
An Analysis on Better Testing than Training
Performances on the Iris Dataset

Marten Schutten and Marco A. Wiering

Institute of Artificial Intelligence and Cognitive Engineering
University of Groningen, The Netherlands

Abstract
The Iris dataset is a well known dataset containing information on three different types of Iris flowers.
A typical and popular method for solving classification problems on datasets such as the Iris set is the
support vector machine (SVM). In order to do so the dataset is separated in a set used for training and
a set used for testing. The error rate, after training, for the training set should be lower than the error
rate on the test set. However, in this paper we show that when solving the classification problem for
the Iris dataset with SVMs this is not the case. Therefore, we provide an analysis of the Iris dataset
and the classification models in order to find the origin of this interesting observation.

1 Introduction
The Iris dataset [7] is a well known dataset used for classifying different types of Iris flowers (the Iris
Setosa, Iris Versicolor and Iris Virginica). A version of this dataset can be found in the UCI reposi-
tory [1], with two slight deviations from the original set [2]. Support Vector Machines (SVMs) [5, 11]
are a well known and popular method to solve classification problems such as to be solved for the Iris
dataset. Methods such as the Support Vector Machine aim to find a hyperplane that separates observa-
tions from different classes from each other. This hyperplane is learned from observations from which it
is known to which class they belong, and should then generalize to instances that have not been observed
before. One of the risks in learning this hyperplane on the basis of a limited number of examples is the
problem of over fitting: The hyperplane is constructed specifically to separate the specific observations
that are in the training set, even the ones that would be more likely to belong to a different class, when
the class were to be unknown. As a result the hyperplane generalizes very poorly and is unable to cor-
rectly classify instances in the test set that have not been observed before. The result is then a very high
classification accuracy on the train set and a much lower accuracy on the test set.

In this paper, we show that when using SVMs to solve the classification problem for the Iris dataset,
a very different problem occurs: rather than over fitting on the known data, the hyperplane is ’under
fitted’ and generalizes better to unseen instances than it is able to classify the known instances, which is
unknown to happen for any classification problem until now. The aim of this paper is to give an analysis
of the Iris dataset and the obtained classification models in order to provide insights into this problem.

The paper is organized as follows. First a short explanation of support vector machines is given,
followed by the methods through which the Iris dataset is analyzed. Finally, the dataset and classification
models are analyzed and discussed.

2 Support Vector Machines
First, a short introduction to support vector machines [5, 11] will be given. Support vector machines can
be used both for regression and classification problems, however, due to the nature of the Iris dataset,
the explanation will be limited to their use for classification problems. For the explanation, initially a
linear support vector machine will be considered for the separation of two classes. For a more thorough
explanation of SVMs, see Burges [3], on which this explanation is based.

Consider a dataset D containing N instances of one of two classes, where the i-th (with 1 ≤ i ≤ N)
instance of D is given by {xi, yi}, where xi ∈ Rd and the target class yi ∈ {1,−1}, and where d is the
number of features that describe each instance in the dataset. The goal is to construct a hyperplane of
the form given by the weight vector w ∈ Rd and offset (or bias) b ∈ R, such that for each instance i in
the dataset it holds that w · xi + b ≥ 1 for yi = 1, and w · xi + b ≤ −1 for yi = −1. Given that this
holds for all points in D, these formulae can be combined to the constraint given by equation 1.

yi(w · xi + b)− 1 ≥ 0 ∀i (1)

Now the points that lie closest to the separating hyperplane, are the points given either by w·xi+b =
1 (if yi = 1) or w · xi + b = −1 (if yi = −1). The points that satisfy these constraints are called the
support vectors. Note that the support vectors for both classes all lie at the same distance from the
separating hyperplane, which is given by 1

‖w‖ . Let the margin of the separating hyperplane be defined
as the sum of the distances to support vectors of both classes, being 2

‖w‖ . Now the goal is to maximize
this margin, by minimizing ‖w‖2, subject to the constraint given by equation 1. Thus the goal is to
find a separating hyperplane that maximizes the distance between itself and the support vectors of both
classes.

Unfortunately, it is not always the case that two classes are perfectly separable, and no solution can
be found according to these specific constraints. In order to deal with this non-separability it is required
to relax the constraints of the classification problem. This is done with the introduction of a positive
slack variable ξi for all examples in D. With the introduction of this slack variable the constraints are
now given by:

w · xi + b ≥ 1− ξi if yi = 1 (2)
w · xi + b ≤ −1 + ξi if yi = −1 (3)

ξi ≥ 0 ∀i (4)

Note that with these constraints an instance is falsely classified whenever ξi > 1. However, since
miss classifications are undesirable, the objective function that is to be minimized is rewritten from
‖w‖2 to the formula given in equation 5. In this formula C defines the cost parameter that determines
the severity of errors. Note that minimizing 1

2‖w‖
2 yields the same weight vector as minimizing ‖w‖2,

but 1
2 is added to simplify future equations.

