In-Plane Rotational Alignment of Faces by Eye and Eye-Pair Detection M.F. Karaaba, O.Surinta, L.R.B. Schomaker and M.A. Wiering Institute of Artificial Intelligence and Cognitive Engineering (ALICE) University of Groningen

Abstract

< VISAPP 2015 >

> A hierarchical detector system using eye and eye-pair detectors combined with a geometrical method for calculating the in-plane angle of a face image. **> Two feature methods**, the **RBM** and the **HOG**, are used to extract the feature vector by using a *sliding window*. **SVM** is used to accurately localize the eyes. **> The in-plane angle** is estimated by calculating the arctangent of horizontal and vertical parts of the distance between left and right eye center points. > We tested our approach on three different face datasets: IMM, LFW and FERET.

2. Roll angle calculation

angle = $arctan(\frac{y}{r})$

 $y = eye(left)_v - eye(right)_v$ $x = eye(left)_{x} - eye(right)_{x}$

Eyes localized with less (left) and more (right) than a localization error of 0.2

Sample of eye-pair regions

Non-Eye regions Eye regions

1. Feature Extraction

> RBM: An RBM is an energybased neural network model used for suppression of noise and reducing the dimensionality of the input data. It is composed of two layers: an input and a hidden layer.

Hidden n₂ 10 Units Weights Input Units

An RBM with 3 hidden and 4 visual (or input) units.

> HOG: It computes the oriented gradients of an image using gradient detectors.

Method	Dataset	Left eye	Right eye	Average
	IMM	.046 ± .002	$.043 \pm .002$	$.044 \pm .002$
	T T T T T			

Method	Dataset	Average error	Successful rotations < 2.5
	IMM	$1.35 \pm .066$	90.0 ± 1.9

3. Evaluation Methods

> the eye localization error

 $e = \frac{d(d_{eye}, m_{eye})}{d(m_{eye_l}, m_{eye_r})}$

> the angle estimation error

the absolute value of the difference between manually obtained and automatically estimated angles.

4. Face Recognition

> We used **HOG** with **3 x 3 x 9** and 60 x 66 pixels resolution (W x H), obtained **82.75%**

RBM	LFW	$.071 \pm .004$	$.069 \pm .005$	$.070 \pm .004$
	FERET	.069 ± .009	$.079 \pm .011$	$.074 \pm .010$
	IMM	.044 ± .006	$.041 \pm .004$	$.042 \pm .005$
HOG	LFW	.066 ± .003	$.071 \pm .005$.069 ± .004
	FERET	.064 ± .009	$.071 \pm .010$.067 ± .009

RBM	LFW	$2.30 \pm .083$	65.5 ± 2.3
	FERET	2.38 ± .118	80.9 ± 2.6
	IMM	$1.47 \pm .082$	80.0 ± 2.6
HOG	LFW	2.46 ± .096	63.4 ± 2.6
	FERET	2.64 ± .120	76.5 ± 2.8

Non-Rotated	74.50	75.50
Auto. Rotated	82.75	81.75
Improvement	8.25	6.25

