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ABSTRACT
In heterogeneous multi agent systems, communication is
hampered by the lack of shared ontologies. Ontology negoti-
ation is a technique that enables pairs of agents to overcome
these difficulties by exchanging parts of their ontologies. As
a result of these micro level solutions, a communication vo-
cabulary emerges on a macro level. The goal of this paper
is to ensure that this communication vocabulary contains
words of the right level of generality, i.e. not overspecific
and not overgeneralized. We will propose a number of com-
munication strategies that enable the agents to achieve these
goals. Using experimental results, we will compare their per-
formance.

1. INTRODUCTION
A fundamental communication problem in open multi agent

systems (MAS’s) is caused by the heterogeneity of the agent’s
knowledge sources, or more specifically of the underlying on-
tologies. Although ontologies are often advocated as a com-
plete solution for knowledge sharing between agents, this is
only true when all agents have knowledge about each oth-
ers’ ontology. The most straightforward way to establish
this would be to develop one common ontology which is
used by all agents [9]. However, this scenario would be very
unlikely in open multi agent systems, as those on the inter-
net, because it would require all involved system developers
to reach consensus on which ontology to use. Moreover, a
common ontology forces an agent to abandon its own world
view and adopt one that is not specifically designed for its
task [3]. This may result in a suboptimal situation.

Ontology negotiation [2] has been proposed as a tech-
nique that enables agents to preserve their local ontolo-
gies, and solve communication problems at agent-interaction
time. Communication problems between heterogeneous agents
are solved by establishing a shared communication vocabu-
lary (or CV). Communication proceeds by translating from
the speaker’s local ontology to the communication vocabu-
lary, which the hearer translates back to its own local on-

.

tology. When two agents start communicating, they first
try to cope with the situation as is. When the speaker uses
a word that the hearer does not understand, it solves the
problem at hand by teaching the meaning of this word to
the hearer. This enables two agents that regularly commu-
nicate with each other to build towards a solution for their
semantic integration problem on an as-need basis.

Whereas an ontology negotiation protocol provides a nice
solution to incrementally establish a communication vocabu-
lary between a pair of heterogeneous agents, it is not straight-
forward how this solution scales to whole multi agent sys-
tems. A decentralized approach such as ontology negotia-
tion may give rise to a proliferation of different CV’s between
different agent pairs in the system. This would be disadvan-
tageous for the agents, as agents would have to use different
words with different agents, which would make communica-
tion unnecessarily complicated. Furthermore, agents would
have to spend much effort on building CV’s, as the CV that
has been built up with one agent may not be useful for com-
munication with another agent. Therefore, when two agents
participate in ontology negotiation to resolve their mutual
misunderstandings, they should also pursue the goal of es-
tablishing a uniform and effective CV for the benefit of the
whole community.

In this paper we will describe communication strategies
for ontology negotiation protocols that take this global goal
into account. These strategies prescribe which words and
meanings the agents should teach each other during ontol-
ogy negotiation. Regarding the words, we aim for a situation
where every agent uses the same unique word for the same
meaning. This is to be established by the agent’s word se-
lection strategy which we have studied in earlier work [5].
Regarding the meanings, we aim for a communication vo-
cabulary which enables the agents to communicate at the
right level of generality. Agents with different areas of ex-
pertise should not communicate at an overspecific level, as
not everything that is of interest to one agent is also of in-
terest to another agent. To prevent the CV from becoming
bulky and difficult to learn, the CV should not contain such
overspecific meanings. However, the meanings in the CV
should not be overgeneralized either to enable the agents
to convey sufficient information. Finding the right balance
between specificity and generality of words is to be estab-
lished by the meaning selection strategy. In this paper, we
will show how a well designed meaning selection strategy
contributes to faster semantic integration in the group of
agents.

In the next section, we review related work. In Section



3, we describe the framework and explain how the commu-
nication protocols and strategies fit in. Section 4 presents
the model that is used for the experiments. According to
that model, some integration measures are proposed that
measure the degree of semantic integration. Section 5 gives
a precise description of the meaning selection strategy. In
Section 6 the results of the experiments are presented, and
the different meaning selection strategies are compared. We
conclude in Section 7.