1

2
‖w‖2 + C

N∑
i=1

ξi (5)

In order to solve this problem it can be rewritten in the form of a Lagrangian formulation, introducing
a Lagrange multiplier αi for each of the i constraints provided by equations 2 and 3. The problem
can then be defined according to a Wolfe dual formulation, defining a primal and a dual Lagrangian
formulation, given respectively by formulas 6 and 7. In the former formula µi represent the Lagrange
multipliers that are required to enforce positivity of ξi, in accordance with constraint 4.

LP ≡
1

2
‖w‖2 + C

N∑
i=1

ξi −
N∑
i=1

αi{yi(w · xi + b)− 1 + ξi}+
N∑
i=1

µiξi (6)

LD ≡
N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjxi · xj (7)

The solution can then be found by either maximizing LD or by minimizing LP , which yield the
same solutions. The constraints of both problems are given in Table 1 and the solution is given by
formula 8. Using this weight vector a classification output can be given for any unseen example x by
using equation 9.

w =

N∑
i=1

αiyixi (8)

Table 1: Constraints for the primal and dual Lagrangian formulations LP and LD.

LP LD

δLP
δw

=
δLP
δb

=
δLP
δξi

= 0

ξi, αi, µi ≥ 0

αi{yi(w · xi + b)− 1 + ξi} = 0

µiξi = 0

0 ≤ αi ≤ C
N∑
i=1

αiyi = 0

f(x) = sign(

N∑
i=1

αiyixi · x+ b) (9)

Now this solution holds for linear separating hyperplanes. However, often non-linear hyperplanes
are better suited to solve the classification problem. These non-linear hyperplanes can be described
using so-called kernel functions. Rather than using the linear form of xi · x that can be found in the
solution given by equation 9, the solution can then be found using an alternate form defined by the
kernel function K(xi,xj), as given by equation 10.

f(x) = sign(

N∑
i=1

αiyiK(xi,x) + b) (10)

A well-known kernel function is the radial basis function (RBF), which computes similarities be-
tween two examples according to equation 11. In this paper, a truncated version of this kernel was used,
so that whenever the output of the kernel function was below a certain threshold θ, it was set to 0. The
value of θ was optimized in the same manner as the other parameters for the SVM, as discussed in the
following section.

K(xi,x) = e−‖xi−x‖2/2σ2

(11)

3 Methods
In Figure 1, we show the development of the error rate over the 16 epochs for which the SVM was
trained using both a regular RBF kernel (Figure 1a) and a truncated RBF kernel (Figure 1b). The error
rate is the average error rate over 10000 runs that were performed.

epoch
0 2 4 6 8 10 12 14 16

av
er

ag
e

er
ro

r

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

train error
test error

(a) regular RBF kernel

epoch
0 2 4 6 8 10 12 14 16

av
er

ag
e

er
ro

r

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

train error
test error

(b) truncated RBF kernel

Figure 1: Learning curves for both the training and the testing set as developed over the 16 epochs for
which the SVM was trained. The error rates are averaged over 10000 runs.

The error rate is slightly lower for the truncated RBF kernel than for the regular RBF kernel (0.0144
versus 0.0157 resp. after 16 epochs for the testing set and 0.0279 and 0.0281 resp. after 16 epochs for
the training set). Interestingly, and in contrast to expectations, the error rate for the training set starts
increasing after 7 epochs for both kernels, while the error on the test set keeps decreasing.

In order to examine how the Iris dataset is classified, the first two principal components were deter-
mined using Principal Component Analysis (PCA) [10, 8]. These principal components were used to
get an insightful look at the separability of the data. Furthermore, each of the individual features, laid
out against each other is examined as well. Since the overall training error is higher than the testing error
for the Iris dataset, there must be a number of points in the dataset for which the same holds. In order
to identify these points the data were being trained and tested upon using the SVM with the truncated
RBF kernel for 10000 times, in which the data were randomly separated in a training set (90%) and a
testing set (10%). Particle Swarm Optimization (PSO) [9] was used to find the optimal parameters for
the SVM. As SVM, we used the gradient descent SVM explained in [4].

During the runs with the support vector machines a number of things were kept track of for each
data point: (1) the number of times the point was added to the testing set; (2) the number of errors that
was made when the point was added to the training set and (3) the number of errors that was made when
the point was added to the testing set. From this, the error rates can be computed both for when the data
point was added to training set and when it was added to the testing set. In order to determine whether
the error rates in the testing set were significantly higher than in the training set, Fisher’s exact test [6]
was used with α = 0.01. Finally records were kept for the α-coefficients for each point.

