficient neural reinforcement learning method. In João Gama,
Rui Camacho, Pavel Brazdil, Alı́pio Jorge, and Luı́s Torgo, editors,
Proceedings of the 16th European Conference on Machine Learning

(ECML’05), pages 317–328. Springer, 2005.
[4] G.A. Rummery and M. Niranjan. On-line Q-learning using connection-

ist sytems. Technical Report CUED/F-INFENG-TR 166, Cambridge
University, UK, 1994.

[5] A. Schwartz. A reinforcement learning method for maximizing
undiscounted rewards. In Machine Learning: Proceedings of the

Tenth International Conference, pages 298–305. Morgan Kaufmann,
Amherst, MA, 1993.

[6] S. P. Singh and R. S. Sutton. Reinforcement learning with replacing
eligibility traces. Machine Learning, 22:123–158, 1996.

[7] R. S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9–44, 1988.

[8] R. S. Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in Neural Information

Processing Systems 8, pages 1038–1045. MIT Press, Cambridge MA,
1996.

[9] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduc-

tion. The MIT press, Cambridge MA, A Bradford Book, 1998.
[10] H. van Hasselt and M. A. Wiering. Reinforcement learning in

continuous action spaces. In Proceedings of the IEEE International

Symposium on Adaptive Dynamic Programming and Reinforcement

Learning, pages 272–279, 2007.
[11] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,

King’s College, Cambridge, England, 1989.
[12] A. P. Wieland. Evolving neural network controllers for unstable

systems. In International Joint Conference on Neural Networks,
volume 2, pages 667–673, Seattle, 1991. IEEE, New York.

[13] M. A. Wiering. QV(λ)-learning: A new on-policy reinforcement
learning algorithm. In D. Leone, editor, Proceedings of the 7th

European Workshop on Reinforcement Learning, pages 17–18, 2005.
[14] M. A. Wiering and H. van Hasselt. Two novel on-policy reinforcement

learning algorithms based on TD(λ)-methods. In Proceedings of the

IEEE International Symposium on Adaptive Dynamic Programming

and Reinforcement Learning, pages 280–287, 2007.