2. RELATED WORK
Most solutions that have been proposed for semantic in-

tegration problems are not flexible enough to be suitable
for large open MAS’s. Approaches such as ontology align-
ment [12] require ontologies to be aligned before the agents
start interacting. In open MAS’s it is not known beforehand
which agents will interact with each other, and therefore, one
can not tell in advance which ontologies must be aligned.

Ontology agents [1, 13] and mediation services [11] have
been proposed as central services that reconcile heteroge-
neous ontologies at agent-interaction time by translating be-
tween ontologies. Such services have access to a library of
concept-mappings between every ontology in the system. In
large open MAS’s, such a library would become too complex
to be reliably maintainable.

Therefore, for large open systems, a decentralized tech-
nique is needed that allows agents to solve ontology prob-
lems among themselves at the time they arise. W. Truszkowski
and S. Bailin have coined the term Ontology Negotiation to
refer to such approaches [2]. Other approaches for ontology
negotiation are [18, 17, 7].

Because the field of ontology negotiation is relatively new,
and it is a very ambitious approach to achieve semantic in-
tegration [16], there are still many open problems. One of
these problems is how a uniform CV that is shared among
the whole group of agents may result from conversations that
have taken place between pairs of agents. The question how
a global language system arises from the interactions be-
tween individual agents is well studied in the language evo-
lution community [15, 4]. Most of these approaches serve
an explanatory goal, i.e. understanding how a communica-
tion system may evolve in a group of heterogeneous agents.
Our goals, however, are purely constructive, i.e. we aim at
designing communication strategies that can be used during
ontology negotiation in order to establish a communication
vocabulary of a certain quality. In particular we aim for an
optimal distributed communication vocabulary [6], meaning
that the CV is minimal in size and sufficiently expressive.
One of the ways to make the CV minimal in size, is to ensure
that the agents communicate at the right level of generality,
which is the topic of this paper.

3. FRAMEWORK

3.1 Ontologies and vocabularies
Figure 1 shows an example of two agents in our frame-

work. The dashed rectangle shows the meaning space in the
system, i.e. the meanings that are assumed to exist in the
environment of the agents. In the example, the meanings
that constitute the meaning space are m1 to m8.

The agent’s ontology assigns names to meanings in the
meaning space. For example, the ontology of Ag1 specifies
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Figure 1: Example ontologies

that m1 is called “substance” and that m2 is called “food”.
A meaning with its corresponding name will be called a con-
cept. An arrow from concept c to concept d represents that
concept c is more general than concept d, and conversely
that concept d is more specific than concept c.

Not every agent assigns the same names to the meanings
in the meaning space. For example, Ag1 calls m1 “sub-
stance” and m2 “food”, whereas Ag2 calls m1 “matter”
and m2 “nutrition”. To avoid naming-conflicts (two agents
assigning the same name to different meanings), we assume
that every agent uses a unique set of names in its ontology.
This can be easily achieved by prefixing the names in the
ontology with namespaces.

The property that every agent in the system uses distinct
names to represent meanings is one source of the heterogene-
ity of the ontologies. Another source is that the ontologies
of the agents contain concepts that correspond to different
meanings. For example, the meanings m4, m7 and m8 are
present in the ontology of Ag2, but are not present in the
ontology of Ag1. This is a typical characteristic of hetero-
geneous multi agent systems, where every agent uses an on-
tology that is tailored to its own specific task. For example,
Ag1 can be thought of as being a butcher as its ontology
reflects expertise on meat. Ag2 can be thought of as being
a baker as its ontology reflects expertise on bread.

Whereas the agents use the concepts in their ontology
(ONT) for local knowledge representation and reasoning, for
communication they use their communication vocabulary
(CV). Note that the words in the communication vocabulary
are not necessarily shared with the other agents. The CV
contains the words that an agent may use to communicate
something, regardless whether this word will actually be un-
derstood by the listener or not. Initially, the CV of an agent
contains only the names of the concepts in its local ontology,
as these are the only words that it knows for the meanings
in its ontology. Because these words are unique, none of
the other agents will understand them. When an agent is
not understood by another agent, it explains the meaning
of the uncomprehended word, after which the listener adds
the word to its communication vocabulary. For example, the



Figure 2: Message protocol

word “food” in the communication vocabulary of Ag2 is the
result of a conversation in which Ag1 used “food”, Ag2 did
not understand it, after which Ag1 taught the meaning of
“food” to Ag2. This teaching process enabled Ag2 to formu-
late a definition of the word “food” in terms of its ontology,
namely “equiv(food,nutrition)”. This states that the word
“food” is equivalent in meaning with the “nutrition” con-
cept in its ontology. A definition may also state that a word
in the CV means something more specific than a concept in
the ontology. For example, “subset(brownbr,food)” in the
CV of Ag1.

