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Learning to Control Forest Fires

Marco Wiering1 and Marco Dorigo2

Abstract

Forest fires are an important environmental problem. This paper describes a
methodology for constructing an intelligent system which aims to support the human
expert's decision making in fire control. The idea is based on first implementing a fire
spread simulator and on searching for good decision policies by reinforcement learning
(RL). RL algorithms optimize policies by letting the agents interact with the simulator
and learn from their experiences. Finally, we observe different problems and propose
solutions for solving them. Among these problems are storing policies for huge state
spaces and coping with multiple agents which need to learn cooperative strategies.

1. Introduction

Forest fires. Forests play a crucial role for sustaining the human environment and
because forest fires are among the largest dangers for forest preservation, it is not a
surprise to see increasing state expenditures for forest fire control. Despite of this,
annually millions of hectares of forests are still destroyed by fires. That this number
has not declined implies that controlling fires is a complex task, and indeed forest
fires can become as large as 600 km² within 9 days and cost millions of dollars to
extinguish (The Petawawa NF Institute 1982). Although most fires are extinguished
quickly, a few forest (or bush) fires become uncontrollable for human intervention
after which they cause huge damages to the environment and endanger human lives.
E.g., Ash Wednesday, the SA & Victoria (Australia) fire disaster in 1983, burned
392 000 ha of (grass) land and killed 75 people (Moore/Trevitt 1991).
     Environmental decision support. Environmental protection receives growing
interest from the computer science community. Research ranges from using informa-
tion technology (IT) for efficiently recording, processing and distributing environ-
mental data to modelling and simulation of environmental processes. Environmental
decision support systems (EDSSs) are systems which integrate databases and models
and which support a user in her decision making regarding environmental problems
(Rizzoli/Young 1997). Environmental problems involve many interacting
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subprocesses, which makes choosing good decisions in real time very difficult for
human experts. Therefore, some EDSSs have been developed which contain
intelligent subsystems for advising the user. Examples of intelligent subsystems are
expert systems, planning tools, and optimization methods. In this paper we will
consider the latter.
     Complex problem solving. Complex problem solving refers to a broad class of
methods which may be used to compute solutions for problems which are hard to
solve by human experts. Well known examples are the problems in combinatorial
optimization such as the traveling salesman problem (TSP). A wide variety of
algorithms for finding solutions to such problems have emerged from operations
research (OR) and artificial intelligence (AI) during the last decades, examples are
genetic algorithms (Holland 1975), tabu search (Glover/Laguna 1997) and the ant
colony system (Dorigo et al. 1996, Dorigo/Gambardella 1997). These algorithms are
currently being applied to real world problems such as scheduling containers
(Gambardella et al. 1998), and when wisely applied result in both economical as
ecological gains.
     Steps in forest fire control. Forest fires depend on three things: fuel, heat and
oxygen. Taking away one of them will put out the fire. Methods (resources) for
controlling the fire can be divided into airborne agents and ground agents. Airborne
agents such as airplanes and helicopters drop water or chemical retardants in front of
the fire and take away heat or oxygen. Ground agents such as trucks or land rovers
are equipped with water tanks for directly attacking the fire. Other ground agents are
bulldozers, tractors or people equipped with e.g. chain saws. These agents cut
firelines, which is an effective means for removing fuel. The choice of methods and
equipment which are actually used depends on the country and kind of environment
(Calabri 1982).
     Once a fire outbreak is signalled, the fire manager evaluates the situation and
makes an initial attack plan to stop the spread of the fire. This plan consists of a
number of firelines (subplans) which break the fire-propagation. Then she allocates
resources from neighboring resource bases to fulfill all subplans. Once the resources
have started the fight, the fieldcommander is in control. He coordinates the teams in
the field and gets a stream of online information which enables him to reevaluate
plans constantly, e.g. if the situation gets too dangerous, he can choose to retreat.
     Fire management decision support systems. Currently, a few EDSSs have been
constructed to support fire managers in their decision making (Beer 1990, Avesani et
al. 1993, Kourtz 1994). The CHARADE project (Ricci et al. 1994) is a software
platform for the development of intelligent EDSSs, and has e.g. been used to
construct a working EDSS for managing first intervention in forest fires. The plan-
ning system integrates case-based reasoning and constraint reasoning (Avesani et al.
1993) and is integrated with a Geographic information system (GIS) for displaying
spatial data and a model for simulating forest fires. Kourtz (1994) describes various
applications of expert systems and AI algorithms to support managing Canadian
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forest fires. Example applications are improving fire detection, computing cost-
effective resource allocation and predicting forest fire occurrence.
     Learning to control forest fires. We are interested in supporting the decisions
during a fire fight. Since the number of possible situations is very large, it is
practically impossible to design and implement good decision policies for all agents
by hand. Instead, we will use reinforcement learning (RL) to learn reactive policies
which map agent's inputs to appropriate actions. The RL methods we will use are
based on learning a mapping from inputs to evaluations of actions by trial and error.
These evaluations correspond to the expected cumulative cost of particular fire
situations and enable selecting the actions which minimize expected cost. RL
methods have been successfully applied to learning to play backgammon at human
worldclass level (Tesauro 1992) and to learning to control an ensemble of elevators
in a simulated building (Crites/Barto 1996).
     Outline of this paper. In Section 2, we describe the forest fire simulator. In
Section 3, we describe the fire fighting team. In Section 4, we describe how we are
going to apply reinforcement learning. In Section 5, we conclude with a short
discussion.

