Combining modeling and intracranial EEG to study the neural correlates of similarity-based interference

Marieke K. van Vugt¹, Andreas Schulze-Bonhage²,Brian Litt¹, Michael J. Kahana¹
¹ University of Pennsylvania
² Epilepsie Zentrum Freiburg, Germany

Introduction

interference is the main cause of forgetting, due to stimulus structure or temporal similarity (Brown, Neath, & Schvaneveldt, 1991) – neural correlate of similarity?

EEG can determine timecourse of interference resolution

Directed Transfer Function (DTF): generalization of Granger causality into frequency domain (Kahana & Sekuler, 2006)

Directedness determined by bootstrap resampling

EEG can determine timecourse of interference resolution

Directedness determined by bootstrap resampling

EEG can determine timecourse of interference resolution

Directedness determined by bootstrap resampling

EEG can determine timecourse of interference resolution

Directedness determined by bootstrap resampling

EEG can determine timecourse of interference resolution

Directedness determined by bootstrap resampling

EEG can determine timecourse of interference resolution

Directedness determined by bootstrap resampling

EEG can determine timecourse of interference resolution

Directedness determined by bootstrap resampling

EEG can determine timecourse of interference resolution

Directedness determined by bootstrap resampling

EEG can determine timecourse of interference resolution

Directedness determined by bootstrap resampling