3.2 Communication protocol
Figure 2 shows an ontology negotiation protocol that is

used in anemone [7]. Using this protocol, agents like Ag1
and Ag2 may successfully communicate if this is enabled
by their communication vocabularies. Otherwise the agents
extend their communication vocabularies to make commu-
nication possible. Three layers can be distinguished in this
protocol. The upper layer is the Normal Communication
Protocol (NCP), which deals with information exchange be-
tween the agents. If this is not possible, the agents switch
to the Concept Definition Protocol (CDP), where the agents
give a definition of a word in terms of other words. If this
is not possible (when the listener does not understand the
definition), the agents switch to the Concept Explication
Protocol (CEP), where the agents convey the meaning of a
word by pointing to examples.

We will explain the protocol in further depth below. Com-
munication starts in state 1 where Ag-i wishes to commu-
nicate a meaning from its ontology to Ag-j. For example,
suppose that Ag2 wishes to communicate the meaning m8
(corresponding to the concept “whitebr”) to Ag1. In state
1, Ag2 must select an appropriate word in the communi-
cation vocabulary to communicate m8. There are differ-
ent possibilities for this. The first possibility is to select
a word in the CV that is equivalent in meaning with m8
(such as the word “whitebr”), and send a message “Exact-
Inform(whitebr)” after which it ends up in state 3. If the
CV of Ag1 would have contained the word “whitebr”, Ag1
would have translated this word to its own ontology, and
responded “OK”. As Ag1 does not know the meaning of
“whitebr”, it responds with “StartCDP” to incite Ag2 to

convey the meaning of “whitebr” in the Concept Definition
Protocol. Another possibility for Ag2 to convey the mean-
ing m8 is to choose a word in the CV that means something
more general than m8 (such as the words “bread”, “nutri-
tion”, “food” or “matter”), and send a message with “in-
form” after which it ends up in state 2. When Ag1 does not
know the word used in the message, it responds “StartCDP”
to start the Concept Definition Protocol. If Ag1 knows the
meaning of the word, it checks whether the message is not
overgeneralized. If it believes the message might be over-
generalized, it responds “ReqSpec” (Request specification)
to incite Ag2 to use a more specific word. If Ag1 assesses
that the message is not overgeneralized, it translates the
message to its ontology and responds “OK”. The method
for recognizing overgeneralized messages we use here is a
simplified version of the one used in the anemone protocol.
If the receiver’s ontology contains no concepts that mean
something more specific than the word in the message, the
receiver assesses that the message is not overgeneralized. In
this case, the receiver regards requesting for a more specific
word useless, because its ontology is not fine grained enough
to process any extra information. If the receiver’s ontology
contains concepts that are more specific than the meaning
of the word, the receiver believes that the message might be
overgeneralized and responds “ReqSpec”.

The agents enter the Concept Definition Protocol in state
5, where Ag-i defines the meaning of the word in terms of
other words in the communication vocabulary. Suppose that
Ag2 wishes to define “nutrition”, it sends a message “De-
fine(equiv(nutrition, food))” to Ag-1, which enables Ag1 to
derive the definition of “nutrition” after which Ag1 answers
“ExitCDP”. If the receiver of the “Define” message does not
understand the definition of a message, it responds “Start-
CEP” to start the Concept Explication Protocol which in-
cites the sender to explicate the meaning of the word by
pointing to examples. If the sender of the definition is not
able to give a definition (for example, Ag2 does not know
any other word for “whitebr”), it sends the message “Pro-
poseStartCEP”.

In the Concept Explication Protocol (state 7), the agent
conveys the meaning of the word by giving a set of positive
and negative examples. More information on this type of
concept learning can be found in [8].

3.3 Communication strategies
Having described the ontology negotiation protocol, we

will now describe how the communication strategy fits in.