2. The Forest Fire Simulator

The forest fire simulator is the heart of the system, since the agents will learn their
decision policies while interacting with the simulator. The simulator determines how
the environmental state will change during each time step. It consists of an initial
environmental state, a set of possible environmental states, and a model for fire
spreading.
     The environmental model. The environment is represented as a grid-based
model. We have global variables and local variables. There are many global
variables which need to be considered for modelling the spread of fire. We first
consider only the most important global variables: wind speed and wind direction.
When the wind is strong, the fire spreads much faster and we have to take this into
account. The wind direction influences in which direction the fire is propagated. The
local variables describe the state of each gridcell by the following attributes:

1) Terrain with the possible set of states: {trees, grass, empty, water, asset}. Here
assets are special states which have to be protected at high cost.

2) Fire activation, a continuous variable which denotes how much the fire intensity
is at a particular gridcell. It determines when a gridcell starts burning and how
much heat it transfers to neighboring cells.

Fire spreading models. Developing fire spreading models is a difficult task. Data
from field experiments can be used to design, calibrate and extend models. Most
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approaches (Rothermel 1972, Beer 1991) for modelling the propagation of forest
fires use a set of partial differential equations. The problem with these models is that
they often do not take all local characteristics of the environment into account.
Another modelling approach is to use cellular automata, where the dynamics are
described by a set of transition functions which map the state of a local neigh-
borhood to the change of the contents of some gridcell. We will use this latter
approach.
     The forest fire dynamics. We have a set of transition functions which determine:
(1) Ignition levels of the different fuel-types, (2) How much activation is propagated
from one state to another state given the wind speed, and (3) How the fire activation
changes due the burning of the fuel. These functions need to be calibrated and may
contain noise to allow for a large variety of outcomes. Due to its simplicity, the
model also allows for changing wind speeds and directions during a simulation.
     At time step 0, a fire starts at some gridcell. This determines the initial environ-
mental state. This fire spreads according to the given transition functions mentioned
above, and after some time (the time needed to signal the fire) the fire team is noti-
fied. From this moment on the dynamics of the forest fire is influenced by agent
actions.
     Incremental design. Like all modelbuilders, we have to face the trade-off
between accuracy and efficiency of the model. If we want to model the forest fire
dynamics very accurately, detailed knowledge about the environment should be
given and the computational demands for simulating the fire would easily become
overwhelming (since the states are very small). On the other hand, it may be argued
that if we make the model too simple, we risk that our algorithms will not learn to
control realistic fires. Therefore, we propose to incrementally increase the com-
plexity of the model. We do not immediately include global variables such as
temperature, drought, and weather conditions (rainfall) in our model. We also do not
use local variables such as moisture, slope and slope direction (for mountains), and
the height of flames. The simplistic model allows us to study learning fire fighting
strategies without getting confused by all the details. After we have constructed
algorithms which work well for the first model, we add different fuel types, forest
fire types, weather types etc.

3. The Fire Fighting Team

The goal of our fire fighting team is to minimize the total cost due to the fire. This
means that the fire should be put out in the most cost effective way.
     The plan. Methods to control forest fires follow the following plan:
1) Create firelines which stop the fire from spreading across particular boundaries.

Since the size of the area enclosed by the firelines is lost, it should be
minimized.
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2) Decrease the speed with which the fire spreads by dropping waterbombs in
order to make plan (1) more successful.

The fire manager. The fire manager is a special kind of agent which is responsible
for making and coordinating the plans of the agents. A fire manager is responsible
for the first attack and for allocating resources. The first attack plays an important
role, since if it is successful, then the fire can be handled easily. If it is not success-
ful, then the fire may become uncontrollable, although the fire can still be managed
(e.g. assets may be protected). Once a fire is signalled, the following steps are made:

(1) The behavior of the fire is simulated.
(2) The fire manager evaluates the situation and designs a number of firelines

(usually 1 to 3) which stop the fire front from advancing.
(3) The fire manager selects and allocates resources (agent teams/equipment) for

solving each subplan.
(4) The resources are brought to their starting place and execute their plans.

