The use of computational modeling for mapping the mind

Marieke K. van Vugt¹, m.k.van.vugt@rug.nl
¹ Dept of Artificial Intelligence, University of Groningen, The Netherlands

Modeling to disentangle effect of meditation on cognition

- Why use modeling?
 - Detailed description of the cognitive process under study (Mehlhorn et al., 2012)
 - Verbal descriptions often ambiguous

- What is cognitive modeling?
 - Decomposing a cognitive task into crucial cognitive operations
 - Defining it in equations or algorithms
 - Simulating the task on a computer
 - Matching parameters of the model to observed data

- Changes in parameters indicate specific cognitive mechanisms

Modeling to predict new effects of meditation on cognition

- Why make a model of a meditating computer?
 - Start with meditation instruction → put focus on goal “meditating”
 - Competition with a distracting “thought pump” process
 - How could it regain focus?

Why use modeling?

- Detailed description of the cognitive process under study (Mehlhorn et al., 2012)
- Verbal descriptions often ambiguous

What is cognitive modeling?

- Decomposing a cognitive task into crucial cognitive operations
- Defining it in equations or algorithms
- Simulating the task on a computer
- Matching parameters of the model to observed data

Changes in parameters indicate specific cognitive mechanisms

The drift diffusion model of decision making

DDM shows reduction in perceptual noise

- More specific conclusions

Increased drift in attention network task

Conclusions

Meditation decreases mental noise

Interacting with time and group: p = 0.04 (non-parametric ANOVA)

Conclusions

- Development of a computational model of meditation
- Aims: comparing meditation model to task models
- First: verify predictions for transfer to attentional blink
- Next: make predictions for untested tasks (using ActionTransfer - Taatgen, in press)
- Ultimately: better understand why meditation helps people

van Vugt & Slagter (in preparation)