Word selection strategy
Suppose that Ag2 has the intention to convey the meaning
m2. It has two words in its communication vocabulary that
correspond to this meaning, namely “nutrition” and “food”.
The word selection strategy selects one of these word. In pre-
vious work [5], we have shown that the most effective word
selection strategy is to choose the word that has most fre-
quently been used by other agents. In this paper, we will
use this word selection strategy, and focus on the other com-
munication strategy: the meaning selection strategy.

Meaning selection strategy
Consider again the situation in state 1 of the protocol where
Ag2 intends to convey the meaning m8 (“whitebr”). As has
been argued in the previous section, Ag2 may convey this



meaning by choosing a word that means m8 or a word that
means something more general than m8, i.e. a word that
means m4, m2 or m1. The meaning selection strategy pre-
scribes which meaning Ag2 should choose. A good mean-
ing selection strategy selects a meaning that is not overgen-
eralized in order not to provoke the response “ReqSpec”.
However, the meaning selection strategy should not select a
meaning that is too specific either, to prevent the communi-
cation vocabulary from becoming large and filled with words
that are unnecessarily specific. Examples of overgeneralized
concepts are m1 and m2, as from a god’s eye perspective
we can predict that this will provoke a “ReqSpec” answer
from Ag1. An example of an overspecific concept is m8, be-
cause from a god’s eye perspective we can determine that
this word contains superfluous information for Ag1. m4 is
at the right level of generality. It is not overspecific as it is
more general than m8 and thereby more widely applicable.
Furthermore, from a god’s eye perspective, we can assess
that it is not overgeneralized as it will not provoke a “Re-
qSpec” answer.

Of course, the agents do not have access to this god’s eye
perspective. They therefore do not know which words are
overgeneralized and which are overspecific. The difficulty
of the meaning selection strategy lies in the making of an
educated guess which word is at the right level of specificity.
Before we describe how this can be done, we will present the
model in which we can test different strategies.

4. MODEL
The experiments are performed using a set of agents MAS =

{Ag1..Agn}. The ontologies of the agents are randomly cre-
ated and, like the ontologies in Figure 1, may cover different
parts of the meaning space. The formal counterpart of the
meaning space in Figure 1 is defined using graph theory [10].
A meaning space M is defined as a rooted tree (V, E), where
V is a set of vertices, E is a set of directed edges, and a par-
ticular vertex in V is designated as the root. A vertex vj

is a child of vertex vi iff 〈vi, vj〉 ∈ E. A vertex with no
children is called a leaf ; a vertex that is not a leaf is called
internal. A vertex vj is a descendant of vertex vi (and con-
versely vi is an ancestor of vj) iff there is a directed path
from vi to vj . If T is a rooted tree with root v0, then ln(vi)
denotes the level number of vi which equals the length of
the unique directed path from v0 to vi. The depth of a tree
is the largest level number achieved by a vertex in that tree.
The following definition is useful to characterize the shape
of a meaning space.

Definition 1. A meaning space M = (V, E) is defined ac-
cording to B = (b0, .., bd) if:

• d is the depth of the tree M

• for each vi ∈ V , vi has bln(vi) children

For example, the meaning space in Figure 1 is defined ac-
cording to (1,2,2,0), because m1 (at level number 0) has 1
child; m2 (at level number 1) has 2 children; m3 and m4 (at
level number 2) have 2 children; m5, m6, m7 and m8 (at
level number 3) have 0 children.
An ontology ONT is defined as a tuple 〈C, M, I〉, where C is
a set of concept names, M = (V, E) is a meaning space and
I is a bijective mapping from C to V . To be able to char-
acterize the ontologies in the system, we use the following
definition

Definition 2. Given an ontology ONT = 〈C, M, I〉, where
M = (V, E). ONT is defined according to B and Bg if

• M is defined according to B, and

• V ⊆ V ′, E ⊆ E′, where

– M ′ = (V ′, E′) is a meaning space defined accord-
ing to Bg.

For example, the ontologies of Ag1 and Ag2 in Figure 1 are
defined according to B = (1, 1, 2, 0) and Bg = (1, 2, 2, 0).

4.1 Integration Measures
In this section, we will define some measures which indi-

cate how well the agents can understand each other. Sup-
pose that Agi wishes to communicate a meaning m to Agj .
If Agi can do this in only the NCP layer (the upper layer in
the protocol of Figure 2), the understandings rate between
Agi and Agj with respect to meaning m is 1; if the agents
have to visit the CDP or CEP layer, the understandings rate
is 0.