4 Description and Analysis of the Data
The dataset contains 3 classes of types of Iris flowers: the Iris Setosa, Iris Versicolor and the Iris Vir-
ginica. Each class has 50 instances in the set of which one is linearly separable from the other classes,
while the other classes are not linearly separable from each other. Each instance in the dataset has the
following attributes: 1) sepal length in cm; 2) sepal width in cm; 3) petal length in cm; 4) petal width in
cm. There are no instances in the dataset that miss any of these attributes. Figure 5 shows how the data
is scattered for all permutations of the different features.

-4 -3 -2 -1 0 1 2 3 4

first principle component

-1.5

-1

-0.5

0

0.5

1

1.5

se
co

nd
 p

rin
ci

pl
e

co
m

po
ne

nt

iris setosa
iris versicolor
iris virginica

Figure 2: The examples plotted using the first two principal components of the Iris dataset. The filled
points represent the examples for which the error rate is significantly higher when the example is used
in the training set than in the testing set.

sample number
55 61 69 71 73 78 84 107 111 120 124 127 128 130 134 135 139

er
ro

r
ra

te

0

0.2

0.4

0.6

0.8

1

train error
test error

Figure 3: The error rates for all points for which at least one error was made in either the training set or
the testing set.

#
true error in error in

p #
true error in error in

p
class training set testing set class training set testing set

55 ver. 0.000 0.000 1.000 120 vir. 0.099 0.089 0.332

71 ver. 0.782 0.557 < 2.2e− 16 124 vir. 0.020 0.007 0.002
73 ver. 0.533 0.330 < 2.2e− 16 127 vir. 0.265 0.090 < 2.2e− 16

78 ver. 0.226 0.029 < 2.2e− 16 128 vir. 0.278 0.056 < 2.2e− 16

84 ver. 0.951 0.713 < 2.2e− 16 130 vir. 0.001 0.001 1.000

107 vir. 0.052 0.011 7.939e− 13 134 vir. 0.675 0.173 < 2.2e− 16

111 vir. 0.003 0.003 1.000 139 vir. 0.289 0.101 < 2.2e− 16

Table 2: Error rates for all examples in which the error rate in the training set is higher than the error rate
in the testing set, along with the probability that this error rate is due to non-random chances. The points
for which this difference is significant (for p < 0.01) are emphasized. The true classes were abbreviated
to ver. (for the Iris Versicolor) and vir. (for the Iris Virginica). No instances of the Iris Setosa class need
to be examined.

The Iris dataset was first published by Fisher [7]. Over time different versions of the dataset have
been published [2] with slight alterations. For this paper the version that can be found in the UCI
repository [1] was used. This version contains two deviations from the original dataset [2] (in the 35th
and 38th example), which were corrected.

Figure 2 shows the data plotted using the first two principal components that can be obtained for this
dataset. It can be seen that the Iris Setosa class lies far apart from the other two classes and is easily
separable. The other two classes lie more closely to each other and even though most examples should
be easy to separate, around the boundary area it might be hard to differentiate between the two of them.
Note that a similar observation can be made when looking at the different features plotted together in
Figure 5.

The results of the 10000 runs performed with the SVM can be seen in Figure 3. This plot shows the
error rate for all points in both the training and testing sets. Note that only points are included in which
at least one error is made in either the training or testing set. The first 50 examples in the dataset belong
to the Iris Setosa class and as expected no errors are made when classifying instances of it. For each of
the points that have a higher error rate in the training set than in the testing set, Table 2 shows the error
rates for both sets and the results of the Fisher test (with α = 0.01). It can be seen that for four of the
examples (55, 111, 120 and 130) the difference is not significant while in all other points the error rate
in the training set is significantly higher than in the testing set. Figure 3 together with Table 2 show that
only for three examples (61, 69, and 135), the error is higher when the example is used in the test set
compared to being part of the training set.

Both in Figure 5 and 2 the examples that score better in the testing set than in the training set are

sample number
55 61 69 71 73 78 84 107 111 120 124 127 128 130 134 135 139

av
er

ag
e

al
ph

a
co

ef
fic

ie
nt

0

0.5

1

1.5

2

2.5

iris setosa iris versicolor iris virginica

Figure 4: α-coefficient for all points in which an error was made in either the training or testing set.
Points printed bold are points in which the error rate was higher in the training set than in the test set.

highlighted. Especially in the plot containing the principal components (Figure 2) it can be seen that all
of these 10 points lie around the boundary between the Iris Versicolor and Iris Virginica class. A similar
observation can be made in Figure 5, albeit not as clear for all feature combinations.