Ground agents. Although in reality there are various types of ground agents, we
start with a single ground agent type which can only cut firelines. The ground agents
can be considered as a team of five persons equipped with chainsaws etc. They are
sent to their starting position by air (helicopters) from a specific resource base. At
each time step, ground agents select one out of ten possible actions: an action
consists of a direction for moving (including standby) and the decision whether the
agent wants to cut a fireline or not. The ground agents are characterized by their
traveling speed and cutting speed. The cost of using groundagents is calculated by
the time they have worked and the distance the helicopter has to travel to bring them
and pick them up. Finally, there is a large penalty for cases in which ground agents
are caught by the fire and accidents take place.
     Airborne agents. The team consists furthermore of a number of airplanes which
can move to each of the four directions at high speed and drop a waterbomb. The
positions on which water is distributed after dropping a waterbomb depends on the
direction and speed of the airplane. The most effective place to drop water is in front
of the fire. The effect is that waterbombed cells will have their fire activation
decreased. Once the agents' water reservoirs are empty, they have to return to refill
which takes some time. These agents are characterized by their flying speed, landing
time, taking off time, refilling time, and the size of the waterreservoir. The cost of
putting them into operation depends on the total distance traveled and the number of
landings.
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4. Reinforcement Learning

Planning is one approach to solve the problem. Given a simulated fire a plan can be
made using information about the expected time needed by a group of agents to cut a
fireline and the expected time the fire takes to arrive at these lines. However,
planning in stochastic dynamic environments is very difficult. It may happen that
after designing a plan, the environment changes in an unexpected way so that the
plan cannot be executed. Therefore, for such environments repeated planning is
necessary as new information arrives, which can be computationally very costly.
     Instead of planning, we can also learn reactive policies. Such policies map inputs
to actions and react immediately to changes in the environment. To search for
policies we will use reinforcement learning (RL) algorithms (Watkins 1989,
Bertsekas/Tsitsiklis 1996, Kaelbling et al. 1996). RL methods learn from trial and
error to predict the total expected cost of particular situations. The policy uses these
predictions to select actions which are expected to lead to the least expected future
cost.
     The decision cycle. Reinforcement learners are online decision makers. Thus,
instead of using a prior simulation of the fire and basing the decisions on this
simulation, decisions are made as the simulation is running. This makes it possible to
immediately react to changes of the environment (including new data of the real fire)
without the need for any replanning. The following decisions are made/learned
during a forest fire simulation:

1) Fire severity assessment. The fire danger is rated according to the expected
difficulty to control the fire and the expected speed of the fire front.

2) Choose resources based on global features and the fire severity rating.
3) Select an initial target for all resources.
4) Execute the agent policies. These policies enable the agents to react to changes

in the environment.