Definition 3. MPUR: Meaning and Pair dependent Un-
derstandings Rate.
MPUR(m, 〈Agi, Agj〉) is

• 1 if the conversation to communicate m from Agi to
Agj finishes without visiting the CDP and CEP layer

• else 0.

The following measure indicates how well an agent Agi can
communicate an average concept to Agj (ONTi is defined
as a tuple 〈C, 〈V, E〉, I〉, according to definition 2):

Definition 4. PUR: Pair dependent understandings rate
PUR(〈Agi, Agj〉) = 1

#Vi

P
m∈Vi

MPUR(m, 〈Agi, Agj〉)
The following measure indicates how well an average agent
can communicate an average meaning to an average other
agent.

Definition 5. UR: Understandings rate
UR = 1

n2

P
Agi,Agj∈MAS PUR(〈Agi, Agj〉)

If the understandings rate is 1, every agent can communi-
cate everything to every other agent.

5. FINDING THE RIGHT LEVEL OF GEN-
ERALITY

Using the different integration measures introduced in the
previous section, we can characterize overgeneralized and
overspecific concepts in further depth.

5.1 From a god’s eye view

Property 1. Teaching overgeneralized concepts does not
increase MPUR (definition 3).

We will illustrate this property using the example where Ag2
intends to communicate m8 (the meaning of “whitebr”) to
Ag1. Suppose Ag2’s meaning selection strategy selects the
overgeneralized meaning m1 (the meaning of “matter”). Be-
fore Ag2 sends this message, MPUR(m8, 〈Ag2, Ag1〉) = 0



(because Ag1 does not understand the word “matter”). Af-
ter Ag2 has taught the concept “matter” to Ag1, MPUR(m8, 〈
Ag2, Ag1〉) still equals 0 (because “matter” invokes a “Re-
qSpec” response and Ag2’s second attempt to convey m8
fails). Now suppose that Ag2’s meaning selection strat-
egy selects the meaning m4 (corresponding to the word
“bread”). This meaning is not overgeneralized, because
MPUR(m8, 〈Ag2, Ag1〉) becomes 1 after the concept “bread”
has been taught to Ag1 (because “bread” invokes an “OK”
response).

Property 2. Teaching overspecific concepts gives rise to
little increase in PUR (definition 4).

Consider again the situation where Ag2 intends to commu-
nicate m8 (“whitebr”) to Ag1. Suppose that the CV’s of
Ag1 and Ag2 are still in their initial configuration, i.e. they
only contain the names of the concepts in their ontologies.
Suppose that Ag2’s meaning selection strategy selects the
meaning m8 (corresponding to the word “whitebr”). Be-
fore Ag2 sends this message, PUR(〈Ag2, Ag1〉) = 0 (Ag2
can not communicate anything to Ag1). After Ag2 has
taught the word “whitebr” to Ag1, PUR(〈Ag2, Ag1〉) =
1
5
·MPUR(m8, 〈Ag2, Ag1〉) = 1

5
. Now, suppose that Ag2’s

meaning selection strategy would have selected “bread”. Af-
ter Ag2 has taught the word “bread” to Ag1, PUR(〈Ag2, Ag1〉)
= 1

5
·(MPUR(m8, 〈Ag2, Ag1〉)+ 1

5
·MPUR(m7, 〈Ag2, Ag1〉)+

1
5
·MPUR(m4, 〈Ag2, Ag1〉)) = 3

5
. Note that, compared to

the word “bread”, the teaching of the word “whitebr” gives
rise to little increase in understandings rate between the pair
(and therefore also in understandings rate in general). This
is why “whitebr” is overspecific, and “bread” is not.

5.2 From an agent view
Property 1 and 2 characterize overgeneralized and over-

specific words by describing how their teaching influences
the integration measures. However, this characterization
can not be immediately used by an agent to find the right
level of generality. Because one agent does not have ac-
cess to the other agent’s ontology, it can not compute how
the teaching of a word influences the understandings rate.
Therefore the agents follow the expected increase in under-
standings rate.