Finally, Figure 4 shows the α-coefficients for all points in which an error was made in either the
training or the testing set. The points that are printed bold are the points in which the error rate was
higher in the training set than in the testing set. This figure shows that the alpha coefficients for one
class (Iris Versicolor) are generally higher than those for Iris Virginica, which indicates a preference of
the model to classify examples as being part of the former class. Due to other examples and the kernel
function that uses distances to all examples, this does not mean that these examples are all classified as
Iris Versicolor.

5 Discussion
The aim of this paper is to identify and clarify the unusual behavior in the Iris dataset with regards to the
error rates in the training and error phases. Insight has been given how the SVM classifies different data
points, and crucial data points that are hard to classify correctly in both the training and testing phase
have been identified. We showed that particular data points close to the decision boundary are more
often classified correctly when they are in the test dataset than in the train dataset.

One of the ways this behaviour can be explained is through the use of PSO as an optimization
method. With PSO a wide variety of parameter settings is tried to find the setting that optimizes the
results for their respective test sets using many different random cross validation runs. This means that
parameter settings might be chosen that neglect performance in the training phase, in order to be able
to generalize better to unseen cases in the testing phase. Because the Iris dataset is very small, meta-
parameters were found by PSO that are useful to miss classify training points in order to obtain better
results on the test data. Somehow, the extensive parameter search with PSO has led to overfitting on the
cross validation results.

This is an important finding, and shows the importance of using a separate unpolluted dataset for
the final test. However, the Iris dataset is much too small to be split into a train-validation-test set.
Therefore, this option is not available for all datasets (also some datasets with for example fMRI scans
are very small and do not contain more than 150 examples).

We found that models can be trained that sacrifice train performance in order to obtain better results
on test examples. Still, it is complex to understand how this is exactly done in the training process, as the
conventional way of overfitting is exactly the other way around. Therefore, this effect can not be fully
accounted for by the use of extensive parameter tuning with PSO and cross validation. Furthermore,
no other cases of this phenomenon have been reported to the best of our knowledge. One of the main
reasons for this effect to occur in the Iris dataset and not in other datasets, is probably the small amount

4 5 6 7 8

sepal length

2

2.5

3

3.5

4

4.5

se
pa

l w
id

th

(a) sepal length vs sepal width

4 5 6 7 8

sepal length

1

2

3

4

5

6

7

pe
ta

l l
en

gt
h

(b) sepal length vs petal length

4 5 6 7 8

sepal length

0

0.5

1

1.5

2

2.5

pe
ta

l w
id

th

(c) sepal length vs petal width

2 2.5 3 3.5 4 4.5

sepal width

1

2

3

4

5

6

7

pe
ta

l l
en

gt
h

(d) sepal width vs petal length

2 2.5 3 3.5 4 4.5

sepal width

0

0.5

1

1.5

2

2.5

pe
ta

l w
id

th

(e) sepal width vs petal width

1 2 3 4 5 6 7

petal length

0

0.5

1

1.5

2

2.5

pe
ta

l w
id

th

(f) petal length vs petal width

Figure 5: all different permutations of the four features in the Iris dataset plotted against each other. The
filled points represent the examples for which the error rate is significantly higher when the example is
used in the training set than in the testing set.

of examples as well as the limited number of features for each example. However, we would gladly be
pointed to other datasets and/or cases where the testing results outperform the training results.

References
[1] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[2] James C Bezdek, James M Keller, Raghu Krishnapuram, Ludmila I Kuncheva, and Nikhil R Pal.
Will the real Iris data please stand up? IEEE Transactions on Fuzzy Systems, 7(3):368–369, 1999.

[3] Christopher J.C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121–167, 1998.

[4] V. Codreanu, B. Dröge, D. Williams, B. Yasar, P. Yang, B. Liu, F. Dong, O. Surinta, L.R.B.
Schomaker, J.B.T.M. Roerdink, and M.A. Wiering. Evaluating automatically parallelized ver-
sions of the support vector machine. Concurrency and Computation, Practice and Experience,
28(7):2274–2294, 2016.

[5] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273–297,
1995.

[6] Ronald A Fisher. On the interpretation of χ 2 from contingency tables, and the calculation of p.
Journal of the Royal Statistical Society, 85(1):87–94, 1922.

[7] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics,
7(2):179–188, 1936.

[8] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[9] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, Proceedings of the
IEEE International Conference on, volume 4, pages 1942–1948, 1995.

[10] Karl Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine Series 6, 2(11):559–572, 1901.

[11] Vladimir Vapnik. The nature of statistical learning theory. Springer Science & Business Media,
2013.

