
Recognizing Handwritten Characters
with Local Descriptors and Bags of
Visual Words
Presentation at EANN’2015, Island of Rhodes

O. Surinta, M.F. Karaaba, T.K. Mishra,
L.R.B. Schomaker, and M.A. Wiering
Institute of Arti�cial Intelligence and Cognitive Engineering
University of Groningen, The Netherlands

Overview

1. Introduction

2. Feature Extraction Methods

3. Handwritten Character Datasets and Pre-Processing

4. Experimental Results

5. Conclusion

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 2/31

Introduction

Introduction

Obtaining high accuracies on handwritten character
datasets can be di�cult due to several factors such as
◦ background noise
◦ many di�erent types of handwriting
◦ an insu�cient amount of training examples

There are currently many character recognition systems
which have been tested on the MNIST dataset.

Compared to other handwritten datasets, MNIST is
simpler as it contains much more training examples.

It is not surprising that a lot of progress on the best test
accuracy has been made.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 4/31

Introduction MNIST / DBN

Currently the best approaches for MNIST make use of
deep neural network architectures.

In (Hinton et al., 2006), the deep belief network (DBN) has
been investigated for MNIST.

Three hidden layers are used where the sizes of each layer
are 500, 500 and 2,000 hidden units.

The recognition performance with this method is 98.65%.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 5/31

Introduction CNN

In (Cireşan et al., 2011), 35 convolutional neural networks
(CNN) are trained and combined using a committee.

This approach has obtained an accuracy of on average
99.77%, which is the best performance on MNIST so far.

This technique requires
◦ a lot of training data
◦ a huge amount of time for training for which the use of

GPUs in mandatory

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 6/31

Contributions

To be able to deal with small datasets and create faster
methods, we propose the use of feature descriptors for
recognizing handwritten characters.
◦ Histograms of oriented gradients (HOG)
◦ Bags of visual words using pixel intensities (BOW)
◦ Bags of visual words using HOG (HOG-BOW)

These methods are compared on three handwritten
character datasets including
◦ Bangla (Bengali)
◦ Odia (Oriya) and
◦ MNIST

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 7/31

Contributions challenges in the dataset

There are some challenges in the Bangla and Odia
handwritten character datasets such as
◦ The writing styles (e.g., heavy cursively and arbitrary tail

strokes)
◦ Background noise
◦ A lack of a large amount of handwritten character samples

cursive longtail noisy background

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 8/31

Contributions classifier

We have evaluated the feature extraction techniques with
three types of support vector machines (SVM) as a
classi�er.
◦ A linear SVM
◦ An SVM with a radial basis function (RBF) kernel and
◦ A linear SVM with L2-norm regularization (L2-SVM)

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 9/31

Feature Extraction Methods

Histograms of Oriented Gradients (HOG)

The HOG descriptor was proposed in (Dalal and Triggs,
2005) for the purpose of human detection from images.

HOG descriptor

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 11/31

Compute the HOG descriptor

The handwritten character image is divided into small
regions (η), called ‘blocks’.

A simple kernel [−1, 0, +1] is used as the gradient detector
(i.e. Sobel or Prewitt operators).

Gx � f (x + 1, y) − f (x − 1, y)
Gy � f (x, y + 1) − f (x, y − 1)

where f (x, y) is the intensity value at coordinate x, y.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 12/31

Compute the HOG descriptor (Cont.)

Compute the gradient magnitude M and the gradient
Orientation θ.

M(x, y) �
√

G2
x + G2

y

θ(x, y) � tan−1
Gy

Gx

The image gradient orientations within each block are
weighted into a speci�c orientation bin β of the histogram.

The HOG descriptors from all blocks are combined and
normalized by the L2-norm.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 13/31

The HOG descriptor

The best η and β parameters we used are 6 and 9,
respectively, which yields a 324-dimensional (6 × 6 × 9)
feature vector.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 14/31

Bag of Visual Words with Pixel Intensities (BOW)

The bag of visual words has been widely used in computer
vision research.

Local patches that contain local information of the image
are extracted and used as a feature vector.

A codebook is constructed by using an unsupervised
clustering algorithm.

In (A. Coates et al, 2011), it was shown that the BOW
method outperformed other feature learning methods
such as RBMs and autoencoders.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 15/31

BOW: Extracting patches from the training data

The patches X are extracted randomly from the unlabeled
training images, X � {x1 , x2 , ..., xN} where xk ∈ Rp and N is
the number of random patches.

The size of each patch is de�ned as a square with
(p � w × w) pixels.

In our experiments we used w � 15, meaning 15 × 15 pixel
windows are used.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 16/31

BOW: Construction of the codebook

The codebook C is computed by using the K-means
clustering method on pixel intensity information contained
in each patch.

Let C � {c1 , c2 , ..., cK} , c ∈ Rp represent the codebook,
where K is the number of centroids.

In our experiments we used 400,000 randomly selected
patches to compute the codebooks.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 17/31

BOW: Feature extraction

To create the feature vectors for training and testing
images, the soft-assignment coding scheme from A. Coates
et al (2011) is used.

ik(x) � max
{
0, µ(s) − sk

}
where sk � ‖x − ck‖2 and µ(s) is the mean of the elements
of s.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 18/31

BOW: Feature extraction (Cont.)

We use a sliding window on the train and test images to
extract the patches. Because the stride is 1 pixel and the
window size is 15 × 15 pixels, the method extracts 484
patches from each image to compute the cluster
activations.