We use the notation Exp(c, MPUR(m, 〈Agi, Agj〉)) to re-
fer to the expected value of MPUR(m, 〈Agi, Agj〉), after
the concept c has been taught. Given that the current
MPUR(m, 〈Agi, Agj〉) is 0, the expected value after c is
taught can be calculated as follows (Mi is the meaning space
in Agi’s ontology, and Mj the meaning space in Agj ’s on-
tology)

• if I(c) = m then Exp(c, MPUR(m, 〈Agi, Agj〉)) = 1

• if m is a descendant of I(c) in Mi then
Exp(c, MPUR(m, 〈Agi, Agj〉)) =Pr(I(c) is not inter-
nal in Mj)

• if the first two conditions do not hold then
Exp(c, MPUR(m, 〈Agi, Agj〉)) = 0

The first condition states that if c exactly means m, then
the agent is certain that teaching the word c enables com-
munication of the meaning m. The second condition states
that, if c means something more general than m, the ex-
pected MPUR equals the probability that the other agent

does not consider the word c overgeneralized. In our case
this boils down to the probability that the meaning of c is
a leaf in Mi, i.e. the ontology of Agj does not contain more
specific concepts than c. The last condition states that, if
c is not equal or more general than m, c can not be used
to communicate m, and therefore the teaching of c will not
increase the MPUR w.r.t. m.

The expected PUR (corresponding to definition 4) after c
is taught can be calculated by averaging over the expected
MPUR’s:

• Exp(c, PUR(〈Agi, Agj〉)) =
1

#Vi

P
m∈Vi

Exp(c,MPUR(m, 〈Agi, Agj〉))

Because the agents must base their decision which meaning
to select on expectations, the agents can not be certain that
they find the right level of generality. Therefore, they must
decide whether to attach more value to expected MPUR, or
to expected PUR. This decision is set down in the parame-
ters θ1 and θ2 which indicate the importance of respectively
MPUR, and PUR. Using these parameters, the meaning that
the meaning selection strategy selects is given by:

Definition 6. Given that Agi intends to communicate a
meaning m. The meaning selection strategy is described by:
argmaxc∈Ci(θ1 · Exp(c, MPUR(m, 〈Agi, Agj〉))+
θ2 · Exp(c, PUR(〈Agi, Agj〉)), where:

• θ1 is the importance factor for MPUR

• θ2 is the importance factor for PUR

In the next section we will investigate the effects of different
importance factors for MPUR and PUR.

6. EXPERIMENTS
For our experiments, we adopt a group of 15 agents. An

agent’s ontology is randomly created according to Bg =
(3, 3, 3, 3, 3, 0) and B = (2, 2, 2, 2, 1, 0), and contains 46 con-
cepts. An experiment consists of t steps, where at each step
a random speaker and hearer is selected from the group of
agents, and a random concept from the speaker’s ontology.
We have prevented the same hearer-speaker-concept pair to
be selected twice in the same experiment. The speaker com-
municates the concept to the hearer using a dialogue that
conforms to the anemone communication protocol (Figure
2) and a word selection strategy that selects the most fre-
quently used word [5]. The speaker follows a meaning selec-
tion strategy that conforms to definition 6. After each step,
we measure the following:

1. UR: the understandings rate, calculated according to
definition 5.

2. Avg. Dialogue length : The average length of a dia-
logue of a randomly selected speaker-hearer-concept.

3. Avg. Nr. CDP : The average number of times that a
concept is taught in (only) the CDP layer, in a dialogue
of a randomly selected speaker-hearer-concept.

4. Avg. Nr. CEP : The average number of times that a
concept is taught in the CEP layer, in a dialogue of a
randomly selected speaker-hearer-concept.



In the next sections we will describe the results of six differ-
ent experiments that were performed using different mean-
ing selection strategies. To obtain statistical significance, we
have performed every experiment 10 times of which we will
present the mean outcomes. For all results, the standard
deviation was less than 5 percent of the mean.

6.1 Agents that know the ontology model
In the previous section, we have argued that the speaker

can determine the expected MPUR after teaching a concept
by using the probability that the hearer’s ontology contains
no subconcepts of that concept. In this section, we assume
that the agents know the ontology model, i.e. they know
that B = (2, 2, 2, 2, 1, 0) and Bg = (3, 3, 3, 3, 3, 0). With this
knowledge, an agent Agi can compute the probability that a
meaning m is considered (non-) overgeneralized by an agent
Agj as follows:

• if ln(m) < the depth of M then Pr(m is internal in

Mj) =
Qln(m)

i=0
bi

b
g
i

• if ln(m) = the depth of M then Pr(m is internal in
Mj) = 0

• Pr(m is not internal in Mj) = 1 - Pr(m is internal in
Mj)

In these formulae, b0, .., bd are typical elements of vector B,
and bg

0, .., b
g
d are typical elements of Bg.

