HANDWRITTEN CHARACTER CLASSIFICATION USING THE HOTSPOT FEATURE EXTRACTION TECHNIQUE

Olarik Surinta Lambert Schomaker Marco Wiering o.surinta@rug.nl, {mwiering, l.schomaker}@ai.rug.nl

ABSTRACT

- The novel feature extraction technique called the hotspot technique is proposed for representing handwritten characters and digits.
- This technique is applied to three data sets

"HOTSPOT" Feature extraction technique

- This technique consists of two parameters
 - the number of hotspots
 - the number of chain code directions
- The distance values between the closest black pixels and the hotspots in each direction are used as representation for a character.
- Size of the hotspot was defined as NXN (Figure 2).
- The direction of the hotspots is defined by the chain

and combined with by the *k*-Nearest Neighbors (*k*-NN) algorithm.

The results revealed that the hotspot technique provides the largest classification accuracies.

Keywords: Handwritten Character Recognition, Feature Extraction, k-Nearest Neighbors, Classification.

INTRODUCTION

- The objective is to reduce the data dimensionality by extracting the most important features from character images.
- The main aim is to propose a *fast and easy*

code directions (Figure 3).

The results demonstrated that the best setting uses
 25 hotspots and 4 directions, the hotspot
 technique provides 100 features.

Figure 2: An example to illustrate the location and distribution of the hotspots.

Figure 3: The chain code directions for identifying the distance, (a) 4 directions chain code and(b) 8 directions chain code.

• The hotspot feature vector is defined as: $D = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$

to use feature extraction method that obtains a *good performance*.

 The hotspot technique extracts important information from the character images and is fairly robust to translation and rotation variances.

DATA COLLECTION AND PRE-PROCESSING

Figure 1: Some examples of character images used in the present study.

$P_{s} = \{(x_{s}, y_{s}), \{d_{i}\}, \{D_{si}\}\}$

• If there is no object pixel found then the distance is set to d_{max} .

$$D_{si} = \sqrt{(x_s - x_i)^2 + (y_s - y_i)^2} \quad if(x_i, y_i) \text{ exists,} \\ d_{max} \quad else$$

EXPERIMENTAL RESULTS

- The feature vectors obtained from the hotspot techniques are classified by the *k*-NN algorithm.
- Randomly divided the data into a test (10%) and training set (90%) 10 different times.
- The **best** feature extraction techniques for classification is **hotspot technique**, (*Table 1*).

- 5,900 records of The Thai data set
 - 65 classes
- *9,595* records of
 The Bangla
 numeric data set
- 10,000 records of The MNIST data set
 - 10 classes
- Pre-processing starts off with cropping the exceeding parts of scanned images.

- **10** classes

 These images are transformed into binary images and scaled to 40 × 40 pixels.

Data set	Feature extraction technique		
	Hotspot	Mark direction	Direction of chain code
Thai	83.3	88.0	71.3
	σ = 0.5	σ = 0.6	σ = 0.7
MNIST	89.9	85.1	83.5
	σ = 0.3	σ = 0.3	σ = 0.2
Bangla numeric	90.1	87.6	82.7
	σ = 0.4	σ = 0.4	σ = 0.4

Research group:

Autonomous and perceptive systems (APS) group, Artificial Intelligence and Cognitive Engineering (ALICE) institute of Groningen University, The Netherlands

Acknowledgements:

We are sincerely grateful to Dr. Tapan K. Bhowmik for providing the Bangla numeric data used in the present study. We thank Jean Paul van Oosten for useful remarks on a preliminary version of this paper.