Here (1-3) are global decisions for the fire manager which set the stage for the fight,
and (4) consists of sequences of decisions of multiple agents (we execute a complete
behavior). Note that we do not (yet) allow for adding resources after the fire has
started.
     Cost function. The performance of the team is evaluated by using a cost
function. This cost function assigns costs to burned-trees areas, to burned assets, and
to all actions executed by the teams, helicopters and airplanes. By using the cost
function, each change (time step) of the environment can be evaluated, and summing
over all steps makes a long term evaluation of the team's performance possible. We
have to note that we cannot use hillclimbing on the cost function for decision
making. In RL the goal is to minimize the long term cost. If we would greedily act to
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save costs in the next steps, we may let the fire escape so that it causes much larger
costs later on.
     The input. Given some state of the environment, consisting of the state of all
cells and of all agent positions, we construct an agent's input. It is infeasible to give
agents complete global information of the state of the environment - there are too
many dynamic features, which would make the input space explode and learning
terribly slow. Furthermore, most decisions are not sensitive to many of the possible
inputs. It is clear that for the different decisions in our decision cycle, we have to use
different inputs. For the fire manager decisions (1-3), we need to focus on the fire,
the wind speed, and the area in front of the fire front to find out where and how fast
the fire is going to spread. For the behavior of an agent during the simulation, we use
the state of the region around the agent as input for her decision making. This
information contains fire activation levels and the terrain types of the areas around
which is very helpful for local navigation. To make learning global goals easier, we
will also include inputs which tell how far and in which direction the closest burning
gridcell is, how large the fire is, where the fire front is etc.
     The policy and evaluation function. An agent's policy maps inputs to actions
(decisions). This is done by using evaluation functions which map input/action pairs
to future cumulative expected cost. After having evaluated all input/action pairs, the
most promising action is selected. Since the input space is very large (the number of
input dimensions may be over 50), we cannot use tabular representations in which
each input has a special entry. Instead, we have to use a function approximator.
Combining function approximators with RL is an active topic of research, and in the
course of years many different function approximators have been used, including
neural networks (Tesauro 1992, Bertsekas/Tsitsiklis 1996) and CMACs (Albus
1975, Sutton 1996). We will in particular focus on model-based CMACs, which
have been used successfully for learning to play soccer strategies (Wiering et al.
1998a). CMACs use multiple filters which evaluate different partial descriptions of
the state and then combine these evaluations.
     Hierarchical evaluation functions. Since the wind speed and wind direction
play a crucial role in evaluating actions, we will use them to combine expert
evaluation functions (EFs). Different expert EFs are used for specific wind speeds
and directions. For combining the EFs for a particular wind situation, we locally
interpolate between them. This setup makes coping with changing winds a simple
task.
     The hierarchical EFs also allow to search for cooperative (team) solutions. The
fire manager selects a global attack plan by selecting initial targets for the agents.
These subplans could also be used to select a specific evaluation function for each
agent. By learning which evaluation functions can be combined in a fruitful way, the
fire manager searches for a set of cooperative agent strategies.
     Learning the policy. The policy is learned by trial and error: we start a
simulation with some initial fire, let the fire manager select the fire fighting team and
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let the agents execute their reactive behaviors. We continue the simulation until the
fire has been extinguished or some time limit has been reached, and then compute
the total cost of the fire.
     To learn manager decisions, we simply keep track of the average total cost of
simulations in which a particular decision was made. The decision which is expected
to lead to the minimal future cost in a particular environmental state is considered as
the best decision, although it is necessary to repeatedly make other decisions
(explore) to learn which one is optimal.
     For learning the agent behaviors, we adapt the evaluation of all situation/action
pairs which have occurred during a simulation. To adapt these evaluations, we do not
just adapt the evaluations towards the cumulative future cost of the simulation. The
cumulative cost has very large variance and when actions only differ slightly, it is
very difficult to find out which action is better. Instead, RL methods learn the
evaluation by using the immediate cost and the expected cost of the successor
state(s). There exist a number of RL methods such as Q-learning (Watkins 1989),
temporal difference learning (Sutton 1988, Tesauro 1992) and model-based RL
(Moore/Atkeson 1993, Wiering/Schmidhuber 1998b). We will focus on the latter
which learns a model of state transitions and estimated costs of these transitions.
Given this model, dynamic programming (DP) like algorithms (Bellman 1961,
Moore 1993) are used to compute the evaluation function and a new policy. Model-
based RL is very effective for problems in which we can store all state transitions
(Moore 1993). We can combine model based RL with CMACs by learning multiple
models, where each model is used for estimating the dynamics of each partial state
description.
     Learning team policies. Since the evolution of the environment depends on the
complete team behavior, it is difficult to evaluate the behavior of a single agent. It
may be possible that some agent's behavior is very good, whereas another agent does
not help to solve the problem. In such cases, we may punish the first agent's
behavior, since the team solution was bad. Only if the team is successful, the
behaviors will be reinforced by the learning algorithm. However, the probability of
having multiple good behaviors together decays exponentially with the number of
agents. To solve this problem, we will construct some simple behaviors, which
provide the learning system with reasonable starting points for learning. After this,
the system may learn from the experiences generated by executing these behaviors to
shape them (Dorigo/Colombetti 1998).

5. Discussion

We presented a framework for building an intelligent system which can learn to
control forest fires, a complex environmental problem which has received increasing
interest during the last decades. It is important to include intelligent subsystems for
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supporting human decision making for this complex task, since the problem involves
many interacting subprocesses (multiple forest fires can happen at the same time)
which make long term cost estimation of different plans very difficult for human
experts.
     Our methodology relies on learning to control a team of forest fire agents by
reinforcement learning. Reinforcement learning is a promising method to learn
reactive agent behaviors from trial and error. Agents are put in the environment and
learn from the experiences generated by their interaction with the environment. RL is
usually used for learning single-agent policies and for solving Markov decision
processes (Puterman 1994). The current problem features multiple agents which act
in parallel, where actions take different amounts of time and where the true
environmental state is partially observable. This makes the problem very challenging
and finding good methods for coping with these topics would make RL more widely
applicable to solve real world problems.
      Due to the complexity of the problem, we argue that an incremental approach
should be used for developing the fire spread model. The initial model describes the
abstract mathematical problem of constructing a set of lines to minimize the size of
an expanding stochastic process. It should be noted that this model also captures
essential features of related problems such as the spreading of infectious diseases,
flooding, fire outbreaks inside cities, and the spreading of violence or panic.
     Once we are able to find good team strategies for controlling forest fires in our initial
model, we make the model more complex by adding features which make the model
more realistic. This will enable us to face the difficulties of realistic forest fires and to
search for efficient ways for controlling them.
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