For example, in our experiments, the probability that a
meaning at layer number 0 is internal is 2

3
. The probability

that a meaning at layer number 4 is internal is 2
3
· 2
3
· 2
3
· 2
3
· 1
3
.

The probability that a meaning at layer number 5 is internal
is 0.

A common pattern of dialogues in anemone is that the
speaker speaks a relatively general concept c, after which
the hearer requests for specification, after which the speaker
applies its meaning selection strategy a second time and
speaks a more specific concept d. When the speaker applies
the meaning selection strategy for the second time, it can
use extra knowledge to compute the probability that d is
considered overgeneralized by the hearer, namely that con-
cept c is considered overgeneralized. We incorporate this
idea in the meaning selection strategy using a conditional
probability. An agent Agi that knows that a meaning n is
overgeneralized for the hearer Agj computes the probability
that a (more specific) meaning m is considered overgeneral-
ized as follows:

Pr(e1|e2) = Pr(e1)
Pr(e2)

, where

• e1 is the event that m is internal in Mj

• e2 is the event that n is internal in Mj , where n is an
ancestor of m.

This can be proven as follows. According to Bayes theorem

[14], Pr(e1|e2) = Pr(e2|e1)·Pr(e1)
Pr(e2)

. Note that Pr(e2|e1) is 1,

because e2 is implied by e1. Hence, Pr(e1|e2) = Pr(e1)
Pr(e2)

.

Experiment 1
In the first experiment, we used parameters θ1 = 1 and
θ2 = 0. In other words the agents only take the expected
MPUR into account in their meaning selection strategy. Be-
cause they are only interested in the expected increase in

MPUR concerning the meaning that they currently want
to convey, we call this strategy a short term strategy (STS).
The results of applying a short term strategy for 10000 steps
is shown in Figure 3. The situations at 0 steps can be
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Figure 3: Results experiment 1

explained as follows. Because the agents have not taught
any concepts to each other, no agent understands any other
agent, hence UR is 0. This means that in every dialogue, the
agents have to visit the CDP or CEP layer of the protocol.
Because the agents do not share any words that they can use
for giving concept definitions, all teaching of new words is
done using CEP (where the meaning of a word is conveyed
by pointing to shared instances). Hence Avg.Nr.CEP is 1
and Avg.Nr.CDP is 0. Because the agents visit the CEP
layer every dialogue, the average dialogue length is 2.

As the number of steps increase, the agents teach con-
cepts to each other, and the UR slowly increases. Also, the
Avg.Nr.CDP increases because giving definitions becomes
a viable option to teach new concepts, once a substantial
amount of concepts is shared. As a result of this, there is
less need for CEP, and the Avg. Nr CEP slowly decreases.
Hence, the Avg. dialogue length also decreases.

Experiment 2
In experiment 2, we used parameters θ1 = 0 and θ2 = 1.
In other words, the agents only take the expected PUR into
account in their meaning selection strategy. Because they
are interested in the expected increase in MPUR concern-
ing any concept in their ontology, regardless whether they
currently intend to convey it or not, we call this a long term
strategy (LTS). The results of applying the long term strat-
egy for 10000 steps is shown in Figure 4.
Using the long term strategy, the Avg.Nr.CEP is relatively

high in the beginning. This is because the speaker may end
up teaching three or four general concepts to the hearer,
before it teaches the concept that is specific enough for the
hearer to accept. As a result of this, the Avg. dialogue
length is also relatively high. We can also observe that the
strategy that aims at increasing the PUR, indeed gives rise
to a fast increase in UR. Therefore, the Avg.Nr.CEP and
Avg. Dialogue length decrease quickly in the beginning.