The image is split into four quadrants and the activities of
each cluster for each patch in a quadrant are summed up.

The feature vector size is K × 4 and because we use K � 600
clusters, the feature vectors for the BOWmethod have
2,400 dimensions.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 19/31

BOW: Feature extraction Calculate the feature vector

Extract patches from input image Calculate the feature from each centroid

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 20/31

Bag of Visual Words with HOG Features (HOG-BOW)

HOG-BOW, feature vectors from patches are computed by
using the state-of-the-art HOG descriptor.

The advantages of the HOG descriptor are
◦ capture the gradient structure of the local shape
◦ provide more robust features

In this experiment, the best HOG parameters used 36
rectangular blocks and 9 bins to compute feature vectors
from each patch.

The HOG-BOW used 4 quadrants and 600 centroids,
yielding a 2,400 dimensional feature vector.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 21/31

Handwritten Character Datasets
and Pre-Processing

Handwritten Character Datasets

Table: Overview of the handwritten character datasets

Dataset Color Format No. of Writers No. of Classes Train Test
Bangla character Grayscale Multi 45 4,627 900
Odia character Binary 50 47 4,042 987
MNIST Grayscale 250 10 60,000 10,000

Bangla handwritten characters Odia handwritten characters MNIST handwritten digits

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 23/31

Data Pre-Processing

Image format of the handwritten dataset
◦ The Bangla handwritten dataset contains di�erent kinds of

backgrounds and is stored in gray-scale format.
◦ The Odia handwritten dataset is stored in binary image

format.
◦ The MNIST dataset is stored in gray-scale format.

A few pre-processing steps are employed.
◦ Background removal, Otsu’s algorithm
◦ Basic image morphological operations, dilation operation
◦ Image normalization, 36 × 36 pixels with the aspect ratio

preserved

pre-processing steps

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 24/31

Experimental Results

Results when combined with the linear SVM

Table: Results of training (10-fold cross validation with the standard
deviation) and testing recognition performances (%) of the feature
descriptors when combined with the linear SVM.

Algorithms Bangla dataset Odia dataset MNIST dataset
10-cv Test 10-cv Test 10-cv Test

PCA 1 54.87 ± 0.20 53.67 56.57 ± 0.32 53.60 93.29 ± 0.02 92.69
DCT 2 59.33 ± 0.32 52.33 60.77 ± 0.40 54.81 92.51 ± 0.06 91.32
IMG 3 56.25 ± 0.22 54.33 56.12 ± 0.57 56.23 94.13 ± 0.05 94.58
BOW 77.96 ± 0.21 77.17 79.30 ± 0.34 78.01 98.71 ± 0.02 98.47
HOG 81.17 ± 0.30 80.11 79.86 ± 0.20 80.45 98.62 ± 0.01 99.11
HOG-BOW 82.07 ± 0.24 82.44 81.74 ± 0.49 82.43 99.09 ± 0.03 99.16

1PCA: Principal Component Analysis
2DCT: Discrete Cosine Transform
3IMG: Pixel-based Method

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 26/31

Results when combined with the SVM with the RBF kernel

Table: Results of training (10-fold cross validation with the standard
deviation) and testing recognition performances (%) of the feature
descriptors when combined with the SVM with the RBF kernel.

Algorithms Bangla dataset Odia dataset MNIST dataset
10-cv Test 10-cv Test 10-cv Test

IMG 63.25 ± 0.28 60.00 57.95 ± 0.42 60.28 96.95 ± 0.02 97.27
PCA 64.08 ± 0.30 61.11 60.57 ± 0.57 59.87 96.86 ± 0.02 96.64
DCT 70.18 ± 0.27 61.33 69.91 ± 0.34 63.63 98.18 ± 0.09 97.51
BOW 78.76 ± 0.38 77.17 81.29 ± 0.42 80.65 98.98 ± 0.01 98.97
HOG 83.11 ± 0.25 83.00 82.16 ± 0.27 83.38 99.13 ± 0.01 99.12
HOG-BOW 83.14 ± 0.18 83.33 83.62 ± 0.17 83.56 99.30 ± 0.02 99.35

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 27/31

Results when used with the L2-SVM

Table: Results of recognition performances (%) of the methods when
used with the L2-SVM.

Algorithms Feature Handwritten character dataset
dimensionality Test Bangla Test Odia Test MNIST

DCT 60 51.67 56.94 90.84
PCA 80 50.33 53.90 91.02
IMG 1,296 31.33 42.65 91.53
HOG 324 74.89 74.27 98.53
BOW 2,400 86.56 84.60 99.10
HOG-BOW 2,400 87.22 85.61 99.43

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 28/31

Conclusion

Conclusion

We have demonstrated the e�ectiveness of di�erent feature
extraction techniques of computer vision for handwritten
character recognition.

The HOG-BOW method combined with an L2-SVM
outperforms all other methods.

On the MNIST dataset, HOG-BOW combined with the
L2-SVM obtains a recognition accuracy on the test set of
99.43% which is a state-of-the-art performance.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 30/31

Thank you

Thank you for your attention.

Institute of Arti�cial Intelligence and Cognitive Engineering (ALICE), University of Groningen 31/31

	Introduction
	Feature Extraction Methods
	Handwritten Character Datasets and Pre-Processing
	Experimental Results
	Conclusion