One of the reasons that experiment 2 exhibits a faster in-
crease of UR than experiment 1 is that the Avg.Nr.CEP is
higher in experiment 2 than in experiment 1. Another rea-
son is that the concepts that are taught in experiment 1 are
overspecific and therefore only increase UR a little (property
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Figure 4: Results experiment 2

2). To support this claim we included Figure 6 where the
strategies in experiments 1 and 2 (and 3) are compared in a
graph with the total number of CEP on the x-axis. Further-
more, this figure reveals that the total number of CEP that
is required to reach an UR of 1 is around 1300 using LTS,
and around 5000 using STS. Therefore, the communication
vocabulary that is produced by LTS is also much smaller
than the CV that is produced by STS.

The following table compares the short term strategy (ex-
periment 1) with the long term strategy (experiment 2).

STS LTS
Increase in UR - +

Initial Avg.Nr.CEP. + -
Avg. Dialogue Length + -

With respect to a fast increase in UR, the LTS performs
better than the STS. However, the dialogues in the LTS are
longer, and the Avg.Nr.CEP is high in the beginning. In the
following experiment, we aim at achieving the best of both
worlds.

Experiment 3
In experiment 3, we used parameters θ1 = 1 and θ2 = 5,
such that the agents take the expected MPUR and PUR into
account. Because it is a mixture of the short term strategy
and the long term strategy, we call this the medium term
strategy (MTS). The results are shown in Figure 5. As this
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Figure 5: Results experiment 3

Figure reveals, the MTS gives rise to a faster increase of UR
than the STS (experiment 1), and it gives rise to shorter
dialogues and initial Avg.Nr.CEP than the LTS.
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Figure 6: Comparison of experiments 1,2 and 3

6.2 Agents that learn the ontology model
The three experiments described in the previous section

build on the assumption that the agents know the ontology
model. In this section, we do not make this assumption,
and make the agents learn the ontology model during their
conversations. This is done as follows. For every meaning
in its ontology, an agent keeps track of:

• N1 the number of agents that regarded the meaning
overgeneralized. These agents have responded “Re-
qSpec” to Inform-messages containing this meaning.

• N2 the number of agents that did not regard the mean-
ing overgeneralized. These agents have responded “OK”
to inform-messages containing this meaning.

N1 and N2 are both initialized to 1. Using these values for
meaning m, agent Agi can approximate the probability that
m is internal in a meaning space Mj as follows:

• Pr(m is internal in Mj) = N1
N1+N2

Experiment 4,5,6
Experiments 4,5 and 6 were performed using STS, LTS and
MTS respectively, with agents that learn the ontology model
as they participate in conversations. Figure 7 shows the re-
sults of experiments 4,5 and 6 in a similar fashion as Figure
6. This figure reveals that STS in experiment 4 gives rise to
very similar results as STS in experiment 1. This is because
STS incites agents to select the most specific meaning. The
inaccurate approximation of the ontology model in experi-
ment 4, does change this strategy, as the agents will continue
to select the most specific meaning anyway. The LTS incites
the agents to select the most general meaning. Therefore,
the LTS in experiment 5 gives rise to the same results as
the LTS in experiment 2. The situation is different with
the MTS, which incites agents to select a meaning that is
a right balance between specificity and generality. An inac-
curate approximation of the ontology model, does influence
the results of the MTS, as can be seen when the results of
experiment 3 are compared with experiment 6 in Figure 6
and 7.
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Figure 7: Comparison of experiments 4,5 and 6

7. CONCLUSION
In this paper, we have argued that finding the right level

of generality is important for ontology negotiation. We have
experimentally supported this claim by comparing different
communication strategies that incite the agents to convey
their information at different levels of generality. An agent
that conveys information using a very specific word, runs
the risk that the other agent does not know the word. An
agent that conveys information using a very general word,
runs the risk of being too vague which would result in a
lengthy dialogue.

We have also shown that the agents can reliably assess
the right level of generality themselves. They may do this
by recording how many other agents do and do not con-
sider a meaning overgeneralized. As an agent participates
in conversations, it builds up a model of the other agents’
ontologies, which enables it to find the right level of gener-
ality.

We believe that the communication strategies discussed
in this paper are useful for agents in heterogeneous systems,
as they prescribe which individual actions the agents must
undertake in order to achieve the global goal of establish-
ing an effective communication vocabulary. We intend to
continue this line of research by incorporating tasks in the
model. In such a model, the criteria of overgeneralization
and overspecification become dependent on the tasks that
the agents are discussing. Furthermore, we intend to enrich
the ontologies of the agents with additional constructs such
as attributes and part-of relations.
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